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Broadcasting with an
Energy Harvesting Rechargeable Transmitter

Jing Yang, Member, IEEE, Omur Ozel, Student Member, IEEE, and Sennur Ulukus, Member, IEEE

Abstract—In this paper, we investigate the transmission com-
pletion time minimization problem in an additive white Gaussian
noise (AWGN) broadcast channel, where the transmitter is able
to harvest energy from the nature, using a rechargeable battery.
The harvested energy is modeled to arrive at the transmitter
during the course of transmissions. The transmitter has a
fixed number of packets to be delivered to each receiver. The
objective is to minimize the time by which all of the packets are
delivered to their respective destinations. To this end, we optimize
the transmit powers and transmission rates in a deterministic
setting. We first analyze the structural properties of the optimal
transmission policy in a two-user broadcast channel via the dual
problem of maximizing the departure region by a fixed time 𝑇 .
We prove that the optimal total transmit power sequence has
the same structure as the optimal single-user transmit power
sequence in [1], [2]. In addition, the total power is split optimally
based on a cut-off power level; if the total transmit power is
lower than this cut-off level, all transmit power is allocated to
the stronger user; otherwise, all transmit power above this level
is allocated to the weaker user. We then extend our analysis to
an 𝑀 -user broadcast channel. We show that the optimal total
power sequence has the same structure as the two-user case and
optimally splitting the total power among 𝑀 users involves 𝑀−1
cut-off power levels. Using this structure, we propose an algorithm
that finds the globally optimal policy. Our algorithm is based on
reducing the broadcast channel problem to a single-user problem
as much as possible. Finally, we illustrate the optimal policy and
compare its performance with several suboptimal policies under
different settings.

Index Terms—Energy harvesting, rechargeable wireless net-
works, broadcast channels, transmission completion time mini-
mization, throughput maximization.

I. INTRODUCTION

WE consider a wireless communication network where
users are able to harvest energy from nature using

rechargeable batteries. Such energy harvesting capabilities will
make sustainable and environmentally friendly deployment
of wireless communication networks possible. While energy-
efficient scheduling policies have been well-investigated in
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traditional battery powered (un-rechargeable) systems [3]–[8],
energy-efficient scheduling in energy harvesting networks with
nodes that have rechargeable batteries has only recently been
considered [1], [2]. References [1], [2] consider a single-user
communication system with an energy harvesting transmitter,
and develop a packet scheduling scheme that minimizes the
time by which all of the packets are delivered to the receiver.

In this paper, we consider a multi-user extension of the work
in [1], [2]. In particular, we consider a wireless broadcast
channel with an energy harvesting transmitter. As shown in
Fig. 1, we consider a broadcast channel with one transmitter
and 𝑀 receivers, where the transmitter node has 𝑀 + 1
queues. The 𝑀 data queues store the data arrivals intended
for the individual receivers, while the energy queue stores the
energy harvested from the environment. The 𝑀 receivers have
different channel gains, and the broadcast channel is degraded
[9]. Our objective is to adaptively change the transmission
rates that go to the users according to the instantaneous data
and energy queue sizes, such that the transmission completion
time is minimized.

In [1], [2], we prove that the optimal scheduling policy
in a single-user energy harvesting communication system
has a “majorization” structure. The transmit power is kept
constant between energy harvests, the sequence of transmit
powers increases monotonically, and only changes when the
energy constraint is tight in the optimal schedule. The opti-
mal transmit power sequence is the most majorized energy-
feasible power sequence during the transmission duration. We
develop, in [1], [2], an algorithm to obtain the optimal off-line
scheduling policy based on these properties. Reference [10]
extends [1], [2] to the case where rechargeable batteries have
finite storage capacities. We extend [1], [2] in [11] to a fading
channel, and develop optimal off-line and on-line scheduling
policies under stochastic fading and energy arrival processes.
References [12], [13] address single-user energy harvesting
rechargeable systems as well, with a slotted time system
model. Although the slotted time system model can model a
more practical scenario, e.g., a scenario where block encoding
is used, a continuous time system model is more general in the
sense that the continuous time model can be used to analyze
a slotted time system after proper rearrangements. Therefore,
we consider a continuous time energy harvesting system model
as in our previous work [1], [2], [11]. We focus on the off-
line problem in this paper with the goal of determining the
structural properties of the optimum broadcast scheduler, and
developing an iterative optimal off-line scheduling algorithm.
We also provide benchmark on-line scheduling algorithms for
performance comparison, while we leave the solution of the
optimal on-line policy for future work.

1536-1276/12$31.00 c⃝ 2012 IEEE
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Fig. 1. An energy harvesting 𝑀 -user broadcast channel.

Another line of research in wireless communications with
energy harvesting nodes has been presented in [14]–[16] which
considers the simultaneous transmission of information and
energy. While this is a novel and interesting direction, in this
paper, we do not consider the transmission of energy. We only
consider the transmission of data. In particular, we address
the issue of the replenishment of the transmission energy
during the course of the communication session, and obtain
the optimal off-line adaptation of the transmit power to the
fluctuating levels of energy in a broadcasting scenario.

References [10], [11] investigate two related problems in
single-user communication with an energy harvesting trans-
mitter. The first problem is to maximize the throughput
(number of bits transmitted) with a given deadline constraint,
and the second problem is to minimize the transmission
completion time with a given number of bits to transmit.
These two problems are dual: given the energy arrival profile,
if the maximum number of bits that can be sent by 𝑇 is
𝐵∗ in the first problem, then the minimum time to transmit
𝐵∗ bits in the second problem must be 𝑇 , and the optimal
transmission policies for these two problems must be identical.
In this paper, we follow the same dual problem approach to
solve the transmission completion time minimization problem
in the broadcast channel. An alternative solution method for
the second problem in the broadcast channel is provided
in the independent and concurrent work [17]. This method
divides the problem into local sub-problems that consider only
two energy arrival epochs at a time. Iterations on the local
problems are shown to converge to the global optimum.

We first analyze the structural properties of the optimal
policy for the first problem in a two-user broadcast channel.
Our goal is to determine the maximum departure region with
a given deadline constraint 𝑇 . The maximum departure region
is defined as the set of all (𝐵1, 𝐵2) that can be transmitted to
users reliably with a given deadline 𝑇 . By using the convexity
of the departure region and a Lagrangian approach, we show
that the optimal total transmit power policy is independent
of the operating point on the boundary, and has the same
“majorization” structure as the single-user solution. As for
the way of splitting the total transmit power between the two
users, we prove that there exists a cut-off power level for the
stronger user, i.e., only the power above this cut-off power
level is allocated to the weaker user. We then investigate the
maximum departure region in an 𝑀 -user broadcast channel.
We show that there exist 𝑀 − 1 cut-off power levels and the

total power is split according to these cut-off power levels and
the hierarchy among the channel gains of the users.

Next, we consider the second problem, where our goal is
to minimize the time, 𝑇 , by which a given number of bits
are delivered to their intended receivers. Due to the duality
between these problems, the optimal policy in the second
problem has the same structural properties as those in the
first problem. Using these optimal structural properties, we
develop an iterative algorithm that finds the optimal schedule
efficiently. In particular, we start with the two-user case and we
obtain the optimal total power in the first epoch, 𝑃1. Given the
fact that there exists a cut-off power level, 𝑃𝑐, for the stronger
user, the optimal policy depends on whether 𝑃1 is smaller or
larger than 𝑃𝑐, which, at this point, is unknown. Performing
iterations on 𝑃𝑐 that alternates according to whether 𝑃𝑐 should
be increased or decreased, we approach the optimal policy
iteratively. At each iteration, single-user problems as in [1],
[2] are solved. The algorithm naturally extends to the 𝑀 -
user broadcast channel. We perform alternating iterations on
the cut-off level for the strongest user and determine whether
it should be decreased or increased in a similar fashion. We
also discuss the computational requirement of the proposed
algorithm. Finally, we provide numerical illustrations and per-
formance analysis for the optimal off-line policy. Specifically,
we compare the performance of the optimal off-line policy
with that of three practical semi-on-line sub-optimal policies
which require no or partial off-line knowledge about the
energy harvesting process.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system model is as shown in Figs. 1 and 2. The
transmitter has an energy queue and 𝑀 data queues (Fig. 1).
The physical layer is modeled as an AWGN broadcast channel,
where the received signals at the 𝑀 receivers are

𝑌𝑚 = 𝑋 + 𝑍𝑚, 𝑚 = 1, . . . ,𝑀 (1)

where 𝑋 is the transmit signal, and 𝑍𝑚 is a Gaussian
noise with zero-mean and variance 𝜎2

𝑚, and without loss of
generality 𝜎2

1 ≤ 𝜎2
2 ≤ . . . ≤ 𝜎2

𝑀 . Therefore, the first user
is the strongest and the 𝑀 th user is the weakest user in our
broadcast channel. Next, for clarity of exposition we write
the capacity region for this broadcast channel for 𝑀 = 2,
and subsequently generalize it to 𝑀 users. Assuming that the
transmitter transmits with power 𝑃 , the capacity region for
the two-user AWGN broadcast channel is [9]

𝑟1 ≤ 1

2
log2

(
1 +

𝛼𝑃

𝜎2
1

)
(2)

𝑟2 ≤ 1

2
log2

(
1 +

(1− 𝛼)𝑃

𝛼𝑃 + 𝜎2
2

)
(3)

where 𝛼 is the fraction of the total power spent for the
message transmitted to the first user. Let us denote 𝑓(𝑝) ≜
1
2 log2 (1 + 𝑝) for future use. Then, the capacity region is

𝑟1 ≤ 𝑓(𝛼𝑃
𝜎2
1
), 𝑟2 ≤ 𝑓

(
(1−𝛼)𝑃
𝛼𝑃+𝜎2

2

)
. Working on the boundary

of the capacity region, we have

𝑃 = 𝜎2
12

2(𝑟1+𝑟2) + (𝜎2
2 − 𝜎2

1)2
2𝑟2 − 𝜎2

2 (4)

≜ 𝑔(𝑟1, 𝑟2) (5)



YANG et al.: BROADCASTING WITH AN ENERGY HARVESTING RECHARGEABLE TRANSMITTER 573

. . .

t

(B1, . . . , BM)
0 s1 s2 sK

E1 E2 EKE0

T

Fig. 2. System model. (𝐵1, . . . , 𝐵𝑀 ) bits to be transmitted to the users are
available at the transmitter at the beginning. Energies arrive (are harvested) at
points denoted by ∘. 𝑇 denotes the transmission completion time by which
all of the bits are delivered to their respective destinations.

