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Capacity-Equivocation Region of the Gaussian
MIMO Wiretap Channel
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Abstract—We study the Gaussian multiple-input mul-
tiple-output (MIMO) wiretap channel, which consists of a
transmitter, a legitimate user, and an eavesdropper. In this
channel, the transmitter sends a common message to both the
legitimate user and the eavesdropper. In addition to this common
message, the legitimate user receives a private message, which
is desired to be kept hidden as much as possible from the eaves-
dropper. We obtain the entire capacity-equivocation region of
the Gaussian MIMO wiretap channel. This region contains all
achievable common message, private message, and private mes-
sage’s equivocation (secrecy) rates. In particular, we show the
sufficiency of jointly Gaussian auxiliary random variables and
channel input to evaluate the existing single-letter description of
the capacity-equivocation region due to Csiszar–Korner.

Index Terms—Capacity-equivocation region, Gaussianmultiple-
input multiple-output (MIMO) wiretap channel.

I. INTRODUCTION

W E consider the Gaussian multiple-input multiple-output
(MIMO) wiretap channel, which consists of a trans-

mitter, a legitimate user, and an eavesdropper. In this channel,
the transmitter sends a common message to both the legitimate
user and the eavesdropper in addition to a private message
which is directed to only the legitimate user. There is a secrecy
concern regarding this private message in the sense that the
private message needs to be kept secret as much as possible
from the eavesdropper. The secrecy of the private message is
measured by its equivocation at the eavesdropper.
Here, we obtain the capacity-equivocation region of the

Gaussian MIMO wiretap channel. This region contains all
achievable rate triples , where denotes the
common message rate, denotes the private message rate,
and denotes the private message’s equivocation (secrecy)
rate. In fact, this region is known in a single-letter form due
to [1]. In this paper, we show that jointly Gaussian auxiliary
random variables and channel input are sufficient to evaluate
this single-letter description for the capacity-equivocation
region of the Gaussian MIMO wiretap channel. We prove the
sufficiency of the jointly Gaussian auxiliary random variables
and channel input by using channel enhancement [2] and an
extremal inequality from [3]. In our proof, we also use the
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equivalence between the Gaussian MIMO wiretap channel and
the Gaussian MIMO wiretap channel with public messages [4,
Problem33-c], [5]. In the latter channel model, the transmitter
has three messages, a common, a confidential, and a public
message. The common message is sent to both the legitimate
user and the eavesdropper, while the confidential and public
messages are directed to only the legitimate user. Here, the
confidential message needs to be transmitted in perfect secrecy,
whereas there is no secrecy constraint on the public message.
Since the Gaussian MIMO wiretap channel and the Gaussian
MIMO wiretap channel with public messages are equivalent,
i.e., there is a one-to-one correspondence between the capacity
regions of these two models, in our proof, we obtain the ca-
pacity region of the Gaussian MIMO wiretap channel with
public messages, which, in turn, gives us the capacity-equivo-
cation region of the Gaussian MIMO wiretap channel.
Our result subsumes the following previous findings about

the capacity-equivocation region of the Gaussian MIMO
wiretap channel: 1) The secrecy capacity of this channel, i.e.,

when , is obtained in [6] and [7]
for the general case, and in [8] for the 2–2-1 case. 2) The
common and confidential rate region under perfect secrecy,
i.e., region with , is obtained in [9]. 3)
The capacity-equivocation region without a common message,
i.e., region with , is obtained in [5]. 4) The
capacity region of the Gaussian MIMO broadcast channel
with degraded message sets without a secrecy concern, i.e.,

region with no consideration on , is obtained in
[10]. Here, we obtain the entire region. Our result
as well as the previous results listed above hold when there is
a covariance constraint on the channel input as well as when
there is a total power constraint on the channel input.

