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Optimal Broadcast Scheduling for an
Energy Harvesting Rechargeable Transmitter with a
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Abstract—We consider the minimization of the transmission
completion time with a battery limited energy harvesting trans-
mitter in an M -user AWGN broadcast channel where the
transmitter is able to harvest energy from the nature, using
a finite storage capacity rechargeable battery. The harvested
energy is modeled to arrive (be harvested) at the transmitter
during the course of transmissions at arbitrary time instants.
The transmitter has fixed number of packets for each receiver.
Due to the finite battery capacity, energy may overflow without
being utilized for data transmission. We derive the optimal offline
transmission policy that minimizes the time by which all of the
data packets are delivered to their respective destinations. We
analyze the structural properties of the optimal transmission
policy using a dual problem. We find the optimal total transmit
power sequence by a directional water-filling algorithm. We prove
that there exist M — 1 cut-off power levels such that user 7 is
allocated the power between the i — 1st and the ith cut-off power
levels subject to the availability of the allocated total power
level. Based on these properties, we propose an algorithm that
gives the globally optimal offline policy. The proposed algorithm
uses directional water-filling repetitively. Finally, we illustrate
the optimal policy and compare its performance with several
suboptimal policies under different settings.

Index Terms—Energy harvesting, rechargeable wireless net-
works, broadcast channels, finite-capacity battery, transmission
completion time minimization, throughput maximization.

I. INTRODUCTION

NERGY harvesting communication systems have been

widely used in many wireless networking applications
as they bring improved lifetime and ease of deployment.
A distinctive characteristic of these systems is that energy
becomes available for use in communication during the course
of transmission of data. This requires the adaptation of the
transmission policies to the energy arrivals. In this paper,
we consider data transmission with an energy harvesting
transmitter in a broadcast setting, and derive the optimal offline
policy that achieves the minimum transmission completion
time when the transmitter has a finite capacity battery.
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Fig. 1. Broadcasting (B1,..., Bps) bits with an energy harvesting trans-
mitter with a finite capacity battery.

As shown in Fig. 1, we consider a broadcast channel with
an energy harvesting transmitter and M receivers. M + 1
queues at the transmitter are: M data queues that store the
data destined to the receivers and an energy queue (battery)
that stores the harvested energy. The energy queue has a finite
capacity and can store at most F,,,, units of energy. As shown
in Fig. 2, the energy arrives (is harvested) at times sj in
amounts I. Fy is the initial energy available in the battery
at time zero. Saving energy for future use is advantageous,
however, finite battery capacity constrains this capability, and
thus necessitates avoiding energy overflows. We focus on the
optimal offline policy that minimizes the time, 7', required
to transmit B,, bits to receiver m, for m = 1,..., M.
The transmission policy is subject to the causality of energy
arrivals as well as the finite battery capacity constraint.

Data transmission in energy harvesting systems has at-
tracted attention recently [1]-[10]. In [1], a back-pressure
based scheduling scheme is shown to be average throughput
optimal in the asymptotically large battery capacity regime.
In [2], [3], stability optimal energy management policies are
introduced for single and multi-user settings, together with
some delay optimality properties. In [4], energy replenishment
in sensor nodes is considered and the optimal online policy
for controlling admissions into the data buffer is derived using
dynamic programming.

Transmission completion time minimization problem in a
point-to-point communication channel is solved in [5], [6]
without battery constraints, and later in [7] with finite battery
capacity constraints. In [8], we extend the analysis to the
fading channel through a concise algorithm called directional
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Fig. 2. Energies arrive at time instants sj in amounts Ej.

water-filling. In [9], we solve the transmission completion time
minimization problem in a broadcast channel, independently
and concurrently with [10]. Both works assume that the
transmitter battery size is unlimited. This paper extends these
works to the case of a transmitter with a finite capacity battery.

Our work is closely connected with the recent literature
on adaptive transmission for energy efficient and delay con-
strained data transmission [11]-[18]. In [11], [12], energy
minimal packet scheduling under a deadline constraint is
solved in a deterministic setting. Later, in [13], a calculus
framework is developed for generalizing the approach in [11],
[12] to address many different quality of service constraints.
In [14], [15], energy management problems in communication
satellites are solved under offline and online knowledge of the
channel fade levels. In [16]-[18], delay optimal schedules over
single and multi-user communication scenarios are found. In
the current paper, we formulate a novel problem by combining
the energy recharge model in [1]-[4] with the adaptive trans-
mission model of [11]-[15] and solve for the optimal offline
schedule for the quickest transmission of available data in an
energy harvesting broadcast channel.

In [9], we show, under the assumption of an infinite sized
battery, that the time sequence of the optimal total power in
a broadcast channel increases monotonically as in the single-
user case in [5], [6]. Moreover, in [9], we prove that there
exists a cut-off power level for the power shares of the strong
and weak users; strong user’s power share is always less than
or equal to this cut-off level and when it is strictly less than this
cut-off level, weak user’s power share is zero. The structure of
the optimal policy in [9] is contingent upon the availability of
an infinite capacity battery. In particular, when a large amount
of energy is harvested, the development in [9] assumes that
some portion of this harvested energy can always be saved for
future use. However, when the battery capacity is finite, energy
may overflow in such cases. Therefore, the added challenge in
the finite capacity battery case is to accommodate every bit of
the incoming energy by carefully managing the transmission
power and users’ power shares according to the times and
amounts of the harvested energy.