Therefore, 𝑃 is the smallest power necessary to transmit at
rates 𝑟1 and 𝑟2 in this broadcast channel. We note that 𝑔(𝑟1, 𝑟2)
is a strictly convex function of (𝑟1, 𝑟2).

The rate region for the 𝑀 -user broadcast channel is ob-
tained using an 𝑀 -level superposition code [9]. The capacity
region for the 𝑀 -user AWGN broadcast channel is the set of
rate vectors (𝑟1, . . . , 𝑟𝑀 ):

𝑟𝑖 =
1

2
log2

(
1 +

𝛼𝑖𝑃∑
𝑗<𝑖 𝛼𝑗𝑃 + 𝜎2

𝑖

)
, 𝑖 = 1 . . . ,𝑀 (6)

where 𝛼𝑖 ≥ 0 and
∑

𝑖 𝛼𝑖 = 1. Similar to the derivation in (3)-
(5), we obtain the minimum power to achieve the rate vector
(𝑟1, . . . , 𝑟𝑀 ) by a recursive formula as follows:

𝑔(𝑀)(𝑟1, . . . , 𝑟𝑀 ) = 22𝑟𝑀 𝑔(𝑀−1)(𝑟1, . . . , 𝑟𝑀−1)

+ 𝜎2
𝑀 (22𝑟𝑀 − 1) (7)

where 𝑔(𝑀)(𝑟1, . . . , 𝑟𝑀 ) is the minimum power for the 𝑀 -
user AWGN broadcast channel. Note that (7) reduces to (5)
for 𝑀 = 2 where 𝑔(1)(𝑟1) = 𝜎2

1(2
2𝑟1 − 1). Also note

that 𝑔(𝑀)(𝑟1, . . . , 𝑟𝑀 ) is strictly convex in (𝑟1, . . . , 𝑟𝑀 ) by
induction.

As shown in Fig. 1, the transmitter has 𝐵𝑚 bits destined
to the 𝑚th receiver. Energy is harvested at times 𝑠𝑘 with
amounts 𝐸𝑘, 𝑘 ≥ 1. 𝐸0 denotes the initial energy available
in the battery before the communication starts. Our goal is to
select a transmission policy that minimizes the time, 𝑇 , by
which all of the bits are delivered to their intended receivers.
The transmitter adapts its transmit power and the portions
of the total transmit power used to transmit signals to the
𝑀 users according to the available energy level and the
remaining number of bits. The energy consumed must satisfy
the causality constraints, i.e., at any given time 𝑡, the total
amount of energy consumed up to time 𝑡 must be less than or
equal to the total amount of energy harvested up to time 𝑡.

Before we proceed to give a formal definition of the
optimization problem and its solution, we start with the dual
problem of finding the maximum departure region of the bits
the transmitter can deliver to the users by any fixed time 𝑇 . As
we will observe in the next section, solving the dual problem
enables us to identify the optimal structural properties for
the original problem, and these properties help us reduce the
original problem into simple scenarios, which can be solved
efficiently. In the next section, we consider the two-user case,
and generalize it to the most general 𝑀 -user case in Section
IV.

III. CHARACTERIZING 𝒟(𝑇 ): LARGEST (𝐵1, 𝐵2) REGION

FOR A GIVEN 𝑇

In this section, our goal is to characterize the maximum
departure region for a given deadline 𝑇 . Let us denote the
number of bits transmitted to the 𝑖th user by time 𝑡 via a rate
function 𝑟𝑖(𝜏), in 0 ≤ 𝜏 ≤ 𝑡, as 𝐵𝑖(𝑟𝑖(𝑡)) =

∫ 𝑡
0
𝑟𝑖(𝜏)𝑑𝜏 ,

𝑖 = 1, 2.

Definition 1 For any fixed transmission duration 𝑇 ,
the maximum departure region, denoted as 𝒟(𝑇 ),
is the union of (𝐵1, 𝐵2) under any feasible rate
allocation policy over the duration [0, 𝑇 ), i.e.,
𝒟(𝑇 ) =

∪
𝑟1(𝜏),𝑟2(𝜏)

(𝐵1(𝑟1(𝑇 )), 𝐵2(𝑟2(𝑇 ))), subject to the

energy causality constraint
∫ 𝑡
0
𝑔(𝑟1, 𝑟2)(𝜏)𝑑𝜏 ≤ ∑

𝑖:𝑠𝑖<𝑡𝐸𝑖,
for 0 ≤ 𝑡 ≤ 𝑇 .

We call any policy which achieves the boundary of 𝒟(𝑇 )
to be optimal. In the single-user scenario in [1], [2], we
first examined the structural properties of the optimal policy.
Based on these properties, we developed an algorithm to
find the optimal scheduling policy. In this broadcast scenario
also, we first analyze the structural properties of the optimal
policy, and then obtain the optimal solution based on these
structural properties. The following lemma which was proved
for a single-user problem in [1], [2] was also proved for the
broadcast problem in [17].

Lemma 1 Under the optimal policy, the transmission rate
remains constant between energy harvests, i.e., the rate only
potentially changes at an energy harvesting instant.

Proof: We prove this using the strict convexity of 𝑔(𝑟1, 𝑟2).
If the transmission rate for any user changes between two
energy harvesting instants, then, we can always equalize the
transmission rate over that duration without contradicting with
the energy constraints. Based on the convexity of 𝑔(𝑟1, 𝑟2),
after equalization of rates, the energy consumed over that
duration decreases, and the saved energy can be allocated to
both users to increase the departures. Therefore, changing rates
between energy harvests is sub-optimal. ■

Therefore, in the following, we only consider policies where
the rates are constant between any two consecutive energy
arrivals. We denote the rates that go to both users as (𝑟1𝑛, 𝑟2𝑛)
over the duration [𝑠𝑛−1, 𝑠𝑛). An illustration of the maximum
departure region is shown in Fig. 3.

Lemma 2 𝒟(𝑇 ) is a convex region.

Proof: Proving the convexity of 𝒟(𝑇 ) is equivalent to proving
that, given any two achievable points (𝐵1, 𝐵2) and (𝐵′

1, 𝐵
′
2)

in 𝒟(𝑇 ), any point on the line between these two points is also
achievable, i.e., in 𝒟(𝑇 ). Assume that (𝐵1, 𝐵2) and (𝐵′

1, 𝐵
′
2)

can be achieved with rate allocation policies (r1, r2) and
(r′1, r

′
2), respectively. Consider the policy (𝜆r1 + 𝜆̄r′1, 𝜆r2 +

𝜆̄r′2), where 𝜆̄ = 1− 𝜆. Then, the energy consumed up to 𝑠𝑛
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is
𝑛∑

𝑖=1

𝑔(𝜆𝑟1𝑖 + 𝜆̄𝑟′1𝑖, 𝜆𝑟2𝑖 + 𝜆̄𝑟′2𝑖)𝑙𝑖

≤ 𝜆

𝑛∑
𝑖=1

𝑔(𝑟1𝑖, 𝑟2𝑖)𝑙𝑖 + 𝜆̄

𝑛∑
𝑖=1

𝑔(𝑟′1𝑖, 𝑟
′
2𝑖)𝑙𝑖 (8)

≤ 𝜆

𝑛−1∑
𝑖=0

𝐸𝑖 + 𝜆̄

𝑛−1∑
𝑖=0

𝐸𝑖 =

𝑛−1∑
𝑖=0

𝐸𝑖 (9)

Therefore, the energy causality constraint is satisfied for any
𝜆 ∈ [0, 1], and the new policy is energy-feasible. Any point
on the line between (𝐵1, 𝐵2) and (𝐵′

1, 𝐵
′
2) can be achieved.

When 𝜆 ∕= 0, 1, the inequality in (8) is strict. Therefore, we
save some amount of energy under the new policy, which can
be used to increase the throughput for both users. This implies
that 𝒟(𝑇 ) is strictly convex. ■

In order to simplify the notation, for any given 𝑇 , we
assume that there are 𝑁 − 1 energy arrivals over (0, 𝑇 ). We
denote the last energy arrival time before 𝑇 as 𝑠𝑁−1, and
𝑠𝑁 = 𝑇 . We use 𝑙𝑛 to denote the length of the duration
between two consecutive energy arrival instances 𝑠𝑛 and 𝑠𝑛−1,
i.e., 𝑙𝑛 = 𝑠𝑛 − 𝑠𝑛−1, with 𝑙1 = 𝑠1 and 𝑙𝑁 = 𝑇 − 𝑠𝑁−1, as
shown in Fig. 4.