II. DISCRETE MEMORYLESS WIRETAP CHANNELS

The discrete memoryless wiretap channel consists of a trans-
mitter, a legitimate user, and an eavesdropper. The channel tran-
sition probability is denoted by , where is the
channel input, is the legitimate user’s observation, and

is the eavesdropper’s observation. We consider the fol-
lowing scenario for the discrete memoryless wiretap channel:
the transmitter sends a common message to both the legitimate
user and the eavesdropper, and a private message to the legiti-
mate user which is desired to be kept hidden as much as possible
from the eavesdropper.
An code for this channel consists of twomes-

sage sets , , one en-
coder at the transmitter , one decoder at
the legitimate user , and one decoder at
the eavesdropper . The probability of error is de-
fined as , where

, and is a uniformly
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distributed random variable in . We note that
corresponds to the common message that is transmitted to

both the legitimate user and the eavesdropper, and denotes
the private message sent only to the legitimate user, on which
there is a secrecy constraint. The secrecy of the legitimate user’s
private message is measured by its equivocation at the eaves-
dropper [1], [11], i.e.,

(1)

A rate triple is said to be achievable if there exists
an code such that , and

(2)

The capacity-equivocation region of the discrete memory-
less wiretap channel is defined as the convex closure of all
achievable rate triples , and denoted by . The ca-
pacity-equivocation region of the discrete memoryless wiretap
channel, which is obtained in [1], is stated in the following
theorem.
Theorem 1 ([1, Theorem 1]): The capacity-equivocation re-

gion of the discrete memoryless wiretap channel is given by
the union of rate triples satisfying

(3)

(4)

(5)

(6)

for some such that

(7)

We next provide an alternative description for . This alter-
native description will arise as the capacity region of a different,
however related, communication scenario for the discrete mem-
oryless wiretap channel. In this communication scenario, the
transmitter has three messages, , where is the
common message sent to both the legitimate user and the eaves-
dropper, is the public message sent only to the legitimate
user on which there is no secrecy constraint, and is the con-
fidential message sent only to the legitimate user in perfect se-
crecy. In this scenario, since needs to be transmitted in per-
fect secrecy, it needs to satisfy the following condition:

(8)

As we noted before, unlike , there is no secrecy constraint
on the public message . We also note that the perfect se-
crecy on a message is attained when the equivocation of this
message is equal to its rate, i.e., when we have ,
which can be seen by comparing (2) and (8). To distinguish
this communication scenario from the previous one, we call the
channel model arising from this scenario the discrete memory-
less wiretap channel with publicmessages. We note that this al-
ternative description for wiretap channels has been previously
considered in [4, Problem33-c], [5].

An code for this scenario con-
sists of three message sets

, one encoder at the
transmitter , one decoder at
the legitimate user , and one
decoder at the eavesdropper . The probability
of error is defined as , where

and .
A rate triple is said to be achievable if there exists
an code such that
and (8) is satisfied. The capacity region of the discrete
memoryless wiretap channel with publicmessages is defined as
the convex closure of all achievable rate triples .
The following lemma establishes the equivalence between
and .
Lemma 1: iff .
The proof of this lemma is given in Appendix I. This

proof consists of two steps. In the first step, we note that if
, then in the corresponding achievable

scheme attaining this rate triple, we can combine the messages
to obtain , whose equivocation

will be as least due to the perfect secrecy requirement on
. Hence, this argument proves the inclusion . In

the second step, we show the reverse inclusion . To
this end, we consider the achievable scheme that attains the
entire region , and call this achievable scheme the optimal
achievable scheme. If the rate triple , in the
corresponding optimal achievable scheme, the private message

can be divided into two parts where
the rate of is sufficiently close to and satisfies the
perfect secrecy requirement. Hence, this argument shows that

, i.e., ; completing the proof of
Lemma 1. Using Lemma 1 and Theorem 1, we can express
as stated in the following theorem.
Theorem 2: The capacity region of the discrete memoryless

wiretap channel with public messages is given by the union
of rate triples satisfying

(9)

(10)

(11)

for some such that

(12)

III. GAUSSIAN MIMO WIRETAP CHANNEL

The Gaussian MIMO wiretap channel is defined by

(13)

(14)

where the channel input is a vector, is an
column vector denoting the legitimate user’s observation, is
an column vector denoting the eavesdropper’s observa-
tion, are the channel gain matrices of sizes
, respectively, and are Gaussian random vectors with
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covariance matrices ,1 respectively, which are assumed
to be strictly positive-definite, i.e., . We con-
sider a covariance constraint on the channel input as follows:

(15)

where . The capacity-equivocation region of the Gaussian
MIMO wiretap channel is denoted by which contains all
achievable rate triples . The main result of this
paper is the characterization of the capacity-equivocation region

as stated in the following theorem.
Theorem 3: The capacity-equivocation region of the

Gaussian MIMO wiretap channel is given by the union of
rate triples satisfying

(16)

(17)

(18)

for some positive semidefinite matrix such that .
Similar to what we did in the previous section, we can estab-

lish an alternative statement for Theorem 3 by considering the
Gaussian MIMO wiretap channel with public messages, where
the legitimate user’s private message is divided into two parts
such that one part (confidential message) needs to be transmitted
in perfect secrecy and there is no secrecy constraint on the other
part (public message). The capacity region for this alternative
scenario is denoted by . We note that Lemma 1 provides a
one-to-one connection between the capacity regions and ,
and this equivalence can be extended to the capacity regions

and by incorporating the covariance constraint on
the channel input in the proof of Lemma 1. Thus, using Lemma
1 and Theorem 3, can be obtained as follows.
Theorem 4: The capacity region of the Gaussian MIMO

wiretap channel with public messages is given by the
union of rate triples satisfying

(19)

(20)

(21)

1Without loss of generality, we can set . However, we let
be arbitrary for ease of presentation.

for some positive semidefinite matrix such that .
We next define a subclass of Gaussian MIMO wiretap chan-

nels called the aligned Gaussian MIMO wiretap channel, which
can be obtained from (13)–(14) by setting

(22)

(23)

In this study, we first prove Theorems 3 and 4 for the aligned
Gaussian MIMO wiretap channel. Then, we establish the ca-
pacity region for the general channel model in (13)–(14) by
following the analysis in [2, Sec. V.B] and [12, Sec. 7.1] in
conjunction with the capacity result we obtain for the aligned
channel.

A. Capacity Region Under a Power Constraint

We note that the covariance constraint on the channel input
in (15) is a rather general constraint that subsumes the average
power constraint

(24)

as a special case, see Lemma 1 and [2, Corollary 1]. Therefore,
using Theorem 3, the capacity-equivocation region arising from
the average power constraint in (24), , can be found as
follows.
Corollary 1: The capacity-equivocation region of the

Gaussian MIMO wiretap channel subject to an average power
constraint , , is given by the union of rate triples

satisfying

(25)

(26)

(27)

for some positive semidefinite matrices such that
.

IV. PROOF OF THEOREM 3 FOR THE ALIGNED CASE

Instead of proving Theorem 3, here we prove Theorem 4,
which implies Theorem 3 due to Lemma 1. Achievability of
the region given in Theorem 4 can be shown by setting
in Theorem 2, and using jointly Gaussian
, where are independent Gaussian random vectors with

covariance matrices , respectively. In the rest of this
section, we provide the converse proof. To this end, we note that
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since 2 is convex by definition, it can be characterized by
solving the following optimization problem:3

(29)

for all , and all possible common
message rates , which is bounded as follows:

(30)

where are the single-user capacities for the le-
gitimate user and the eavesdropper channels, respectively, i.e.,

(31)

(32)

We note that the optimization problem in (29) can be expressed
in the following more explicit form:

(33)

(34)

We also consider the Gaussian rate region which
is defined by (35) at the bottom of the page, where

are given as follows:

(36)

(37)

(38)

(39)

2Although is originally defined for the general, not necessarily
aligned, Gaussian wiretap channel with public messages, here we use
to denote the capacity region of the aligned Gaussian MIMO wiretap channel
with public messages as well.
3Although characterizing by solving the following optimization

problem:

(28)

for all seems to be more natural, we find working with (29) more
convenient. Here, we characterize by solving (29) for all for all
fixed feasible .

To provide the converse proof, i.e., to prove the optimality of
jointly Gaussian for the optimization problem in
(33)–(34), we will show that

(40)

where is defined as

(41)

We show (40) in two parts:
1)
2) .