We find, in the current paper, that as in [9], the deter-
mination of the total transmit power can be separated from
the determination of the shares of the users without losing
optimality. We first obtain the structural properties of the
optimal policy by means of a dual problem, namely, the
maximization of the region of bits served for the receivers
by a fixed time 7, i.e., the maximum departure region. We
show that, similar to the battery unlimited case, we have a cut-
off property in the optimal power shares. However, different
from the battery unlimited case, the transmit power is not
monotonically increasing.

We formulate the battery-unconstrained problem in [9] in
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the rate domain. However, when there is a battery capacity
constraint, the resulting no-energy-overflow constraint gives a
non-convex constraint for the optimization problem in the rate
domain. Therefore, we formulate the problem in the power
domain in this paper. We show that the total power in each
epoch must be the same as the total power in the single-user
channel, which, in turn, can be found by the directional water-
filling algorithm developed in [8]. We then find the optimal
shares of the users from the total power in closed form via a
single-variable optimization problem, completing the charac-
terization of the optimal solution of the dual problem. We then
use the structure of this dual problem, in particular the cut-
off property and the optimality of directional water-filling to
solve the transmission completion time minimization problem.
Finally, we provide numerical illustrations and performance
comparisons for the optimal offline policy.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Figs. 1 and 2, the transmitter has A data
queues each having B,,, bits destined to the mth receiver, and
an energy queue of finite capacity E,,,,. The initial energy
available in the battery at time zero is Ey and energy arrivals
occur at times {s1, s2, ...} in amounts {E}, Fa,...}. We call
the time interval between two consecutive energy arrivals an
epoch. The epoch lengths are ¢; = s; — s;_1 with sg = 0. A
standing assumption in the paper is E; < Fy,q, for all 7, as
otherwise the excess energy E; — E,,,, cannot be stored in
the battery anyway.

The physical layer is modeled as an AWGN broadcast
channel, with received signals

}/’m.:X_'—Z’m.v mzla"'vM (1)

where X is the transmit signal, and Z,, is a Gaussian
noise with zero-mean and variance a?n, and without loss of
generality 07 < o5 < ... < o3,. Therefore, the first user
is the strongest and the Mth user is the weakest user in our

broadcast channel. The capacity region for the M -user AWGN

broadcast channel is the set of rate vectors (71, ...,75) [19]:
1 am P
7‘m=—10g 1+ s m=1,....M
2 ° Zj<m ajP + Urgn
(2)

where v, >0 and > o, = 1.

Our goal is to select a transmission policy that minimizes
the time, 7', by which all of the bits are delivered to their
intended receivers. The transmitter adapts its transmit power
and the portions of the total transmit power used to transmit
signals to the M users according to the available energy level
and the remaining number of bits. The energy consumed must
satisfy the causality constraints, i.e., at any given time ¢, the
total amount of energy consumed up to time ¢ must be less
than or equal to the total amount of energy harvested up to
time t.

Let us denote the transmit power at time ¢ as P(t) for
t € [0,T]. The transmission policy in a broadcast channel
is comprised of the total power P(t) and the portion of the
total transmit power v, (t) that is allocated for user m, m =
1,...,M. As Z%Zl am(t) = 1, the transmission policy is
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represented by o, (t), m =1,...,M — 1 and ap(t) = 1 —
Zivf;ll oy, (t). For the special case of M = 2, we denote the
strong user’s power share without a subscript as a(t).

The total energy consumed by the transmitter up to time ¢
can be expressed as f(f P(7)dr. Note that because of the finite
battery capacity constraint, at any time ¢, if the unconsumed
energy is greater than FE,,,;, only E,,., can be stored in
the battery and the rest of the energy overflows and hence
is wasted. This may happen only at the instants of energy
arrival. Therefore, the total removed energy from the battery
at si, Fy(sk), including the consumed part and the wasted

part, can be expressed recursively for k = 1,2,... as
Er(sy)
Sk k *
=max{ E.(sf_,) + / P(r)dr, | Y Ej = Emaa
Sk—1 j=0
3)

where (z)* = max{0,z}, and s} should be interpreted as
sk + € for arbitrarily small ¢ > 0. In addition, E,(s¢) = 0.
We can extend the definition of E,. for the times ¢ # sj, as:

t
E.(t)= ET(SZ+(t)) —|—/ P(r)dr 4)
Shy (t)
where hy(t) = max{i : s; < t}. As the transmitter cannot
utilize the energy that has not arrived yet, the transmission
policy is subject to an energy causality constraint. The re-
moved energy F,(t) cannot exceed the total energy arrival
during the communication. This constraint is mathematically
stated as follows:
h_(t)
E.(t)< Y B,

1=

vt € [0,7] )

where h_(t) = max{i : s; < t}. As the energies arrive at
discrete times, the causality constraint reduces to inequalities
that have to be satisfied at the times of energy arrivals:

Sk k—1
E.(sf_,) + / P(r)dr <Y E;, Vk (6)
Sk—1 i=0

An illustration of E,.(t) and the causality constraint is
shown in Fig. 3. The upper curve in Fig. 3 represents the total
energy arrived and the lower curve is obtained by subtracting
Epna. from the upper curve. The causality constraint imposes
E.(t) to remain below the upper curve. Moreover, E,(t)
always remains above the lower curve by definitions in (3)
and (4). Therefore, E,.(t) always lies in between these two
curves. In the particular F,(¢) shown in Fig. 3, the energy in
the battery exceeds F,, . at the time of the third energy arrival
at s3 and some energy is removed from the battery without
being utilized for data transmission. After s, energy removal
from the battery continues due to data transmission and hence
the removal curve approaches the total energy arrival curve
indicating that the battery energy is decreasing.