Since 𝒟(𝑇 ) is a strictly convex region, its boundary can be
characterized by solving the following optimization problem
for all 𝜇1, 𝜇2 ≥ 0,

max
r1,r2

𝜇1

𝑁∑
𝑛=1

𝑟1𝑛𝑙𝑛 + 𝜇2

𝑁∑
𝑛=1

𝑟2𝑛𝑙𝑛

s.t.
𝑗∑

𝑛=1

𝑔(𝑟1𝑛, 𝑟2𝑛)𝑙𝑛 ≤
𝑗−1∑
𝑛=0

𝐸𝑛, 0 < 𝑗 ≤ 𝑁 (10)

where r1 and r2 denote the rate sequences 𝑟1𝑛 and 𝑟2𝑛 for
users 1 and 2, respectively. For 𝜇1 = 0 or 𝜇2 = 0, the problem
in (10) reduces to the throughput maximization problem for
the user which has the non-zero coefficient. The solution of
this single-user problem is provided in [11]. We will refer
to this problem as the single-user problem and its solution
as the single-user solution in the rest of the paper. Due to
the duality between solving the throughput maximization and
transmission completion time minimization problems in the
single-user scenario, we also refer to the solution in [1], [2]
as the single-user solution.

(r12, r22)

T

E1

· · ·

· · ·

sN−1

l1 l2 l3 lN

(r11, r21) (r1N , r2N)(r13, r23)

· · ·

· · ·
t

(B1, B2)

E0 EN−1E2

0 s1 s2

Fig. 4. Rates (𝑟1𝑛, 𝑟2𝑛) and corresponding durations 𝑙𝑛 with a given
deadline 𝑇 .

The problem in (10) is a convex optimization problem with
a convex cost function and a convex constraint set, therefore,
the unique global solution should satisfy the extended KKT
conditions. The Lagrangian is

ℒ(r1, r2,𝝀,𝜸) =𝜇1

𝑁∑
𝑛=1

𝑟1𝑛𝑙𝑛 + 𝜇2

𝑁∑
𝑛=1

𝑟2𝑛𝑙𝑛

−
𝑁∑
𝑗=1

𝜆𝑗

(
𝑗∑

𝑛=1

𝑔(𝑟1𝑛, 𝑟2𝑛)𝑙𝑛 −
𝑗−1∑
𝑛=0

𝐸𝑛

)

+

𝑁∑
𝑛=1

𝛾1𝑛𝑟1𝑛 +

𝑁∑
𝑛=1

𝛾2𝑛𝑟2𝑛 (11)

Taking the derivatives with respect to 𝑟1𝑛 and 𝑟2𝑛, and setting
them to zero, we have the optimality conditions

𝜇1 + 𝛾1𝑛 −
( 𝑁∑

𝑗=𝑛

𝜆𝑗

)
𝜎2
12

2(𝑟1𝑛+𝑟2𝑛) = 0 (12)

𝜇2 + 𝛾2𝑛 −
( 𝑁∑

𝑗=𝑛

𝜆𝑗

)(
𝜎2
12

2(𝑟1𝑛+𝑟2𝑛) + (𝜎2
2 − 𝜎2

1)2
2𝑟2𝑛

)
= 0

(13)

for 𝑛 = 1, . . . , 𝑁 , with the complementary slackness condi-
tions

𝜆𝑗

( 𝑗∑
𝑛=1

𝑔(𝑟1𝑛, 𝑟2𝑛)𝑙𝑛 −
𝑗−1∑
𝑛=0

𝐸𝑛

)
= 0, 𝑗 = 1, . . . , 𝑁

(14)

𝛾1𝑛𝑟1𝑛 = 0, 𝛾2𝑛𝑟2𝑛 = 0, 𝑛 = 1, . . . , 𝑁 (15)

Based on (12)-(15), we first prove an important property of
the optimal policy.

Lemma 3 The optimal total transmit power of the transmitter
is independent of the values of 𝜇1, 𝜇2, and it is the same as
the single-user optimal transmit power. Specifically,

𝑖𝑛 = arg min
𝑖𝑛−1<𝑖≤𝑁

{∑𝑖−1
𝑗=𝑖𝑛−1

𝐸𝑗

𝑠𝑖 − 𝑠𝑖𝑛−1

}
(16)

𝑃𝑛 =

∑𝑖𝑛−1
𝑗=𝑖𝑛−1

𝐸𝑗

𝑠𝑖𝑛 − 𝑠𝑖𝑛−1

(17)

i.e., at 𝑡 = 𝑠𝑖𝑛 , 𝑃𝑛 switches to 𝑃𝑛+1.

The proof of Lemma 3 is provided in Appendix A.

Since the total transmit power can be obtained irrespective
of the values of 𝜇1, 𝜇2, the optimization problem in (10) is
separable over each duration [𝑠𝑛−1, 𝑠𝑛). Specifically, for 1 ≤
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𝑛 ≤ 𝑁 , the local optimization problem becomes

max
𝑟1𝑛,𝑟2𝑛

𝜇1𝑟1𝑛 + 𝜇2𝑟2𝑛

s.t. 𝑔(𝑟1𝑛, 𝑟2𝑛) ≤ 𝑃𝑛 (18)

We relax the power constraint to be an inequality to make
the constraint set convex. Thus, this becomes a convex opti-
mization problem. This does not affect the solution since the
objective function is always maximized on the boundary of its
constraint set, i.e., the capacity region defined by the transmit
power 𝑃𝑛.

We first note that due to the degradedness of the second
user, when 𝜇2

𝜇1
≤ 1, the total power 𝑃𝑛 is allocated to the first

user only and no bits are transmitted to the second user. When
1 < 𝜇2

𝜇1
, we define

𝑃𝑐 ≜
(
𝜇1𝜎

2
2 − 𝜇2𝜎

2
1

𝜇2 − 𝜇1

)+

(19)

After a first order derivative analysis, we find the solution of
(18) in terms of 𝑃𝑐 as follows

𝑟1𝑛 =
1

2
log2

(
1 + min{𝑃𝑐, 𝑃𝑛}

)
(20)

𝑟2𝑛 =
1

2
log2

(
1 +

(𝑃𝑛 − 𝑃𝑐)
+

𝑃𝑐 + 𝜎2
2

)
(21)

In the optimal solution, power allocated to the first user can
be at most 𝑃𝑐, and the remaining power is allocated to the
second user. Hence, we call 𝑃𝑐 the cut-off power level.

Lemma 4 For fixed 𝜇1, 𝜇2, under the optimal power policy,
there exists a constant cut-off power level, 𝑃𝑐, for the first
user. If the total power level is below 𝑃𝑐, then, all the power is
allocated to the first user; if the total power level is higher than
𝑃𝑐, then, all the power above 𝑃𝑐 is allocated to the second
user.

In the proof of Lemma 3 in Appendix A, we note that the
optimal power 𝑃𝑛 monotonically increases in 𝑛. Combining
Lemma 3 and Lemma 4, we illustrate the structure of the
optimal policy in Fig. 5. Moreover, the optimal way of splitting
the power in each epoch is such that both users’ shares of the
power monotonically increase in time. In particular, the second
user’s share is monotonically increasing in time. Hence, the
path followed in the (𝐵1, 𝐵2) plane is such that it changes
direction to get closer to the second user’s departure axis as
shown in Fig. 3. The dotted trajectory cannot be optimal, since
the path does not get closer to the second user’s departure axis
in the middle (second) power epoch.

Corollary 1 Under the optimal policy, the transmission rate
for the first user, {𝑟1𝑛}𝑁𝑛=1, is either a constant sequence (zero
or a positive constant), or an increasing sequence. Moreover,
before 𝑟1𝑛 achieves the value at which it stays constant, we
have 𝑟2𝑛 = 0; and after 𝑟1𝑛 achieves the value at which
it stays constant, 𝑟2𝑛 becomes a monotonically increasing
sequence.

Based on Lemma 3, we observe that for fixed 𝑇 , 𝜇1 and
𝜇2, the optimal total power allocation is unique, i.e., does not
depend on 𝜇1 and 𝜇2. However, the way the total power is
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Fig. 5. Optimally splitting the total power between the signals that go to
the two users.

split between the two users depends on 𝜇1, 𝜇2. In fact, the cut-
off power level 𝑃𝑐 varies depending on the value of 𝜇2/𝜇1.
For different values of 𝜇2/𝜇1, the optimal policy achieves
different boundary points on the maximum departure region,
and varying the value of 𝜇2/𝜇1 traces the boundary of this
region.