A.

In this case, can be written as

(42)

(43)

where we use the fact that , and the secret message
rate can be given up in favor of the private message rate
. In other words, we use the fact that when , the

maximum of is given by , where
is an achievable public message rate since the se-

cret message can be converted into a public message. This op-
timization problem gives us the capacity region of the two-user
GaussianMIMObroadcast channel with degradedmessage sets,
where a common message is sent to both users, and a private
message, on which there is no secrecy constraint, is sent to one
of the two users [13]. The optimization problem for this case
given in (42)–(43) is solved in [10] by showing the optimality
of jointly Gaussian , i.e., . This com-
pletes the converse proof for the case .

B.

In this case, we first study the optimization problem in (41).
We rewrite as follows:

(44)

(45)

where we use the fact that since , the secret mes-
sage rate should be set as high as possible to maximize

, i.e., we should set . Let
be the maximizer for this optimization problem. The necessary

(35)
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Karush–Kuhn–Tucker (KKT) conditions that needs
to satisfy are given in the following lemma.
Lemma 2: needs to satisfy

(46)

for some positive semidefinite matrices such that

(47)

(48)

and for some such that it satisfies and

(49)

and are given as follows:

(50)
needs to satisfy

(51)

The proof of Lemma 2 is given in Appendix II. We treat three
cases separately:
1) ;
2) ;
3) .
1) : In this case, we have

, see (50). Thus, the KKT condition in (46)
reduces to

(52)

We first note that satisfying (52) achieves the secrecy ca-
pacity of this Gaussian MIMO wiretap channel [14], i.e.,

(53)

(54)

(55)

Next, we define a new covariance matrix as follows:

(56)
which is similar to the channel enhancement done in [14]. This
new covariance matrix has some useful properties which
are listed in the following lemma, whose proof is given in
Appendix III.
Lemma 3: We have the following facts:
1) ;
2) ;

3) ;
4) .
Thus, we have

(57)

(58)

(59)

(60)

where (58) comes from the third part of Lemma 3, (59) is due
to the fact that

(61)

for , , by noting the second part of Lemma
3. Therefore, we have

(62)

where satisfies (52). Using (62) in (51), we find as fol-
lows:

(63)

We also note the following:

(64)

(65)

(66)

Now, we show that
(67)

To this end, we assume that

(68)

which implies that there exists a rate triple
such that

(69)

To prove (67), i.e., that (68) is not possible, we note the fol-
lowing bounds:

(70)

(71)

where (70) comes from (55) and the fact that the rate of the con-
fidential message, i.e., , cannot exceed the secrecy capacity,
and (71) is due to (66) and the fact that the sum rate
cannot exceed the legitimate user’s single-user capacity. Thus,
in view of , we can multiply (70) and (71) by
and , respectively, and add the corresponding inequalities to
obtain

(72)
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which contradicts with (69), proving (67). This completes the
converse proof for this case.
Before starting the proofs of the other two cases, we now

recap our proof for the case .
We note that we did not show the optimality of Gaussian sig-
nalling directly, instead, we prove it indirectly by showing the
following:

(73)

First, we show that for the given common message rate ,
we can achieve the secrecy capacity, i.e., , see
(53)–(55). In other words, we show that is on the
boundary of the capacity region . Secondly, we show that
for the given common message rate , achieve the
sum capacity of the public and confidential messages, i.e.,
is sum rate optimal for the given common message rate

[see (64)–(66) and (71)]. These two findings lead to the inequal-
ities in (70)–(71). Finally, we use a time-sharing argument for
these two inequalities in (70)–(71) to obtain (73), which com-
pletes the proof.
2) : We first rewrite the KKT

condition in (46) as follows:

(74)

by defining , , and . We
note that if , we have , if

, we have . The
proof of these two cases are very similar, and we consider only
the case , i.e., we assume

. The other case can be proved similarly.
Similar to Section IV-B1, here also, we prove the desired

identity

(75)

by contradiction. We first assume that

(76)

which implies that there exists a rate triple
such that

(77)

where we define . Since the sum rate
needs to be smaller than the legitimate user’s single user

capacity, we have
(78)