As observed in Fig. 3, some energy is lost due to energy
overflow if E,.(t) intersects the lower curve at the vertically
rising parts at the energy arrival instants. Therefore, a trans-
mission policy guarantees no-energy-overflow if the following
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Fig. 3. The total removed energy curve F,(t). The jump at s3 represents
an energy overflow because of the finite battery capacity limit.

constraint is satisfied:

ho (1)
Ei - Emar ’
0

+

t
/P(T)drz Ve 0,7] ()
0

i=

The constraint in (7) imposes that at least Zf:o E;, — Eox
amount of energy has been consumed by the time the kth
energy arrives so that the battery can accommodate Ej at
time sy. If a policy satisfies (7), the max in (3) always yields
the first term in it. Therefore, the causality constraint in (6) is
simplified to the following:
t h—(t)
/ P(r)dr < Y E;, Vte[0,T] (8)
0 i=0
This is depicted in Fig. 4 in which the total energy curve of
the policy does not intersect the lower curve at the vertically
rising parts (at the energy arrival instants) and thus no energy
is removed from the battery due to energy overflows. Hence,
the causality constraint reduces to the condition that the total
energy arrival curve must lie below the upper curve in Fig. 4.
Instead of directly finding the optimal policy that minimizes
the transmission completion time, we start by solving the dual
problem of finding the maximum departure region, the largest
region of number of bits that the transmitter can deliver to each
user by a fixed time 7'. Solving the dual problem enables us
to identify the properties of an optimal policy in the original
problem.

III. THE DUAL PROBLEM

In this section, we consider the dual problem of determining
the maximum departure region which is the set of number of
bits that can be delivered to the receivers by a fixed deadline
T.

Definition 1 For any fixed transmission duration T, the max-
imum departure region, denoted as D(T), is the union of
R(Bl,...,BM) = {(bl,,bM) : 0 S b1 S Bl,,O S
by < Bpr} where (By,...,Byg) is the total number of
bits sent by some power allocation policy P(t) and o, (t),
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Fig. 4. Energy causality constraint and no-energy-overflow constraint are
depicted as cumulative energy curves and the power consumption curve of a
transmission policy simultaneously satisfy these two constraints by lying in
between these two curves.

m = 1,..., M, that satisfy the energy causality (8) and no-
energy-overflow (7) conditions.

The departure region of any policy that causes energy
overflows can be dominated by a policy that does not allow
energy overflows. Hence, in the definition of D(T'), we restrict
the policies to satisfy the no-energy-overflow condition in (7).
We refer to any policy that satisfies the energy causality and
no-energy-overflow conditions as feasible. We call a feasible
policy optimal if it achieves the boundary of D(T').

The transmission rates remain constant between energy
harvests under any optimal policy (c.f. Lemma 1 in [9] and
Lemma 2 in [5], [6]). Therefore, in the sequel, we restrict
ourselves to the policies in which the powers and the power
shares remain constant between any two consecutive energy
arrivals. Let /' denote the number of energy arrivals in (0,7")
yielding K + 1 epochs, with s = 0 and sxg4+1 = T. We
represent the transmission policy by (M +1)(K +1) variables
P and app, form=1,... M,and k =1,..., K + 1. P
and «,, denote, respectively, the total power allocated and
the corresponding power share of user m over the duration
[sk—1,sk). The causality constraint in (8) reduces to the
following constraints on F;:

k k—1
S PG; <Y E,  k=1..K+1 ©
1=1 1=0

and the no-energy-overflow condition in (7) reduces to:

k k +
ZPZ-&2<ZEZ-—E,MI> , k=1,....,K (10)
=1 i=0

An important property of D(T) is stated next [20].

Lemma 1 D(T) is a convex region.

Since D(T') is a convex region! its boundary is uniquely

characterized by the supporting hyperplanes [21]. Therefore,

UIn fact, it is a strictly convex region due to the strict concavity of the log
function. In a strictly convex region, no two points on the boundary of D(T")
lie on the same hyperplane.
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in order to characterize the boundary of D(T'), we consider
all possible supporting hyperplanes to the maximum departure
region and solve the following optimization problem for all

M1y ey AT ZO,
K+1 K+1
(max, il PG+ .+ s Y (e, B
o i=1 i=1
k k—1
st. Y Pl <Y B k=1,....,K+1
i=1 i=0
k k +
ZP'Lél > <ZE1 Emaz) 5 k= 1, 7K
=1 =0
(1)
where pu1,...,up > 0 are the weights of the number of

departed bits, and r,, (a;, P;) is the rate allocated for the mth
user at epoch ¢:

ami b
12
Ej<m04jipi+0,2n> 12)

Therefore, ng{l Tm (e, P;)l; is the total number of bits
served for user m in the [0, 7] interval.

1
rm(a, P;) = 5 log, (1 +

The problem in (11) is not a convex problem as the variables
am; and P; appear in a product form, causing the objective
function to be a non-concave function of the variables «; and
P;. Even though the objective function is concave with respect
to P; for any given «;, since the optimal «;s depend on the
powers, we cannot immediately conclude that the objective
function is concave in powers. We solve (11) in two steps.
We first optimize (11) with respect to «; for a given fixed
set of powers. We show that when optimal «;s, which are
functions of the powers, are inserted back into (11), we obtain
an objective function which is concave in powers, and this
leads to a convex overall problem. In [20], we solved the
problem in (11) for M = 2 in the rate domain. The difficulty
of working in the rate domain is that the feasible set of the
problem becomes non-convex under the constraints due to
finite capacity battery; see the discussion around [20, eqn.
(24)]. We overcome this issue here by casting the problem in
terms of powers.