IV. 𝒟(𝑇 ) FOR AN 𝑀 -USER BROADCAST CHANNEL

The maximum departure region 𝒟(𝑇 ) in the 𝑀 -user broad-
cast channel is defined similar to the two-user case as the union
of achievable (𝐵1, . . . , 𝐵𝑀 ) pairs where 𝐵𝑖 =

∫ 𝑇
0 𝑟𝑖(𝜏)𝑑𝜏

and the instantaneous rates are subject to the energy causality
constraint∫ 𝑡

0

𝑔(𝑀)(𝑟1, . . . , 𝑟𝑀 )(𝜏)𝑑𝜏 ≤
∑
𝑖:𝑠𝑖<𝑡

𝐸𝑖, 0 ≤ 𝑡 ≤ 𝑇 (22)

The structures of the optimal policy that achieves the boundary
of 𝒟(𝑇 ) established in Lemmas 3-4 and Corollary 1 naturally
extend to the 𝑀 -user case. First, note that Lemmas 1 and 2
immediately extend to the 𝑀 -user case as 𝑔(𝑀)(𝑟1, . . . , 𝑟𝑀 )
is a strictly convex function. Hence, the boundary of 𝒟(𝑇 ) is
achieved by the unique solution of the following optimization
problem for all 𝜇1, . . . , 𝜇𝑀 ≥ 0,

max
r1,...,r𝑀

𝜇1

𝑁∑
𝑛=1

𝑟1𝑛𝑙𝑛 + . . .+ 𝜇𝑀

𝑁∑
𝑛=1

𝑟𝑀𝑛𝑙𝑛

s.t.
𝑗∑

𝑛=1

𝑔(𝑀)(𝑟1𝑛, . . . , 𝑟𝑀𝑛)𝑙𝑛 ≤
𝑗−1∑
𝑛=0

𝐸𝑛, ∀𝑗 (23)

where r𝑚 denotes the rate sequence {𝑟𝑚𝑛}𝑁𝑛=1 for user 𝑚
and 𝑁 is the number of epochs in [0, 𝑇 ]. The corresponding
Lagrangian is

ℒ(r1, . . . , r𝑀 ,𝝀,𝜸) = 𝜇1

𝑁∑
𝑛=1

𝑟1𝑛𝑙𝑛 + . . .+ 𝜇𝑀

𝑁∑
𝑛=1

𝑟𝑀𝑛𝑙𝑛

−
𝑁∑
𝑗=1

𝜆𝑗

(
𝑗∑

𝑛=1

𝑔(𝑀)(𝑟1𝑛, . . . , 𝑟𝑀𝑛)𝑙𝑛 −
𝑗−1∑
𝑛=0

𝐸𝑛

)

+

𝑁∑
𝑛=1

𝛾1𝑛𝑟1𝑛 + . . .+

𝑁∑
𝑛=1

𝛾𝑀𝑛𝑟𝑀𝑛 (24)

Taking the derivatives with respect to 𝑟𝑚𝑛 for all 𝑚,𝑛 and
setting them to zero, we get the necessary KKT optimality
conditions. By using the recursive formula in (7) and the
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KKT optimality conditions, we can show that the optimal total
power allocation is

𝑔(𝑀)(𝑟
∗
1𝑛, . . . , 𝑟

∗
𝑀𝑛) = max

𝑚

{
𝜇𝑚∑𝑁
𝑖=𝑛 𝜆𝑖

− 𝜎2
𝑚

}
(25)

As the complementary slackness conditions in (14)-(15) hold
in the 𝑀 -user case as well, we recover Lemma 3, i.e., the
optimal total power sequence is exactly the same sequence as
in (17) for the 𝑀 -user case irrespective of the values of 𝜇𝑖,
𝑖 = 1, . . . ,𝑀 .

Splitting the total power among 𝑀 users requires a cut-off
power structure as in the two-user case that is stated in Lemma
4. Since the optimal total power is obtained irrespective of the
values of 𝜇𝑖, the optimization problem in (23) is separable
over each duration [𝑠𝑛−1, 𝑠𝑛). Specifically, for 1 ≤ 𝑛 ≤ 𝑁 ,
the corresponding local optimization problem is

max
𝑟1𝑛,...,𝑟𝑀𝑛

𝜇1𝑟1𝑛 + . . .+ 𝜇𝑀𝑟𝑀𝑛

s.t. 𝑔(𝑀)(𝑟1𝑛, . . . , 𝑟𝑀𝑛) ≤ 𝑃𝑛 (26)

Whenever 𝜇𝑗 ≤ 𝜇𝑖 for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑀 , i.e., whenever
a degraded user has a smaller coefficient, the solution of (26)
is such that 𝑟∗𝑗𝑛 = 0 for any value of 𝑃𝑛. Hence, we remove
those users. The remaining 𝑅 ≤ 𝑀 users are such that 𝜎2

1 ≤
𝜎2
2 ≤ . . . ≤ 𝜎2

𝑅 with 𝜇1 < 𝜇2 < . . . < 𝜇𝑅. Using a first order
differential analysis, the optimal cut-off power levels for the
remaining 𝑅 users must satisfy the following equations (see
Appendix B): For 𝑚 = 1, . . . , 𝑅 − 1

𝑃𝑐𝑚 = max

{(
𝜇𝑚𝜎

2
𝑚̄ − 𝜇𝑚̄𝜎

2
𝑚

𝜇𝑚̄ − 𝜇𝑚

)+

, 𝑃𝑐(𝑚−1)

}
(27)

where by convention, we set 𝑃𝑐0 = 0, 𝑃𝑐𝑅 = ∞ and 𝑚̄
is the smallest user index with 𝑃𝑐𝑚̄ > 𝑃𝑐𝑚. We note that
𝑃𝑐0 ≤ 𝑃𝑐1 ≤ . . . ≤ 𝑃𝑐(𝑅−1) ≤ 𝑃𝑐𝑅. For given 𝑃𝑛, the optimal
solution is

𝑟1𝑛 =
1

2
log

(
1 +

min{𝑃𝑛, 𝑃𝑐1}
𝜎2
1

)
(28)

𝑟2𝑛 =
1

2
log

(
1 +

min{(𝑃𝑛 − 𝑃𝑐1)
+, 𝑃𝑐2 − 𝑃𝑐1}

𝑃𝑐1 + 𝜎2
2

)
(29)

...

𝑟𝑅𝑛 =
1

2
log

(
1 +

(𝑃𝑛 − 𝑃𝑐(𝑅−1))
+

𝑃𝑐(𝑅−1) + 𝜎2
𝑅

)
(30)

We show the structure of optimally splitting the total power
among the users for 𝑅 =𝑀 in Fig. 6. Note that the hierarchy
among the channels of the users can be directly observed
in Fig. 6. The top portion of the total power is allocated
to the user with the worst channel and the power below it
is interference for this user. The bottom portion of the total
power is allocated to the user with the best channel and this
user experiences no interference. We also note that the time
sequence of the total power is the same as in the two-user case
and the cut-off power levels are independent of the values
of the varying total power levels. We also remark that the
𝑅− 1 cut-off power levels are not necessarily distinct. When
𝑃𝑐(𝑚+1) = 𝑃𝑐𝑚 for some 1 ≤ 𝑚 ≤ 𝑅 − 2, we must have
𝑟(𝑚+1)𝑛 = 0 for all epochs 𝑛.
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Fig. 6. Optimally splitting the total power for 𝑀 users.

V. MINIMIZING THE TRANSMISSION COMPLETION TIME 𝑇
FOR A GIVEN (𝐵1, . . . , 𝐵𝑀 )

In this section, our goal is to minimize the transmission
completion time of (𝐵1, . . . , 𝐵𝑀 ) bits. We start with the two-
user case, and then generalize the algorithm to the 𝑀 -user
scenario.

A. Two-User Scenario

We formulate the optimization problem as follows:

min
r1,r2

𝑇

s.t.
𝑗∑

𝑛=1

𝑔(𝑟1𝑛, 𝑟2𝑛)𝑙𝑛 ≤
𝑗−1∑
𝑛=1

𝐸𝑛, 0 < 𝑗 ≤ 𝑁(𝑇 )

𝑁(𝑇 )∑
𝑛=1

𝑟1𝑛𝑙𝑛 = 𝐵1,

𝑁(𝑇 )∑
𝑛=1

𝑟2𝑛𝑙𝑛 = 𝐵2 (31)

where 𝑁(𝑇 )− 1 is the number of energy arrivals (excluding
𝑡 = 0) over (0, 𝑇 ), and 𝑙𝑁(𝑇 ) = 𝑇 − 𝑠𝑁(𝑇 )−1. Since 𝑁(𝑇 )
depends on 𝑇 , the optimization problem in (31) is not a convex
optimization problem in general. Therefore, we cannot solve
it using standard convex optimization tools.

We first note that this is exactly the dual problem of
maximizing the departure region for fixed 𝑇 . They are dual in
the sense that, if the minimum transmission completion time
for (𝐵1, 𝐵2) is 𝑇 , then (𝐵1, 𝐵2) must lie on the boundary
of 𝒟(𝑇 ), and the transmission policy should be exactly the
same for some (𝜇1, 𝜇2). This is based on the fact that
𝒟(𝑇 ) ⊂ 𝒟(𝑇 ′) for any 𝑇 < 𝑇 ′. Assume (𝐵1, 𝐵2) does not
lie on the boundary of 𝒟(𝑇 ). Then, either (𝐵1, 𝐵2) cannot
be achieved by 𝑇 or (𝐵1, 𝐵2) is strictly inside 𝒟(𝑇 ) and
hence (𝐵1, 𝐵2) can be achieved by 𝑇 ′ < 𝑇 . Therefore, if
(𝐵1, 𝐵2) does not lie on the boundary of 𝒟(𝑇 ), then 𝑇 cannot
be the minimum transmission completion time. We have the
following lemma.

Lemma 5 When 𝐵1, 𝐵2 ∕= 0, under the optimal policy, the
transmissions to both users must be finished at the same time.