On the other hand, we have the following:

(79)

(80)

(81)

where (79) comes from (51), and (80) is due to our assumption
that . Equations (78) and (81)
imply that

(82)

In the rest of this section, we prove that we have for
the given common message rate , which, in conjunction with
(82), will yield a contradiction with (77); proving (75). To this
end, we first define a new covariance matrix as follows:

(83)
This new covariance matrix has some useful properties
which are listed in the following lemma.
Lemma 4: We have the following facts:
1) ;
2) ;
3) ;
4) .
The proof of this lemma is given in Appendix IV. Using this
new covariance matrix, we define a random vector as

(84)

where is a Gaussian random vector with covariance matrix
. Due to the first and second statements of Lemma 4, we

have the following Markov chains:

(85)

(86)

We next study the following optimization problem:

(87)

where the equality follows from the fact that the max-
imum of is obtained by selecting both

and to be individually maximum, i.e., by setting
, ,

since this is possible by simply setting .
Since we assume , we have the fol-

lowing lower bound for (87):

(88)
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Now we solve the optimization problem in (87) as follows:

(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

(97)

where (90) comes from the fact that ,
(91)–(92) are due to the Markov chains in (85)–(86), respec-
tively, (93) can be obtained by using the analysis in [9, eqs.
(30)–(32)], which uses an extremal inequality from [3] to estab-
lish this result, (95) comes from the third part of Lemma 4, and
(97) is due to our assumption that .
Thus, (97) implies

(98)

Comparing (88) and (98) yields

(99)

Using (82) and (99) and noting , we can get

(100)

which contradicts with (77), proving (75). This completes the
converse proof for this case.
Before providing the proof for the last case, we recap our

proof for the case . Similar to
Section IV-B1, here also, we prove the optimality of Gaussian
signalling indirectly, i.e., we show the desired identity

(101)

indirectly. First, we show that for the given common message
rate , is sum rate optimal, i.e., achieve
the sum capacity of the public and confidential messages, by
obtaining (82). Second, we show that is also on the
boundary of the capacity region by obtaining (98). These
two findings give us the inequalities in (82) and (99). Finally,
we use a time-sharing argument for these two inequalities in
(82) and (99) to establish (101), which completes the proof.
3) : In this case, we have

, see (49)–(50). Hence, the KKT condition in (46)
reduces to

(102)

We again prove the desired identity

(103)

by contradiction. We first assume that

(104)

which implies that there exists a rate triple
such that

(105)

In the rest of the section, we show that

(106)

to reach a contradiction, and hence, prove (103). To this end, we
define a new covariance matrix as follows:

(107)

This new covariance matrix has some useful properties
listed in the following lemma.
Lemma 5: We have the following facts.
1) ;
2) ;
3) ;
4) .
The proof of this lemma is very similar to the proof Lemma 4,
and hence is omitted. Using this new covariance matrix , we
define a random vector as

(108)
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where is a Gaussian random vector with covariance matrix
. Due to the first and second statements of Lemma 5, we

have the following Markov chains:

(109)

(110)

Next, we study the following optimization problem:

(111)

We note that since , we have the fol-
lowing lower bound for the optimization problem in (111):

(112)

We next obtain the maximum for (111). To this end, we intro-
duce the following lemma which provides an explicit form for
this optimization problem.
Lemma 6: For , we have

(113)

The proof of this lemma is given in Appendix V.
Next we introduce the following extremal inequality from [3],

which will be used in the solution of (113).
Lemma 7 [3, Corollary 4]: Let be an arbitrarily cor-

related random vector, where has a covariance constraint
and . Let be Gaussian random

vectors with covariance matrices , respectively. They
are independent of . Furthermore, satisfy
. Assume that there exists a covariance matrix such that

and

(114)

where and is positive semidefinite matrix
such that . Then, for any , we have

(115)

Now we use Lemma 7. To this end, we note that using (107)
in (102), we get

(116)

In view of (116) and the fact that , Lemma 7 implies

(117)

We now consider the maximization in (113) as follows:

(118)

(119)

(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(128)

(129)