Assume that P; are given at each epoch ¢. We solve the
following problem in each epoch i:

max puri(og, P) 4.4 pura (o, Py) - (13)

Let us define the result of the optimization problem in (13) as

a function of P:
f(P) énflitxulrl(a,P)—l—...—|—/uv17“]\/1(o¢,P) (14)

We have the following lemma whose proof is provided in
Appendix A.

Lemma 2 f(P) is a strictly concave function of P and the
derivative of f(P) is continuous.
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Then, the problem in (11) can be written as a problem only
in terms of P; as follows:

S.t. Z Pt <

5)

The problem in (15) is a convex optimization problem. The
objective function is strictly concave by Lemma 2 and the
feasible set is a convex set. In the next lemma, we state a key
structural property of the optimal policy. The proof is provided
in Appendix B.

Lemma 3 Optimal total transmit power sequence Pj, i =
1,..., K + 1, is independent of the values of j1,...,ur. In
particular, it is the same as the single-user optimal transmit
power sequence, i.e., it is the same as the solution for p; > 0

and py, =0, m=2,... M.

Therefore, irrespective of the values of puq,...,ua, the
unique total power allocation can be found by the directional
water-filling algorithm introduced in [8]. An alternative algo-
rithm for solving the same problem is provided in [7], which
uses the feasible energy tunnel approach. The structures of the
two alternative algorithms in [7], [8], as well as the one in [5],
[6] for the unconstrained battery case, are determined only by
the strict concavity of the rate-power relation. We obtained
the same structure in the broadcast channel here due to the
strict concavity of f(P) in P, which is stated and proved in
Lemma 2.

Once the optimal fotal transmit powers, P;", are determined,
the optimal power shares of the users can be determined by
solving the problem in (13) in terms of oy, by using the
analysis presented in the proof of Lemma 2 in Appendix A.
In particular, splitting the total power among M users re-
quires a cut-off power structure. Whenever p; < p; for any
1 <1< j<M,ie., whenever a degraded user has a smaller
weight, the solution of (13) is such that 77; = 0 for any value
of P;. This is because, the allocated rate of a degraded user
j can be transferred to a stronger user [ [19], and doing so
yields a higher weighted sum of rates if p; < p; (see also
Appendix A). Hence, we remove the users j where p; < 1
and 1 <[l < j < M. The remaining R < M users are such
that 0 < 0% <...< 0% with y < po < ... < pg. Using a
first order differential analysis (see Appendix A), the optimal
cut-off power levels for the remaining IR users must satisfy

the following equations for m =1,..., R — 1:
2 _ g2\t
P.,, = max (M) ’pc(m_l) (16)
M — Hm

where m is the smallest user index with P.; > FP.,. By
convention, we have P.g = 0, P.r = oo. We note that P,
and m in (16) can be recursively calculated. We immediately
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observe that for m =R —1, m = R and P,.,,, = “(R—1) for
m = uj,..., R —1 where:

peod — prop\ "
P.p—1) = max (M> (17)
ke[1:R—1] MR — Mk
[1:0% — LRO}, "
uj =arg max —a ——Fk (18)
ke[l:R—1] MR — Mk

Similarly, we find P, for m = uj —1 by replacing R with u]
in (17). Pery, = Peguz —1) and m = uj form = u3, ... ,uj —1

where u5 is calculated as in (18) by replacing R with u]. We
continue until we reach uj = 1 for some j. We can verify
that P.,, calculated this way satisfies the conditions in (16);
therefore, this procedure determines the desired cut-off power
levels.

We show the structure of optimally splitting the total power
among the users in Fig. 5. The top portion of the total power
is allocated to the user with the worst channel and the power
below it is interference for this user. The bottom portion of the
total power is allocated to the user with the best channel and
this user experiences no interference. We note that the cut-off
power levels are independent of the varying total power levels
in epochs or the F,,,, constraint.

As a specific example, for the two-user case (M = 2), the
single cut-off power level is

Jr
P — (lefg - M2Uf>
M2 — {1

If the optimal total power level in the ith epoch, P}, is smaller
than the cut-off power level P, then only the stronger user’s
data is transmitted. If P > P,, then the strong user’s power
share is P, and the weak user’s power share is the remainder
of the power in that epoch. From Lemma 3, the optimal
policies that achieve the boundary of D(7') have a common
total transmit power and from Lemma 2 its splitting between
the two users depends on pu1, o through ps /iy as reflected in
the cut-off power in (19). For different values of p;, o, the
optimal policy achieves different boundary points on D(T').
Varying the values of j1, o traces the boundary of D(T).

19)

IV. MINIMUM TRANSMISSION COMPLETION TIME FOR
GIVEN (By,...,Buy)

In this section, our goal is to minimize the transmission
completion time given (B, ..., By):

min T
P

k k +
> Pt > (ZEi—EmM> k=1,... K
i=1 =0
K+1
1 o (P)P;
—log, [ 1+ " Ui = Bm, Ym
; 9 52 ( Z]<m a].(Pi)Pi +0’2n>

(20)

where K = K (T) is the number of energy arrivals over (0,7T),
and lg(ry4+1 = T — sk (). Since K(T') depends on 7', the
optimization problem in (20) is not convex in general.
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Fig. 5. Optimally splitting the total power for M users.