Proof: This lemma can be proved based on Corollary 1. If the
transmission completion time for both users is not the same,
then over the last duration, we transmit only to one of the
users, while the transmission rate to the other user is zero. This
contradicts with the monotonicity of the transmission rates for
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both users. Therefore, under the optimal policy, the transmitter
must finish transmitting to both users at the same time. ■

Lemma 5 is proved in [17] also, by using a different
approach. The authors prove it in [17] mainly based on the
convexity of the capacity region of the broadcast channel.

According to Lemma 5, the problem of optimal selection
of 𝑃𝑐 requires solving a fixed point equation. In particular, 𝑃𝑐

must be chosen such that the resulting transmission completion
time for the first and second user are equal. Therefore, we
propose the following algorithm to solve the transmission
completion time minimization problem.

First, we aim to identify 𝑃1, the first total transmit power
starting from 𝑡 = 0 in the system. This is exactly the same as
identification of 𝑃1 in the corresponding single-user problem.
For this, as in [1], [2], we treat the energy arrivals as if they
have arrived at time 𝑡 = 0, and obtain a lower bound for the
transmission completion time as in [1], [2]. We compute the
minimum amount of energy required to finish (𝐵1, 𝐵2) by 𝑠1.
This requires to transmit at constant rates (𝐵1

𝑠1
, 𝐵2

𝑠1
), and the

amount of energy is equal to 𝑔
(
𝐵1

𝑠1
, 𝐵2

𝑠1

)
𝑠1, denoted as 𝐴1.

Then, we compare 𝐴1 with 𝐸0. If 𝐸0 is greater than 𝐴1, this
implies that the transmitter can finish the transmission before
𝑠1, and future energy arrivals are not needed. In this case, the
minimum transmission completion time is the solution of the
following equation

𝑔

(
𝐵1

𝑇
,
𝐵2

𝑇

)
𝑇 = 𝐸0 (32)

If 𝐴1 is greater than 𝐸0, this implies that the final transmission
completion time is greater than 𝑠1, and some of the future en-
ergy arrivals must be utilized to complete the transmission. We
calculate the amount of energy required to finish (𝐵1, 𝐵2) by
𝑠2, 𝑠3, . . . , and denote them as 𝐴2, 𝐴3, . . . , and compare these
with 𝐸0 +𝐸1,

∑2
𝑗=0 𝐸𝑗 ,

∑3
𝑗=0 𝐸𝑗 , . . . , until the first 𝐴𝑖 that

becomes smaller than
∑𝑖−1

𝑗=0𝐸𝑗 . We denote the corresponding

time index as 𝑖̃1. Then, we assume that we can use
∑𝑖̃1−1

𝑖=0 𝐸𝑖

to transmit (𝐵1, 𝐵2) at constant rates. And, the corresponding
transmission completion time is the solution of the following
equation

𝑔

(
𝐵1

𝑇
,
𝐵2

𝑇

)
𝑇 =

𝑖̃1−1∑
𝑖=0

𝐸𝑖 (33)

We denote the solution of (33) as 𝑇 , and the corresponding
power as 𝑃1. From our analysis, we know that the solution to
this equation is a lower bound for the minimum transmission
completion time. We check whether this constant power 𝑃1 is
feasible, when the actual energy arrival times are imposed. If
it is feasible, it gives us the minimal transmission completion
time; otherwise, we get 𝑃1 by selecting the minimal slope
according to (17). That is to say, we draw all of the lines
from 𝑡 = 0 to the corner points of the energy arrival instances
before 𝑇 , and choose the line with the smallest slope. We
denote by 𝑠𝑖1 the corresponding duration associated with 𝑃1.
Please see [2, Fig. 8] for a visualization of the algorithm.

Once 𝑃1 is selected, it is the optimal total transmit power
over the duration [0, 𝑠𝑖1) in our broadcast channel problem.
This is due to Lemma 3 and the fact that (𝐵1, 𝐵2) must

lie on the boundary of the departure curve at the minimum
transmission completion time. We defer the rigorous proof
of optimality to Theorem 1 which immediately follows the
algorithm. Next, we need to divide this total power between
the signals transmitted to the two users. Based on Lemma 4
and Corollary 1, if the cut-off power level 𝑃𝑐 is higher
than 𝑃1, then, the transmitter spends all 𝑃1 for the stronger
user; otherwise, the first user finishes its transmission with a
constant power 𝑃𝑐.

We will first determine whether 𝑃𝑐 lies in [0, 𝑃1] or it
is higher than 𝑃1. Assume 𝑃𝑐 = 𝑃1. The transmission
completion time for the first (stronger) user is

𝑇1 =
𝐵1

𝑓(𝑃1)
(34)

Next, we calculate the maximum number of bits departed from
the second user by 𝑇1 given the set 𝑃𝑐, and denote it as
𝐷2(𝑇1, 𝑃𝑐):

𝐷2(𝑇1, 𝑃𝑐) =

𝑁(𝑇1)∑
𝑖=1

1

2
log

(
1 +

[𝑃 ∗
𝑖 − 𝑃𝑐]

+

𝑃𝑐 + 𝜎2

)
(𝑠𝑖 − 𝑠𝑖−1)

(35)

where 𝑃 ∗
1 , 𝑃

∗
2 , . . . , 𝑃

∗
𝑁(𝑇1)

is the optimal total power allo-

cation by deadline 𝑇1. {𝑃 ∗
𝑖 }𝑁(𝑇1)

𝑖=1 is found via single-user
optimal power allocation (c.f. Lemma 3) by deadline 𝑇1 as in
[11]. Note that 𝑃 ∗

1 = 𝑃1.
If 𝐷2(𝑇1, 𝑃1) is smaller than 𝐵2, we need to decrease the

rate for the first user. In this case, the transmission power for
the first user is constant 𝑃𝑐 ∈ [0, 𝑃1] throughout the entire
duration. In particular, 𝑃𝑐 is the unique solution of

𝐵2 = 𝐷2

(
𝐵1

𝑓(𝑃𝑐)
, 𝑃𝑐

)
(36)

Note that 𝐷2

(
𝐵1

𝑓(𝑃𝑐)
, 𝑃𝑐

)
is a continuous, strictly monotoni-

cally decreasing function of 𝑃𝑐, hence the solution for 𝑃𝑐 in
(36) exists and it is unique. We can use bisection method on
𝑃𝑐 to solve (36).

If 𝐷2(𝑇1, 𝑃𝑐) is larger than 𝐵2, that implies 𝑇2 < 𝑇1, and
we need to increase the power allocated for the first user,
i.e., 𝑃𝑐 > 𝑃1. Therefore, according to Lemma 4, over the
duration [0, 𝑠𝑖1), the optimal policy is to allocate the entire
𝑃1 to the first user only. We allocate 𝑃1 to the first user,
calculate the number of bits departed for the first user, and
remove them from 𝐵1. This simply reduces the problem to that
of transmitting (𝐵′

1, 𝐵2) bits starting at time 𝑡 = 𝑠𝑖1 , where
𝐵′

1 = 𝐵1 − 𝑓(𝑃1)𝑠𝑖1 . The process is illustrated in Fig. 7.
Then, the minimum transmission completion time is

𝑇 = 𝑠𝑖𝐿 +
𝐵1 −

∑𝐿
𝑘=1 𝑓(𝑃𝑘)(𝑠𝑖𝑘 − 𝑠𝑖𝑘−1

)

𝑓(𝑃𝑐)
(37)

where 𝐿 is the number of recursions needed to get 𝑃𝑐. In
both scenarios, we reduce the problem into a simple form,
and obtain the final optimal policy. We state our algorithm
formally as Algorithm 1 below.

We have the following theorem which proves the optimality
of the proposed algorithm. We provide the proof of this
theorem in Appendix C.
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Fig. 7. Search for the cut-off power level 𝑃𝑐 iteratively.

Algorithm 1 The algorithm to minimize the transmission
completion time for a given (𝐵1, 𝐵2)

Initialization: Set 𝑛 = 0, 𝑠𝑖0 = 0, 𝑃0 = 0.
while 𝐵1 > 0 do
𝑛 = 𝑛+ 1;
Determine 𝑃𝑛 and 𝑠𝑖𝑛 through the single-user method in
[1], [2].
Set 𝑃𝑐 = 𝑃𝑛, 𝑇1 = 𝐵1

𝑓(𝑃𝑐)
.

Calculate 𝐷2(𝑇1, 𝑃𝑐), the maximum departures from the
second user by 𝑇1 + 𝑠𝑖𝑛−1 given 𝑃𝑐.
if 𝐵2 ≥ 𝐷2(𝑇1, 𝑃𝑐) then

Allocate 𝑃𝑖 to the first user over [𝑠𝑖𝑛−1 , 𝑠𝑖𝑛), update
𝐵1.

else
Search for 𝑃𝑐 ∈ [𝑃𝑖−1, 𝑃𝑖] s.t. 𝐷2(𝑇1, 𝑃𝑐) = 𝐵2

through bisection method.
end if

end while

Theorem 1 The algorithm is feasible and optimal.

B. Generalizing the Algorithm for 𝑀 Users

In the 𝑀 -user case, there are 𝑀 − 1 cut-off power levels
as shown in Fig. 6. Using this structure, we generalize the
algorithm to find the minimum 𝑇 . We first determine the total
power level at the first epoch using the same approach with
𝑔(𝑀)(𝑟1, . . . , 𝑟𝑀 ) function. In particular, we assume that the
energies are available at time 𝑡 = 0 and calculate the energy
necessary to send (𝐵1, . . . , 𝐵𝑀 ) by time 𝑡 = 𝑠1. Comparing
this energy with 𝐸0, we decide if minimum 𝑇 is smaller or
larger than 𝑠1 and proceed similarly to the two-user case to
determine the initial total power level 𝑃1.