(130)
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where (119) is due to , (120) is due to theMarkov
chain in (110), (121)–(122) come from the Markov chains in
(109)–(109), respectively, (124) is due to the maximum entropy
theorem [15], (125) comes from (117), and (128) is due to the
third part of Lemma 5. Comparing (130) and (112) yields

(131)

which contradicts with our assumption in (105); implying (103).
This completes the converse proof for this case.
We note that contrary to Sections IV-B1 and IV-B2, here we

prove the optimality of Gaussian signalling, i.e.,

(132)

directly. In other words, to show (132), we did not find any other
points on the boundary of the capacity region and did
not have to use a time-sharing argument between these points
to reach (132). (This was our strategy in Sections IV-B1 and
IV-B2.) Instead, we define a new optimization problem given in
(113) whose solution yields (132).

V. PROOF OF THEOREM 3 FOR THE GENERAL CASE

The achievability of the region given in Theorem 3 can be
shown by computing the region in Theorem 1 with the fol-
lowing selection of : , where

are independent Gaussian random vectors with covari-
ance matrices , respectively, . In the rest of
this section, we consider the converse proof. We first note that
following the approaches in [2, Sec. V.B] and [12, Sec. 7.1], it
can be shown that a new Gaussian MIMO wiretap channel can
be constructed from any Gaussian MIMO wiretap channel de-
scribed by (13)–(14) such that the new channel has the same ca-
pacity-equivocation region with the original one and in the new
channel, both the legitimate user and the eavesdropper have the
same number of antennas as the transmitter, i.e., .
Thus, without loss of generality, we assume that .
We next apply singular-value decomposition to the channel gain
matrices as follows:

(133)

(134)

where are orthogonal matrices, and
are diagonal matrices. We now define a new Gaussian

MIMO wiretap channel as follows:

(135)

(136)

where are defined as

(137)

(138)

for some . We denote the capacity-equivocation region of
the Gaussian MIMO wiretap channel defined in (135)–(136) by

. Since are invertible, the capacity-equivocation

region of the channel in (135)–(136) is equal to the capacity-
equivocation region of the following aligned channel:

(139)

(140)

Thus, using the capacity result for the aligned case, we obtain
as the union of nonnegative rate triples sat-

isfying

(141)

(142)

(143)

for some positive semidefinite matrix .
We next obtain an outer bound for the capacity-equivoca-

tion region of the original Gaussian MIMO wiretap channel in
(13)–(14) in terms of . To this end, we first note the fol-
lowing Markov chains:

(144)

(145)

which imply that if the messages with rates
are transmitted with a vanishingly small probability of error
in the original Gaussian MIMO wiretap channel given by
(13)–(14), they will be transmitted with a vanishingly small
probability of error in the new Gaussian MIMOwiretap channel
given by (135)–(136) as well. However, as opposed to the rates

, we cannot immediately conclude that if an equivocation
rate is achievable in the original Gaussian MIMO wiretap
channel given in (13)–(14), it is also achievable in the new
Gaussian MIMO wiretap channel in (135)–(136). The reason
for this is that both the legitimate user’s and the eavesdropper’s
channel gain matrices are enhanced in the new channel given
by (135)–(136) [see (137)–(138) and/or (144)–(145)], and
consequently, it is not clear what the overall effect of these
two enhancements on the equivocation rate will be. However,
in the sequel, we show that if , then we
have . This will let us write down
an outer bound for in terms of . To this end, we
note that if , we need to have a random
vector such that the inequalities given in Theorem 1
hold. Assume that we use the same random vector
for the new Gaussian MIMO wiretap channel in (135)–(136),
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and achieve the rate triple . Due to the Markov
chains in (144)–(145), we already have .
Furthermore, following the analysis in [9, Sec. 4], we can
bound the gap between and , i.e., , as follows:

(146)

(147)

Thus, we have

(148)

where is given by (149), which is given at the bottom of
the page. Taking in (148), we get

(150)

where we use the fact that

(151)
which follows from the continuity of in positive semidef-
inite matrices, and the fact that . Finally, we
note that

(152)

converges to the region given in Theorem 3 due to the continuity
of in positive semidefinite matrices and

; completing the proof.