We observe that (20) is the dual problem of finding the max-
imum departure region for fixed 7" in (11) in the sense that, if
the minimum transmission completion time for (B, ..., By)
is T, then (B4, ..., By) must lie on the boundary of D(T),
and the optimal policies in both problems must be the same.
In the following, we provide an algorithm to minimize the
transmission completion time for given (Bi,...,Ba), by
using the properties we developed for the optimal policy for
the dual problem in the previous section. We first start with
the M = 2 user case.

(B1, B2) must lie on the boundary of D(T,,:,). Hence,
without losing optimality we restrict our attention to the
policies which allocate the total transmit power by directional
water-filling and have the cut-off power structure. As the initial
step, we suppose that the transmitter transmits only to the
stronger user with an arbitrary P, and find the transmission
completion time for the stronger user by 77 = m.
For this fixed 77, we run the directional water-filling algorithm
and find the total power allocation Py, Py, ..., Pr (1)1 With
the deadline 77. The number of bits transmitted to the stronger
user is

K(T1)+1
Dy(Ty,P.)= ) 5 1og2 (1+ P — [P~ P)")4; 1)
i=1
We allocate the remaining power [P, — P.] T to the weaker user
and calculate the total bits departed from the weaker user’s
queue by deadline 77 as

K(T1)+1

>

i=1

[P — Pe]*

D2(TlaPc): P+ o2

3 log, (1 + > L (22)
Dy (T4, P.) is monotonically decreasing with P. for fixed 7.
In fact, Do(T1, P,.) takes its maximum value at P. = 0 and
as P, is increased, the achievable bit departure pairs travel on

the boundary of D(T}) from one extreme to the other.

We divide the bit departure plane into 5 regions as shown
in Fig. 6. The regions are bordered by the constant B;, By
lines and the D(T},,) curve. Region (D is D; < B; and
Dy < Bs. Regions @ and (3) combined represent the north-
west part, i.e., D1 < By and Dy > Bs. The border between
regions 2 and 3 is the D(T},i,) curve. Region ) is bordered

by the constant B; line and the D(T},,) curve. The rest of
the first quadrant is region 3. We start the problem with the
knowledge of (B7, B2). While we know that (B;, B2) must
lie on the boundary of D(7},:), we do not know D(T i)
or Tynin. We want to find 7,,;, and the policy that achieves
1t.

After the initial step, we have D1(Ty,P.) < Bj since
P, < P. may occur in some epochs. Hence, the initial
operating point lies in one of regions (D, @), 3. If the
operating point lies in the interior of region (), it implies that
(B1, Bs) transmission cannot be completed by T;. Therefore,
we decrease P., obtain T} = B and repeat the

. - zlog (1P’ . .
procedure, until we leave this region. If the operating point

. . . B o .
hits the By line, ie.. Di (qzlipy.Fe) = Bu, while

Do (%,Pc) < Bag, as shown in Fig. 6(a), then
0go e
P. <2 P; for all epochs i. Even if we further decrease P,
. B _
to increase Do, we always have D; (m’ Pc) =B

in view of the update rule of 7} as 77 = %.
. . . g logy(1+Pe)
Hence, similar to the algorithm for the unlimited battery

case in [9], we apply bisection only on P. and approach
Dy (%, P.) = B, sufficiently. For the final value
5 logy (14P)

P 5 S
of Pc, Tmzn - %log2(1+Pc) .
Then, we consider the scenario when the operating point

. . . B1
enters into region 2 or ), i.e., Do (7% oz, (ITP) Pc) > By

while D, (m, P, ) < Bj. For this scenario, we fix
T3 and increase P. such that Do (T4, P.) = Bs. This brings us
to the horizontal B; line, as shown in Fig. 6(b). Depending on
the updated D; under this policy, the operating point lies either
on the left or on the right of the (By, Bs) point. If we end up at
Dy (T, P.) < By, then Ty < Tip. We decrease P., and set
T, = m. Another round of directional water-filing
results bg > By, and brings the operating point back into
region @ and Q). If we end up at Dy (71, P.) > By, it implies
Ty > Tyyin- Then, we fix P, and decrease 73 only. By doing
this, we decrease D; and Ds at the same time and this brings
the operating point back to the horizontal Bs line, which in
turn brings us back to one of the previously considered cases
depending on whether D4 (77, P.) is greater or smaller than
B;.
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(a) If the algorithm starts in region (D) and hits
D1 (T1,P:) = Bi, then the trajectory does not
deviate from the constant B1 line.
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’/ h ©

é

@

O]
®

P (Tinin)

B,

(b) If D1(T1,P:) < Bi and Do(T1,P.) = Ba
is achieved, then a bisection algorithm converges to
the desired (B7, B2) point yielding the minimum
T.

Fig. 6.
algorithm.

The possible trajectories followed during the operation of the

For all of the above cases, we carefully control the step
size when we do the adjustment of P, and 7}, to make sure
that the operating point gets closer to the (Bi, B2) point at
each step. In particular, we update 7" and P, using a bisection
method. Starting with arbitrary step sizes, we halve the step
size each time the update sign is changed, i.e., if an increase
is required while previous update was a decrease, then step
size is halved. Convergence is guaranteed due to monotonicity
and continuity of D1 (73, P.) and Ds(Th, P,.) [22].