Having determined 𝑃1, we now decide whether 𝑃𝑐1 > 𝑃1

or otherwise. We set 𝑃𝑐1 = 𝑃1 and calculate

𝑇1 =
𝐵1

𝑓(𝑃𝑐1)
(38)

We need to determine whether the remaining bits
(𝐵2, . . . , 𝐵𝑀 ) can be sent by 𝑇1. Because of the cut-
off structure of the optimal policy in the 𝑀 -user scenario,
we search for the cut-off power level for users 2, 3, . . ., 𝑀
in a sequential way. The cut-off power levels are selected to
ensure that the maximum number of departures from the 𝑚th
user equals 𝐵𝑚, 𝑚 ≥ 2. If such feasible cut-off power levels

for all of the remaining 𝑀 − 1 users can be obtained over
[0, 𝑇1), it implies that the minimum transmission completion
time 𝑇 ≤ 𝑇1, and 𝑃𝑐1 ≤ 𝑃1. Otherwise, once we find that
the cut-off power level for a user is infeasible, it implies that
not all of the users can be served by 𝑇1, and 𝑃𝑐1 > 𝑃1.

First, we obtain the optimal total power allocation by
deadline 𝑇1, denoted as 𝑃 ∗

2 , . . . , 𝑃
∗
𝑁(𝑇1)

. We set 𝑃𝑐2 = 𝑃 ∗
2 . If

𝑓(𝑃𝑐2−𝑃𝑐1

𝑃𝑐1+𝜎2
2
)(𝑇1 − 𝑠𝑖1) > 𝐵2, the optimal cut-off power level

𝑃𝑐2 ∈ [𝑃𝑐1, 𝑃
∗
2 ] and it satisfies 𝑓(𝑃𝑐2−𝑃𝑐1

𝑃𝑐1+𝜎2
2
)(𝑇1 − 𝑠𝑖1) = 𝐵2.

Otherwise, we set 𝑃𝑐2 = 𝑃 ∗
3 and repeat the same procedure

until the optimal 𝑃𝑐2 is achieved. The remaining cut-off power
levels can be determined in a similar manner. If any of these
optimal power levels becomes infeasible, i.e., takes a value
above 𝑃 ∗

𝑁(𝑇1)
, we get back to 𝑃𝑐1 and adjust it accordingly.

The feasibility and the optimality of the algorithm can be
proved through similar steps in Appendix C and is omitted
for the brevity of the paper.

C. Computation Requirement of the Proposed Algorithm

In a real life implementation of the algorithm, the iterations
of the algorithm are stopped when sufficient accuracy is
reached. For given 𝑃𝑐1, the main computational block of the
algorithm is composed of two stages: In the first stage, we
calculate the single-user optimal solution, i.e., the optimal
power sequence 𝑃 ∗

1 , . . . , 𝑃
∗
𝑁(𝑇1)

given the deadline 𝑇1. In
the second stage, we determine whether the remaining bits
(𝐵2, . . . , 𝐵𝑀 ) can be sent by 𝑇1. The optimal power sequence
𝑃 ∗
1 , . . . , 𝑃

∗
𝑁(𝑇1)

can be found as in [1], [2] by a geometric
framework which requires drawing lines to the energy arrival
points and selecting the line with the minimum slope. Denot-
ing the number of epochs as 𝑁 , calculation of the minimum of
𝑂(𝑁) elements requires 𝑂(𝑁) comparisons and we repeat it
𝑂(𝑁) times. Hence, the first stage of the main computational
block requires 𝑂(𝑁2) operations. We can perform the single-
user optimization also by the directional water-filling algo-
rithm in [11] which also has 𝑂(𝑁2) complexity. In the second
stage, the algorithm goes through 𝑃 ∗

𝑖 , calculates the remaining
cut-off power levels and determines whether the remaining
bits (𝐵2, . . . , 𝐵𝑀 ) can be sent by 𝑇1. Since the optimal cut-
off power level increases as the user index increases, and we
always start with the lowest possible power level, this stage
requires 𝑂(𝑀 + 𝑁) operations in the worst case. Hence,
the main block of the algorithm requires 𝑂(𝑁2 + 𝑀 + 𝑁)
computations.

The main block is run each time the first user’s cut-off
power level 𝑃𝑐1 is updated. In the algorithm that we presented,
𝑃𝑐1 is updated recursively as in (37). After deciding the range
that 𝑃𝑐1 lies, we perform bisection method until the desired
accuracy is reached. The number of recursions 𝐿 in (37) is
𝑂(𝑁) in the worst case and the bisection search is at most
𝑂(log(1𝜖 )) where 𝜖 is the desired accuracy. Therefore, the total
number of iterations scale as 𝑂(𝑁) and the algorithm requires
𝑂((𝑁2+𝑀+𝑁)(𝑁−log 𝜖)) operations overall. Here, the total
number of epochs 𝐾 upper bounds the number of epochs 𝑁 .
Therefore, the overall number of operations needed is upper
bounded by 𝑂((𝐾2 +𝑀 +𝐾)(𝐾 − log 𝜖)).
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VI. SIMULATIONS

We consider a band-limited AWGN broadcast channel with
𝑀 = 3 users. The bandwidth is 𝐵𝑊 = 1 MHz and the noise
power spectral density is 𝑁0 = 10−19 W/Hz. We assume that
the path losses between the transmitter and the receivers are
100 dB, 105 dB and 110 dB.

𝑟1 = 𝐵𝑊 log2

(
1 +

𝛼1𝑃ℎ1
𝑁0𝐵𝑊

)
= log2

(
1 +

𝛼1𝑃

10−3

)
Mbps (39)

𝑟2 = 𝐵𝑊 log2

(
1 +

𝛼2𝑃ℎ2
𝛼1𝑃ℎ2 +𝑁0𝐵𝑊

)
= log2

(
1 +

𝛼2𝑃

𝛼1𝑃 + 10−2.5

)
Mbps (40)

𝑟3 = 𝐵𝑊 log2

(
1 +

(1− 𝛼1 − 𝛼2)𝑃ℎ2
(𝛼1 + 𝛼2)𝑃ℎ2 +𝑁0𝐵𝑊

)
= log2

(
1 +

(1− 𝛼1 − 𝛼2)𝑃

(𝛼1 + 𝛼2)𝑃 + 10−2

)
Mbps (41)

Therefore, we have

𝑔(𝑟1, 𝑟2, 𝑟3) = 10−32𝑟1+𝑟2+𝑟3 + (10−2.5 − 10−3)2𝑟2+𝑟3

+ (10−2 − 10−2.5)2𝑟3 − 10−2 W (42)

A. Deterministic Energy Arrivals

In this subsection, we illustrate the off-line optimal pol-
icy in a deterministic energy arrival sequence setting. In
particular, we assume that at times t = [0, 5, 6, 8, 9, 11] s,
energies with the following amounts are harvested: E =
[20, 10, 3.5, 8, 10, 10] mJ.

We first study the two-user broadcast channel by removing
the third user, i.e., setting 𝐵3 = 0. We find the maximum
departure region of the two-user broadcast channel 𝒟(𝑇 ) for
𝑇 = 6, 8, 9, 10 s, and plot them in Fig. 8. Note that the
maximum departure regions are convex, and as 𝑇 increases,
𝒟(𝑇 ) monotonically expands.

We next consider the same energy arrival sequence with
(𝐵1, 𝐵2) = (21, 2) Mbits. We have the optimal transmission
policy, as shown in Fig. 9. In this example, the cut-off power
is less than 𝑃1 and hence the power share (and the rate) of
the first user is constant throughout the interval in which the
bits are transmitted. The transmitter finishes its transmission
by time 𝑇 = 9.28 s, and the last energy harvest is not used.
Note that (21, 2) Mbits point (marked with *) in Fig. 8 is not
included in 𝒟(𝑇 ) at 𝑇 = 9 s while it is strictly included in
𝒟(𝑇 ) at 𝑇 = 10 s.

Finally, we consider the same energy arrival sequence with
(𝐵1, 𝐵2, 𝐵3) = (12, 6, 3) Mbits and the optimal policy is
shown in Fig. 10. We calculate the cut-off power levels as
𝑃𝑐1 = 0.963 mW and 𝑃𝑐2 = 2.619 mW. The bits of all three
users are always transmitted throughout the communication.
The last energy arrival is used in this case and the transmission
is finished by 𝑇 = 12.33 s.

B. Stochastic Energy Arrivals

In this subsection, we consider stochastic energy arrivals
in the two-user case, i.e., we set 𝐵3 = 0. We compare
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the performance of the off-line optimal policy with those of
three suboptimal policies. These policies are inspired by the
optimal off-line policy while they require partial or no off-line
knowledge of the energy arrivals.

1) Constant Power Constant Share (CPCS) Policy: This
policy transmits with constant power equal to the average
recharge rate, 𝑃 = 𝔼[𝐸], whenever the battery energy is non-
zero and the transmitter is silent otherwise. In addition, the
strong user’s power share is constant whenever the transmitter
is non-silent. In particular, the constant power share is set to
𝛼∗ which is the solution of the following equation:

𝐵1

𝐵2
=

log2

(
1 + 𝛼𝔼[𝐸]

𝜎2
1

)
log2

(
1 + (1−𝛼)𝔼[𝐸]

𝛼𝔼[𝐸]+𝜎2
2

) (43)

Note that CPCS does not require off-line or on-line knowledge
of the energy arrivals. It requires the first order statistics, i.e.,
the mean, of the energy arrival process.