VI. CONCLUSION

We study the Gaussian MIMO wiretap channel in which a
common message is sent to both the legitimate user and the
eavesdropper in addition to the private message sent only to
the legitimate user. We first establish an equivalence between
this original definition of the wiretap channel and the wiretap
channel with public messages, in which the private message is
divided into two parts as the confidential message, which needs
to be transmitted in perfect secrecy, and public message, on
which there is no secrecy constraint. We next obtain capacity
regions for both cases. We show that it is sufficient to consider
jointly Gaussian auxiliary random variables and channel input
to evaluate the single-letter description of the capacity-equiv-
ocation region due to [1]. We prove this by using channel en-
hancement [2] and an extremal inequality from [3].

APPENDIX I
PROOF OF LEMMA 1

The proof of this lemma for is outlined in [4, Problem
33-c], [5]. We extend their proof to the general case of interest
here. We first note the inclusion , which follows from
the fact that if , we can attain the rate triple

, i.e., .
To show the reverse inclusion, we use the achievability proof for
Theorem 1 given in [1]. According to this achievable scheme,

can be divided into two parts as with rates
, respectively, and we have

(153)

(154)

(155)

for some which satisfies . Hence, using this
capacity achieving scheme for , we can attain the rate triple

. This implies ;
completing the proof of the lemma.

APPENDIX II
PROOF OF LEMMA 2

Since the program in (44)–(45) is not necessarily convex,
the KKT conditions are necessary but not sufficient. The La-
grangian for this optimization problem is given by

(156)

where are positive semidefinite matrices, and
, .

The necessary KKT conditions that they need to satisfy are
given as follows:

(157)

(158)

(159)

(160)

(161)

(162)

(163)

(164)

(149)
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The first KKT condition in (157) implies . We
define and consequently, we have

. The second KKT condition in (158) implies
(46). Since and for

, (159)–(160) imply (47)–(48). The KKT conditions
in (161)–(162) imply (51). Furthermore, the KKT conditions in
(161)–(162) state the conditions that if ,

, if , , and if
, is arbitrary, i.e., . Similarly, the KKT

conditions in (163)–(164) imply (50).

APPENDIX III
PROOF OF LEMMA 3

We note the following identities:

(165)

(166)

where (165) is due to (56), and (166) is obtained by plugging
(165) into (52). Since , (165)–(166) implies

(167)

(168)

Using the fact that for , , if , then
in (167)–(168), we can get the second and third parts of

Lemma 3. Next, we prove the first part of the lemma as follows:

(169)

(170)

(171)

(172)

(173)

(174)

(175)

(176)

where (169) comes from (166), (171) and (173) follow from the
KKT condition in (47).

Finally, we show the fourth part of Lemma 3 as follows:

(177)

(178)

(179)

(180)

(181)

(182)

where (179) is due to (165), and (180) comes from (48); com-
pleting the proof.

APPENDIX IV
PROOF OF LEMMA 4

We note the following:

(183)

(184)

where (183) is (83), and (184) comes from plugging (183) into
(74). Since , (183) implies

(185)

Using the fact that for , , if , then
in (185) yields the second statement of the lemma. Since

and , (184) implies

(186)

Using the fact that for , , if , then
in (186) yields the third statement of the lemma. To prove

the first statement of the lemma, we note that (183) implies

(187)

which is already shown to be positive semidefinite as done
through (169)–(176) in Appendix III.
Finally, we consider the fourth statement of this lemma as

follows:

(188)

(189)

(190)

(191)

(192)

(193)

where (190) is due to (183) and (191) comes from (47).
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APPENDIX V
PROOF OF LEMMA 6

The optimization problem in (113) can be written as

(194)

(195)

For a given , we can rewrite the cost function in (194)
as follows:

(196)

(197)

(198)

(199)

(200)

(201)

where (196) comes from the second constraint in (195), (198) is
due to the first constraint in (195) and the assumption ,
and (200) comes from the third constraint in (195). The proof
can be concluded by noting that the upper bound on the cost
function given in (201) is attainable.
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