The algorithm naturally generalizes for an M -user broadcast
channel. Initially, we suppose that the transmitter transmits
only to user 1 with an arbitrary P,; and find the transmission
completion time for the strongest user by 77 = m.
For this fixed 77, we run the directional water-filling algorithm
and find the total power allocation Py, Py, ..., P (1,)41 with
the deadline 7;. The number of bits transmitted to user 1 is
Dy (Ty, P.1). We allocate the remaining power [P; — P.q]*
to the second user and calculate the total bits departed from
the second user’s queue by deadline T3, Ds(T1, P.1), as in
(22). If Do(Ty, P.1) > Ba, then Bs bits can be served for
user 2. We find the corresponding cut-off power level P.o. We
continue finding the remaining cut-off power levels P, until
some power level becomes infeasible, i.e., some user cannot
be served by T7. In this case, we decrease FP.; and recalculate
T. Otherwise, (Ba,...,Bjys) bits can be served by 77. In
this case, we fix 7 and increase P.;. We apply the bisection
method and update the step sizes according to whether an
increase or decrease is required and whether previous update
was an increase or a decrease. The convergence is again
guaranteed due to the monotonicity and continuity of the
number of bits served for each user [22].
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V. NUMERICAL RESULTS
We consider a band-limited AWGN broadcast channel with
M = 3 users. The bandwidth is By = 1 MHz and the noise
power spectral density is Ng = 10~'? W/Hz. We assume that

the path losses between the transmitter and the receivers are
100 dB, 105 dB and 110 dB.

alPhl
NoBw

r1 = By log, (1 +
- OélP
= log, (1 + —10_3> Mbps (23)
O[QPhQ
a1 Phy + NoBw
OézP
————— | Mb
ar P+ 102~5> ps
(1 — ] — OéQ)Phg )
(a1 + a2)Phs + NoBw

1—qa; — P
( o — a2) )Mbps

r9 = By logy (1 +

= log, (1 + (24)

r3 = By log, (1 +

(25)

=1 1
082 ( + (a1 + az)P + 1072

A. Deterministic Energy Arrivals

In this subsection, we illustrate the optimal offline policy in
a deterministic energy arrival sequence setting. In particular,
we assume that at times t = [0,2,5, 8,9, 12] s, energies with
the amounts E = [8, 3,6, 9,8, 9] mJ are harvested. The battery
capacity is Eyq, = 10 mJ.

We first study the two-user broadcast channel by removing
the third user, i.e., setting Bs = 0. We find the maximum
departure region of the two-user broadcast channel D(T') for
T =10,12,13,14, 16 s, and plot them in Fig. 7. These regions
are obtained by first finding the total power sequence and
then varying the cut-off power level P.. In particular, P, = 0
implies all the power is allocated to user 2 while P, = max; P;
implies that all the power is allocated to user 1. Note that the
maximum departure regions are strictly convex for all 7" and
monotone in 7'. We observe that the gap between the regions
for different 7' increases in the passage from 7" = 12 s to
T = 13 s since an energy arrival occurs at ¢t = 12 s.

We next consider the same energy arrival sequence with
(B1, B2) = (22, 3) Mbits. We have the optimal transmission
policy as shown in Fig. 8. Initial energy in the battery and
the first two energy arrivals are spread till £ = 8 s. However,
only 2 mJ energy can flow from the time interval [8,9] to
[9,12] as Eyas = 10 mJ constrains the energy flow. This, in
turn, breaks the monotonicity in the total transmit power. In
the optimal policy, P. = 2.15 mW is found, while in the first
three epochs the transmit power is allocated as 2.125 mW.
Therefore, only the stronger user’s data is transmitted in the
first three epochs. In the remaining epochs, both users’ data
are transmitted simultaneously with transmit power Py = 7
mW in [8,9] s, P5 = 3.33 mW in [9,12] s and Ps = 6.66
mW in [12,13.35] s. Note that (22,3) Mbits point (marked
with *) in Fig. 7 is not included in D(T') at T' = 13 s while
it is strictly included in D(T') at T = 14 s.

Finally, we consider the same energy arrival sequence with
(B1, Ba, B3) = (15,4,1.75) Mbits and the optimal policy is
shown in Fig. 9. In the optimal total power sequence, 2 mJ
energy is transfered from [8,9] s to [9,12] s and about 1 mJ of
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Fig. 7. The maximum departure region D(7") for different 7T'.
Ey=8 E =3 Ey=6  Ey=9E, =8 [E5=9
I I
(B, By) = (22,3) T
P
3 S S S I
33 [ -
---------------------------- ceeqenmemeenadee e P22 15
2.125
0 2 5 8 9 12 T,,=13.35
Fig. 8. Cut-off power P. = 2.15 mW. Optimal transmit
rates r1 = [1.6438,1.6554,1.6554,1.6554] Mbps and ry =

[0,0.9358, 0.2827,0.8877] Mbps, with durations 1 = [8,1,3,1.35] s.

this transfered energy is further transfered to the last epoch.
We calculate the cut-off power levels as P.; = 0.97 mW
and P.o = 1.79 mW. The bits of all three users are always
transmitted throughout the communication. The transmission
is finished by T' = 15.33 s.

B. Stochastic Energy Arrivals

In this subsection, we consider stochastic energy arrivals
in the two-user case, i.e., we set B3 = 0. We compare the
performance of the optimal offline policy with those of three
suboptimal policies which require no offline knowledge of the
energy arrivals.