2) Greedy Power Constant Share (GPCS) Policy: This
policy also keeps the total transmit power share constant equal
to the solution of (43) throughout the transmission. However,
different from the CPCS policy, the power is greedily updated.
The policy assumes knowledge of the time instant at which the
next energy arrival occurs and at the start of the 𝑖th epoch, the
available energy is allocated to the next epoch only and hence
the power is set to 𝑃𝑖 =

𝐸𝑖−1

ℓ𝑖
. Note that GPCS requires partial
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off-line knowledge of the energy arrivals as well as the first
order statistics, i.e., the mean, of the energy arrival process.

3) Greedy Power Dynamic Share (GPDS) Policy: This
policy allocates power greedily in each epoch and the power
shares are dynamically updated. In particular, the policy as-
sumes knowledge of the time instant at which the next energy
arrival occurs and at the start of the 𝑖th epoch, the arriving
energy 𝐸𝑖−1 is spread over ℓ𝑖. For 𝑃𝑖 =

𝐸𝑖−1

ℓ𝑖
, 𝛼∗

𝑖 is calculated
as the solution of the following equation:

𝐵1𝑖

𝐵2𝑖
=

log2 (1 + 𝛼𝑃𝑖)

log2

(
1 + (1−𝛼)𝑃𝑖

𝛼𝑃𝑖+𝜎2

) (44)

where 𝐵1𝑖 and 𝐵2𝑖 are the remaining bits of user 1 and user 2,
respectively, at the beginning of epoch 𝑖. Note that this policy
essentially performs the initialization in [17] and it requires
partial off-line knowledge of the energy arrivals as well as
on-line knowledge of the data backlog.

In the simulations, we consider a compound Poisson energy
arrival process. The average inter-arrival time is 1 s and the
arriving energy is a random variable which is distributed
uniformly in [0, 2𝑃𝑎𝑣𝑔] mJ, where 𝑃𝑎𝑣𝑔 is the average recharge
rate. The performance metric of the policies is the average
transmission completion time over 1000 realizations of the
stochastic energy arrival process. We first set the 𝑑 = 𝐵1

𝐵2
ratio

constant, i.e., 𝐵1 = 𝑑𝐵2. We plot the performances for 𝑑 = 3
and 𝑃𝑎𝑣𝑔 = 1 mJ/s with varying 𝐵2 in Fig. 11. We observe
that the average transmission completion times of the policies
increase with the number of bits. It is notable that CPCS policy
performs better with respect to the greedy power policies even
though greedy power policies use partial off-line information.
Hence, transmitting with constant power proves to be useful
as observed in the single-user case in [1], [2], [11]. We also
observe that dynamically varying the power shares of the users
yields better performance compared to the constant case. Next,
we plot the variation of the average transmission completion
time with respect to the average recharge rate in Fig. 12.
CPCS policy performs better with respect to the greedy power
policies for small average recharge rates; however, GPDS
policy outperforms CPCS in the high average recharge rate
regime. Therefore, adapting the power share according to user
loads proves to be useful in the high average recharge rate
regime.
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Fig. 11. Average transmission completion time versus 𝐵2 when 𝑑 = 3 and
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VII. CONCLUSIONS

We investigated the transmission completion time mini-
mization problem in an energy harvesting broadcast channel.
We first analyzed the structural properties of the optimal
transmission policy, and proved that the optimal total transmit
power has the same structure as in the single-user channel. We
also proved that there exists a cut-off power for the stronger
user. If the optimal total transmit power is lower than this
cut-off level, all power is allocated to the stronger user, and
otherwise, all power above this level is allocated to the weaker
user. We then extended our results to the 𝑀 -user broadcast
channel for which total power sequence has the same structure
as the two-user case and the optimal splitting of the total power
requires 𝑀 − 1 cut-off levels. Based on the structure of the
optimal policy, we developed an iterative algorithm to obtain
the globally optimal off-line transmission policy. Finally, we
provided an extensive numerical analysis of the optimal policy
and compared its performance with suboptimal policies under
different settings.
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APPENDIX A
PROOF OF LEMMA 3

According to the expression of 𝑔(𝑟1𝑛, 𝑟2𝑛) in (5) and the
KKT conditions in (12)-(13), we have

𝑔(𝑟1𝑛, 𝑟2𝑛) =
𝜇2 + 𝛾2𝑛∑𝑁

𝑗=𝑛 𝜆𝑗
− 𝜎2

2 (45)

≥ 𝜎2
1

(
22(𝑟1𝑛+𝑟2𝑛) − 1

)
(46)

=
𝜇1 + 𝛾1𝑛∑𝑁

𝑗=𝑛 𝜆𝑗
− 𝜎2

1 (47)

≥ 𝜇1∑𝑁
𝑗=𝑛 𝜆𝑗

− 𝜎2
1 (48)

where (46) becomes an equality when 𝑟2𝑛 = 0. Therefore,
when 𝑟2𝑛 > 0, (45)-(48) imply

𝑔(𝑟1𝑛, 𝑟2𝑛) =
𝜇2∑𝑁
𝑗=𝑛 𝜆𝑗

− 𝜎2
2 >

𝜇1∑𝑁
𝑗=𝑛 𝜆𝑗

− 𝜎2
1 (49)

When 𝑟2𝑛 = 0, we must have 𝑟1𝑛 > 0. Otherwise, if
𝑟1𝑛 = 0, we can always let the weaker user transmit with some
power over this duration without contradicting with any energy
constraints. Since there is no interference from the stronger
user, the departure from the weaker user can be improved,
thus it contradicts with the optimality of the policy. Therefore,
when 𝑟2𝑛 = 0, 𝛾1𝑛 = 0, and (45)-(48) imply

𝑔(𝑟1𝑛, 𝑟2𝑛) =
𝜇1∑𝑁
𝑗=𝑛 𝜆𝑗

− 𝜎2
1 >

𝜇2∑𝑁
𝑗=𝑛 𝜆𝑗

− 𝜎2
2 (50)

Therefore, we can express 𝑔(𝑟1𝑛, 𝑟2𝑛) in terms of the
Lagrange multipliers as follows:

𝑔(𝑟1𝑛, 𝑟2𝑛) = max

{
𝜇1∑𝑁
𝑗=𝑛 𝜆𝑗

− 𝜎2
1 ,

𝜇2∑𝑁
𝑗=𝑛 𝜆𝑗

− 𝜎2
2

}
(51)

If 𝜇2∑𝑁
𝑗=𝑛 𝜆𝑗

− 𝜎2
2 >

𝜇1∑𝑁
𝑗=𝑛 𝜆𝑗

− 𝜎2
1 for some 𝑛̄, then, we have

𝜇2 − 𝜇1∑𝑁
𝑗=𝑛 𝜆𝑗

≥ 𝜇2 − 𝜇1∑𝑁
𝑗=𝑛̄ 𝜆𝑗

> 𝜎2
2 − 𝜎2

1 , ∀𝑛 > 𝑛̄ (52)

where the first inequality follows from 𝜆𝑗 ≥ 0 for 𝑗 =
1, 2, . . .𝑁 . Therefore, we conclude that there exists an integer
𝑛̄, 0 ≤ 𝑛̄ ≤ 𝑁 , such that, when 𝑛 ≤ 𝑛̄, 𝑟2𝑛 = 0; and when
𝑛 > 𝑛̄, 𝑟2𝑛 > 0.

Furthermore, (49)-(50) imply that the energy constraint at
𝑡 = 𝑠𝑛̄ must be tight. Otherwise, by the complementary
slackness conditions in (14), 𝜆𝑛̄ = 0, and (50) implies

𝑔(𝑟1𝑛̄, 𝑟2𝑛̄) =
𝜇1∑𝑁

𝑗=𝑛̄+1 𝜆𝑗
− 𝜎2

1

>
𝜇2∑𝑁

𝑗=𝑛̄+1 𝜆𝑗
− 𝜎2

2 = 𝑔(𝑟1,𝑛̄+1, 𝑟2,𝑛̄+1) (53)

which contradicts with (49). Therefore, in the following, when
we consider the energy constraints, we only need to consider
two segments [0, 𝑠𝑛̄) and [𝑠𝑛̄+1, 𝑠𝑁) separately.

When 𝑛 < 𝑛̄, based on (49), if 𝜆𝑛 = 0, we have
𝑔(𝑟1𝑛, 𝑟2𝑛) = 𝑔(𝑟1,𝑛+1, 𝑟2,𝑛+1). Starting from 𝑛 = 1,
𝑔(𝑟1𝑛, 𝑟2𝑛) remains constant until an energy constraint be-
comes tight. Therefore, between any two consecutive epochs,

when the energy constraints are tight, the power level remains
constant. Similar arguments hold when 𝑛 ≥ 𝑛̄. Thus, the
corresponding power level is

𝑃𝑛 =

∑𝑖𝑛−1
𝑗=𝑖𝑛−1

𝐸𝑗

𝑠𝑖𝑛 − 𝑠𝑖𝑛−1

(54)

where 𝑠𝑖𝑛−1 and 𝑠𝑖𝑛 are two consecutive epochs with tight
energy constraint.