1) Constant Power Constant Share (CPCS) Policy: This
policy transmits with constant power equal to the average
recharge rate, P = E[E], whenever the battery energy is
non-zero and the transmitter is silent otherwise. If the battery
energy exceeds I, ., at the energy arrival instants, then excess
energy overflows. In addition, the strong user’s power share is
constant whenever the transmitter is non-silent. In particular,

(Bi, B, By) = (15,4,1.75) r
P
7 IS R —
3l ] _
21285 U P I Pp=1.79
NN A SN S AR A R S e rassg Pa=0.97
0 2 5 8 9 12 Trnin=15.33
Fig. 9. Cut-off power levels P,y = 0.97 mW and P = 1.79

mW. Optimal transmit rates r1 = [0.9783,0.9783,0.9783] Mbps, ra =
[0.2610,0.2610, 0.2610] Mbps and r3 = [0.0404, 0.5280, 0.1409] Mbps
with durations 1 = [8,1,6.33] s.

the constant power share o* is found from:

log, (1 + %[%E])

(1—a)]E[E])
aE[E]+03

B _
B> log, (1 +

(26)

Note that CPCS does not require offline or online knowledge
of the energy arrivals. It only requires the mean of the energy
arrival process, E[E].

2) Energy Adaptive Power Constant Share (EACS) Policy:
This policy transmits with power equal to the instantaneous
energy value at each energy arrival instant, P; = Ecyprent. If
the battery energy exceeds FE,,q, at the energy arrival instants,
then excess energy overflows. Moreover, the power share of
the stronger user is set constant equal to that found in (26)
throughout the duration in which the transmitter is not silent
and both users’ data queues are non-empty. Whenever one data
queue becomes empty, no power is allocated for that user.

3) Energy Adaptive Power Dynamic Share (EADS) Policy:
This policy transmits with power equal to the instantaneous
energy value at each energy arrival instant, P; = Ecyprent. If
the battery energy exceeds E,,, 4, at the energy arrival instants,
then excess energy overflows. The strong user’s power share

¥ is updated dynamically whenever an energy arrival occurs

@;
according to:

By _ log, (1 + O‘;—?)
Bs; 10g2 (1 + (1—061‘)131‘)

qu'Pq'JrG'%

27)

where B1; and Bs; are the number of bits of user 1 and user
2, respectively, at the beginning of epoch 7. Note that EADS
requires online knowledge of the energy arrival process as well
as the remaining data backlog.

In the simulations, we consider a compound Poisson energy
arrival process. The average inter-arrival time is 1 s and the
arriving energy is a random variable which is distributed
uniformly in [0, 2P,,4| mJ, where P,,, < % is the average
recharge rate. The performance metric of the policies is the
average transmission completion time over 1000 realizations
of the stochastic energy arrival process. We first set the p = g—;
ratio constant, i.e., By = pBy. We plot the performances
for Epae = 4 ml, p = 1.6 and P,y = 1 ml/s with
varying Bs in Fig. 10. We observe the increase in the average
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Fig. 10. Average transmission completion time versus Bz when p = 1.6,
Pyyg =1 ml/s and Emar = 4 ml.

transmission completion times of the policies with the number
of bits. It is notable that energy adaptive policies complete
the transmission faster with respect to CPCS policy. We also
observe that EADS yields smaller transmission completion
time on average compared to EACS; therefore, dynamically
varying the power shares of the users yields better performance
compared to keeping the power shares constant. Next, we
plot the average transmission completion time with respect
to the average recharge rate for B; = 8 Mbits, Bs = 5
Mbits and E,,,, = 10 mJ in Fig. 11. We observe that in
the small recharge rate regime, CPCS performs worse while
it performs better in the high recharge rate regime compared
to energy adaptive schemes. In both plots, we observe that
offline knowledge of the energy arrivals yields a significant
performance gain with respect to the other policies.

VI. CONCLUSION

We considered the transmission completion time minimiza-
tion problem in an M -user broadcast channel where the trans-
mitter harvests energy from nature and saves it in a battery
of finite storage capacity. We characterized the structural
properties of the optimal policy by means of the dual problem
of maximizing the weighted sum of bits served for each user
by a fixed deadline. We found that the total power allocation
is the same as the single-user power allocation, which is
found by the directional water-filling algorithm. Moreover,
there exist M —1 cut-off power levels that determine the power
shares of the users throughout the transmission. This structure
enabled us to develop an optimal offline algorithm which uses
directional water-filling iteratively.

APPENDIX A
PROOF OF LEMMA 2
For M = 2 and given P;, the problem in (13) is a single
variable optimization problem and it has a unique solution
af. We define a function o*(P) : Rt — [0, 1] which denotes
the solution of the problem in (13) for P, = P. Using the
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Fig. 11.  Average transmission completion time versus average recharge rate
when B1 = 8 Mbits, Bo = 5 Mbits and Emqr = 10 ml.

derivative of the objective function in (13) with respect to «
for fixed P, we obtain o*(P) as follows: If % < 1 then

o*(P) =1 for all P.If %2 > % then a*(P) = 0 for all P.

2
For 1 < 2 <« %2 we have
M1 oy
1 0 < P < lefz Mzal
iy =4t paom(8)
1 po” —p20y P> M
P po—py 2 —fi1

In the extreme cases, the lemma tr1V1ally holds. When “2 <1,

we have a*(P) = 1 and when £2 > 2, we have « (P) =0
for all P. Consequently, in these extreme cases, all the power
is allocated for either user 1 or user 2 and no data is
transmitted for the other user. As the single-user rate-power
relation is logarithmic, which is strictly concave, the lemma
holds.

o

log

Now, we consider the range 1 < ﬁ < =2. From (28), for

-2
a7
OSPS%,wehave
P
ﬂm:%M&@+7) 29)
01

Therefore, f(P) is strictly concave in this range with the strict
monotone decreasing derivative

df (P 2 _ 2
f(P) _ g pc BTl g
dpP 2In(2)(o7 + P) Ho — 11
Using the expression of a*(P) for the range P > %,
f(P) in this range becomes
k1 p (o3 —of)
F(P) =L 10g (7
() =75 1082 o7, =)
H2 Mo —
+ —1lo ———(P+o 31
2 2<N2(‘7 _‘71)( 2)) eh

f(P) is strictly concave in this range, as well. The derivative
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in this range is

df(P) _ fi2
dP  2Wn(2)(P +03)’

Note that & (P) in different ranges in (30) and (32) are con-
tinuous and monotone decreasmg Evaluatlng the derivatives
in (30) and (32) at P = M, we observe that dfd(lf )
is continuous at this point and for all P. Therefore, f(P)
is strictly concave for all P and its derivative is continuous
everywhere in the non-negative real line for any pq, o > 0.