Finally, we need to determine the epochs when the energy
constraint becomes tight. We observe that 𝑔(𝑟1𝑛̄, 𝑟2𝑛̄) must
monotonically increase in 𝑛, as 𝜆𝑛 ≥ 0. Hence, the individual
terms in the max{., .} function in (51) are monotonically
increasing. In addition, both terms in the max{., .} function
strictly increases when energy constraint becomes tight. There-
fore, we conclude that

𝑖𝑛 = arg min
𝑖𝑛−1<𝑖≤𝑁

{∑𝑖−1
𝑗=𝑖𝑛−1

𝐸𝑗

𝑠𝑖 − 𝑠𝑖𝑛−1

}
(55)

This completes the proof.

APPENDIX B
THE CUT-OFF POWER LEVELS

We solve the 𝑀 -variable local optimization problem in (26)
by using a Lagrangian analysis. Specifically, the Lagrangian
function is

𝐻(𝑟1𝑛, . . . , 𝑟𝑀𝑛,𝜶, 𝛾) =

𝑀∑
𝑚=1

𝜇𝑚𝑟𝑚𝑛 +

𝑀∑
𝑚=1

𝛼𝑚𝑟𝑚𝑛

− 𝛾[𝑔(𝑀)(𝑟1𝑛, . . . , 𝑟𝑀𝑛)− 𝑃𝑛]

where the Lagrange multipliers 𝛾 and 𝜶 = [𝛼1, . . . , 𝛼𝑀 ] sat-
isfy 𝛾, 𝛼𝑚 ≥ 0 with the complimentary slackness conditions

𝛾[𝑔(𝑀)(𝑟1𝑛, . . . , 𝑟𝑀𝑛)− 𝑃𝑛] = 0, 𝛼𝑚𝑟𝑚𝑛 = 0 (56)

Taking the derivative of the Lagrangian 𝐻 with respect to
𝑟𝑚𝑛, and setting them to zero, we have

𝜇𝑚 + 𝛼𝑚 − 𝛾′22
∑𝑀

𝑖=𝑚 𝑟𝑖𝑛(𝑔(𝑚−1) + 𝜎2
𝑚) = 0, (57)

for 𝑚 = 1, 2, . . . ,𝑀 , where 𝛾′ = (2 ln 2)𝛾. Because of the
nonnegativity of 𝜇𝑚 and 𝛼𝑚, in order to have a solution
satisfying the KKT conditions, we must have 𝛾′ > 0. Then,
considering two consecutive equations, we have

𝜇𝑚 + 𝛼𝑚

𝜇𝑚−1 + 𝛼𝑚−1
=

𝑔(𝑚−1) + 𝜎2
𝑚

𝑔(𝑚−2) + 𝜎2
𝑚−1

⋅ 1

22𝑟(𝑚−1)𝑛

=
𝑔(𝑚−1) + 𝜎2

𝑚

𝑔(𝑚−2) + 𝜎2
𝑚−1

⋅ 1

1 +
𝑔(𝑚−1)−𝑔(𝑚−2)

𝑔(𝑚−2)+𝜎2
𝑚−1

=
𝑔(𝑚−1) + 𝜎2

𝑚

𝑔(𝑚−1) + 𝜎2
𝑚−1

(58)

If 𝛼𝑚 = 0, i.e., 𝑔(𝑚) > 𝑔(𝑚−1), we have

𝑔(𝑚−1) = max

{(
𝜇𝑚−1𝜎

2
𝑚 − 𝜇𝑚𝜎

2
𝑚−1

𝜇𝑚 − 𝜇𝑚−1

)+

, 𝑔(𝑚−2)

}
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If 𝛼𝑚 ∕= 0, i.e., 𝑔(𝑚) = 𝑔(𝑚−1), and 𝑚− 1 is the smallest
user index with 𝑔(𝑚−1) > 𝑔(𝑚−1), we have

𝜇𝑚−1

𝜇𝑚−1 + 𝛼𝑚−1
=
𝑔(𝑚−1−1) + 𝜎2

𝑚−1

𝑔(𝑚−2) + 𝜎2
𝑚−1

⋅ 1

22𝑟(𝑚−1)𝑛

=
𝑔(𝑚−1) + 𝜎2

𝑚−1

𝑔(𝑚−1) + 𝜎2
𝑚−1

(59)

where (59) follows from the fact that 𝑔(𝑚−1−1) = 𝑔(𝑚−1).
Thus,

𝑔(𝑚−1) = max

{(
𝜇𝑚−1𝜎

2
𝑚−1

− 𝜇𝑚−1𝜎
2
𝑚−1

𝜇𝑚−1 − 𝜇𝑚−1

)+

, 𝑔(𝑚−2)

}
Therefore, the cut-off power levels are determined in the
general form as in (27).

APPENDIX C
PROOF OF THEOREM 1

Before we proceed to prove the optimality of the algorithm,
we introduce the following lemma first, which is useful in the
proof of the optimality of the algorithm.

Lemma 6 For any 𝛼 ∈ [0, 1], 𝑓
(

𝛼𝐸/𝑇
(1−𝛼)𝐸/𝑇+𝜎2

)
𝑇 monoton-

ically increases in 𝑇 .

Proof: The monotonicity can be verified by taking derivatives.
We have(

𝑓

(
𝛼𝐸/𝑇

(1 − 𝛼)𝐸/𝑇 + 𝜎2

)
𝑇

)′

=
1

2
log2

(
𝜎2 + 𝐸/𝑇

)− 1

2
log2

(
𝜎2 + (1− 𝛼)𝐸/𝑇

)
− 𝐸

2 ln 2

𝐸

𝐸 + 𝜎2𝑇
+

𝐸

2 ln 2

(1− 𝛼)𝐸

(1− 𝛼)𝐸 + 𝜎2𝑇
(60)

and(
𝑓

(
𝛼𝐸/𝑇

(1− 𝛼)𝐸/𝑇 + 𝜎2

)
𝑇

)′′

=
𝐸2

2𝑇 ln 2

(
1

(𝜎2𝑇/(1− 𝛼) + 𝐸)2
− 1

(𝜎2𝑇 + 𝐸)2

)
< 0

where the last inequality follows as 𝐸 > 0. Hence,
𝑓
(

𝛼𝐸/𝑇
(1−𝛼)𝐸/𝑇+𝜎2

)
𝑇 is a strictly concave function of 𝑇 . Note

that each term in the right hand side of (60) goes to 0 as
𝑇 → ∞. Thus,

lim
𝑇→∞

(
𝑓

(
𝛼𝐸/𝑇

(1− 𝛼)𝐸/𝑇 + 𝜎2

)
𝑇

)′
= 0.

Combining with the strict concavity, we conclude that the first
derivative is positive when 𝑇 < ∞, and the monotonicity
follows. ■

We then prove the optimality of the algorithm. In order to
prove that the algorithm is optimal, we need to prove that 𝑃1

is optimal. Once we prove the optimality of 𝑃1, the optimality
of 𝑃2, 𝑃3, . . . follows. Since the solution obtained using
our algorithm always has the optimal structure described in
Lemma 4, the optimality of the power allocation also implies
the optimality of the rate selection, thus, the optimality of the

algorithm follows. Therefore, in the following, we prove that
𝑃1 is optimal.

First, we note that 𝑃1 is the minimal slope up to 𝑇 . We
need to prove that 𝑃1 is also the minimal slope up to the final
transmission completion time, 𝑇 . Let us define 𝑇 ′ as follows

𝑇 ′ =
∑𝑖̃1

𝑛=0𝐸𝑛

𝑃1
(61)

Assume that with 𝑃1, we allocate 𝛼𝑃1 to the first user, and
finish (𝐵1, 𝐵2) using constant rates. Then, we allocate 𝛼𝑃1

to the first user, and the rest to the second user. Based on
Lemma 6, we have

𝑓(𝛼𝑃1)𝑇
′ ≥ 𝑓(𝛼𝑃1)𝑇 = 𝐵1 (62)

𝑓

(
𝛼𝑃1

(1 − 𝛼)𝑃1 + 𝜎2

)
𝑇 ′ ≥ 𝑓

(
𝛼𝑃1

(1− 𝛼)𝑃1 + 𝜎2

)
𝑇 = 𝐵2

(63)

Therefore, 𝑇 ′ is an upper bound for the optimal transmission
completion time. Since 𝑃1 is the minimal slope up to 𝑇 ′,
we conclude that 𝑃1 is optimal throughout the transmission.
Following similar arguments, we can prove the optimality of
the rest of the power allocations. This completes the proof of
optimality.

In order to prove that the allocation is feasible, we need to
show that the power allocation for the first user is always
feasible in each step. Therefore, in the following, we first
prove that 𝑃1 is feasible when we assume that 𝑃𝑐 = 𝑃1. The
feasibility of 𝑃1 also implies the feasibility of the rest of the
power allocation. With the assumption that 𝑃𝑐 = 𝑃1, the final
transmission time for the first user is

𝑇1 =
𝐵1

𝑓(𝑃1)
≤ 𝐵1

𝑓(𝛼𝑃1)
(64)

Based on (62) and (64), we know that 𝑇1 < 𝑇 ′. Since
𝑃1 is feasible up to 𝑇 ′, therefore, 𝑃1 is feasible when we
assume that 𝑃𝑐 = 𝑃1. The feasibility of the rest of the
power allocations follows in a similar way. This completes
the feasibility part of the proof.
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