For the general M-user case, whenever p; < y; for any
1 <1< j<M,ie., whenever a degraded user has a smaller
coefficient, that user is allocated no power for any value of
P, ie., a;‘ = 0 for such users. Note that for 1 <[ < j < M,
if user [ achieves R; and user j achieves R;, then user [
can achieve Ry 4+ R; [19]. Since p; < py, we have il +
nilR; < w(Ry + Rj), i.e., allocating all available rate to user
l yields a larger weighted sum of rates. Hence, we remove
user j whenever p; < gy for any 1 < [ < j < M. The
remaining R < M users are such that o7 < 03 < ... < 0%
with g1 < p2 < ... < pg. One can show using a first order
differential analysis (see also [9]) that for given P, f(P) =

(1105 — paot
M2 — p1

(32)

pari (P) 4 ...+ parry, (P) where

1 P, P,

() = Llog <1 N M) (33)
2 0'1
1 min{(P — P.1)", Py — Pe1}

r5(P) = g1os (14 T (34)
1 (P— PC<R_1>)+)

*(P)=~log (14— —ED/ 35

rr(P) 5 og( P.r_1)+ 0% G

and where the cut-off power levels satisfy [9, Appendix B]

fim02, — o\ T
P = max (M> 7Pc(m—1) (36)
M — Hm

form=1,...,R— 1 and m is the smallest user index with
P.7 > P.,,. By convention, P,g = 0, P.r = oco. Note that
Poo < Py <... < Pyr-1) < Per. As 17, (P) is continuous
and differentiable, so is f(P). Taking the first derivative of
f(P) with respect to P, we have

ety DS Pa
df (P) ety Pa <P <P
P : : 37
@ pTery: e <P
As in the two-user case, we observe that LX) is con-

dp
tinuous and monotone decreasing in each disjoint interval

(Pe(m—1)s Pem). Evaluating df(P) in (37) at P = P,,,, and
using the expression for P, in (36), we observe that 4 11; )
is continuous at these points and hence for all P, and 4 Pd)
monotone decreasing. Consequently, f(P) is strictly concave
for all P, for any py,...,up > 0.
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APPENDIX B
PROOF OF LEMMA 3

We write the Lagrangian function as:
K+1

L= Zf
—an

k=1

K+1

it _Z/\k (ZP@ _ZE>
<§Ei—Emaz> —;Béi 38)

Note that P; > 0, for all ¢, therefore in the Lagrangian we do
not include slackness variables for P;. Taking the derivatives
of £ in (38) with respect to P;, and setting them to zero, we
have

K+1
Z M—an, i=1,...,K+1 (39
Additional complimentary slackness conditions are
k k—1
e <ZH&—ZE> =0, k=1,...,K
i=1 i=0
(40)
k Tk
<ZE1'_Emar> _széz :O, ]f:l,,K
i=0 i=1
(41)

The optimal total power sequence P;" is the solution of (39)
with the complimentary slackness conditions in (40), (41) and
with the equality condition that no energy is left unused in
the battery at time 7'. The Lagrangian multipliers \; and 7
are unique as the objective function in (15) is strictly concave
and the constraint set is convex.

From the KKT optimality conditions in (39), we have
df -1 /K+1
Pi:(ﬁ) (ZM—ZW

Since the derivative of % is strictly monotonically decreasing
and continuous by Lemma 2, it has a well-defined inverse,
which is also strictly monotonically decreasing and con-
tinuous. The Lagrange multipliers A; and 7); are uniquely
determined by the complimentary slackness conditions as well
as the following equality condition: ZK+1 Pt = ZiK:O E;.
Therefore, the optimum total power allocation is unique.

We have \; = 0 and 7; = 0, if the energy causality
constraint and the no-energy-overflow constraint are satisfied
with strict inequality, respectively. Whenever a no-energy-
overflow constraint is satisfied with equality, i.e., n; > 0, a
strict decrease in P;" is observed in view of (42). This is
due to the fact that the inverse mapping of the derivative
is monotonically decreasing and the argument of the inverse
in (42) is also decreasing. Similarly, whenever an energy
causality constraint is satisfied with equality, i.e., \; > 0,
a strict increase in P;" is observed in view of (42). Thus,
equality of energy causality constraints leads to an increase
while that of no-energy-overflow constraint leads to a decrease
in the total power. Imposing the energy constraint at time 7'
as an equality, we get exactly the optimal power allocation

(42)
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policy in the single-user F,,,, constrained average throughput
maximization problem in [7], [8], i.e., in the special case
of wg > 0 and p,, = 0, for m = 2,..., M. Moreover,
this characterization is the same for any pi,...,pun > 0
because the strict concavity of f(P) in Lemma 2 holds for
any fi1,...,01yp > 0.
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