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Abstract— We consider a status update system in which the
update packets need to be processed to extract the embedded
useful information. The source node sends the acquired informa-
tion to a computation unit (CU) which consists of a master node
and n worker nodes. The master node distributes the received
computation task to the worker nodes. Upon computation,
the master node aggregates the results and sends them back
to the source node to keep it updated. We investigate the age
performance of uncoded and coded (repetition coded, MDS
coded, and multi-message MDS (MM-MDS) coded) schemes in
the presence of stragglers under i.i.d. exponential transmission
delays and i.i.d shifted exponential computation times. We show
that asymptotically MM-MDS coded scheme outperforms the
other schemes. Furthermore, we characterize the optimal codes
such that the average age is minimized.

Index Terms— Age of information, distributed computation,
coded computation, straggler mitigation.

I. INTRODUCTION

AGE of information metric has been widely studied
as a timeliness metric in real-time systems producing

time-sensitive information. In these systems, time-critical data
are collected and sent to the monitor node(s). Thus, most of the
work on age of information focuses on the queueing-theoretic
framework under various arrival and service profiles [1]–[13].
Another line of research studies the age from optimization,
scheduling and energy harvesting perspectives [14]–[29].

In many real-time monitoring applications including
autonomous driving, surveillance systems and predictive main-
tenance, time-sensitive data that are collected by sensors or
mobile devices require processing to extract the embedded
information. However, these devices cannot perform heavy
computations due to battery related issues or their limited
computational capabilities. These type of status update pack-
ets that require computation are called computation-intensive
messages. References that are most closely related to our work
are [30]–[36] which study queueing, packet management and
scheduling in such status update systems. Common to all
these works is the fact that they consider a single computation
server. That is, although references [30]–[36] consider systems
with computation-intensive status update packets, this paper is
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Fig. 1. System model with a single source node and a computation unit (CU)
that consists of a master node and n identical worker nodes.

the first work on age of information that considers multiple
servers working in a distributed manner to process the update
packets.

In this work, we consider a system in which there is a
source node which uploads computation-intensive time-critical
status updates to a computation unit (CU) which consists
of a single master node and n worker nodes that perform
the computations (see Fig. 1). We assume that the required
computation on the update is a linear operation such as large
matrix multiplication. This brings up the concept of compu-
tation distribution among the worker nodes. Computation dis-
tribution and scheduling problem has been extensively studied
particularly in the context of machine learning with a focus on
completion time and straggler threshold analysis [37]–[48].

Inspired by the recent distributed computation literature,
we investigate the timeliness of uncoded and coded com-
putation distribution algorithms that are used to combat the
stragglers, i.e., nodes that are slower than the average. Unlike
the existing distributed computation literature which uses
metrics such as expected overall runtime to evaluate the
performance of distributed computation systems [37], our goal
is to characterize the age of information in these systems and
design computation distribution algorithms that can combat
stragglers as well as achieve a minimum average age of
information. The source node collects time-sensitive data and
sends them to the CU for processing over a channel with
random transmission delays. Arriving packets at the CU go
into service (computation) if the CU is idle by the time of
their arrival. Otherwise, they are dropped. Here, the master
node distributes the overall computation to n worker nodes
using uncoded or coded schemes. Computation time at each
worker is random. Once the master node collects sufficiently
many results from the worker nodes to decode the computation
result, it updates the source node. We note that in our model
destination node is also the source node. One such application
is autonomous driving cars which capture images/videos of
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the surroundings and send them to a CU for computation.
The source node in the mean time adopts a zero-wait policy
such that it sends the next update packet once the current one
reaches the CU.

We derive the average age for uncoded and coded schemes,
and show that asymptotically MDS coded scheme outper-
forms the uncoded and repetition coded schemes, i.e., MDS
coded scheme achieves a smaller average age. In addition,
we observe that when worker nodes have multiple computa-
tions to perform (MM-MDS coded scheme), age performance
of MDS coded scheme further improves. Our results also
indicate that given that the source node and the CU implement
zero-wait and dropping policies, respectively, when the trans-
mission delays are i.i.d. exponentials and computation times
are i.i.d. shifted exponentials, for large n, minimizing age
of information is equivalent to minimizing the computation
time which is not the case in general. Finally, we find the
optimal repetition, MDS and MM-MDS codes that minimize
the average age of information.

II. SYSTEM MODEL AND AGE METRIC

We consider a system (see Fig. 1), where there is a single
source node which sends time-sensitive computation-intensive
status updates, i.e., packets that require additional processing
to extract the embedded information, to a CU which consists of
a single master node and n worker nodes. Worker nodes have
statistically identical computing capabilities. From the source
node to the CU, update packets experience i.i.d. exponential
transmission delays. Upon successful arrival of a packet to
the CU, the master node distributes this computation task
to n worker nodes. Here, we use status update packet and
computation task interchangeably. Each worker node performs
the computation, which is assumed to be a linear operation,
and sends the result back to the master node. We note that one
such computation task example is large matrix multiplication
prevalent in machine learning applications.

When the master node receives sufficiently many responses
from the worker nodes, it aggregates the results and updates
the source node. We neglect the transmission delay from the
CU back to the source node after computation as the size of
the initial packet is in general much larger than the resulting
update packet after computation.

Thus, in our model, packets that are able to enter the
CU experience two stages: transmission and computation.
Random variable Dj denotes the transmission delay of the
jth update packet and is exponentially distributed with para-
meter λ. To model the computation times at the worker nodes,
we adopt the model in [37] and assume the existence of a
mother runtime distribution. This distribution corresponds to
the computation time when the whole computation on the
update is performed by a single worker, X , and has a shifted
exponential distribution with (c, μ) where c > 0 is the shift and
μ is the rate which is also the straggling parameter. When the
update packet is divided into m subpackets, the computation
time of each subpacket has the scaled-down (i.e., sped-up)
version of the overall distribution, i.e., shifted exponential with(

c
m , mμ

)
. We note that computation times at the worker nodes

also account for the time spent to communicate the inputs and
outputs with the master node within the CU. Here, the constant
shift makes sure that computation times cannot go below a
certain value whereas the exponential part constitutes the tail
of the computation time distribution. This is inline with the
computation times observed in systems like Google Trace [46].

The source node receives an instantaneous ACK upon
delivery to the CU and sends the next update as soon as the
current one reaches the CU, i.e., the source node adopts a
zero-wait policy. We note that, in a possibly more intuitive
setting, the source node may send the next update upon
receiving the computation result back from the CU in which
case there is no need for a separate ACK signal which is
discussed in Footnote 1 in Section III. On the other hand,
the CU implements a dropping policy in which when busy it
neglects any update packets arriving from the source node.
Thus, packets sent by the source node can only enter the
computation stage if the CU is idle at the time of their arrival.
Upon finishing a computation task, the CU immediately sends
back the result and waits for the next packet arrival. This
idle waiting time is denoted by random variable Z and is
exponentially distributed with λ because of the memoryless
property of the transmission delays D. We note that, under
this model, the source node always receives the most recent
computation result available from the CU.

To distribute the computation task among the worker
nodes upon receiving status update packets, the master node
may adopt uncoded or coded distribution algorithms. In the
uncoded scheme, the status update packet is divided into n
equal subpackets, one for each worker node. However, in this
method, the overall computation time is limited by the slowest
worker node and thus, it may not be desirable especially when
the computations are time-sensitive. To combat these slower
straggling worker nodes, the master node can implement
coding techniques to introduce redundancy to the computation
task so that some straggling nodes can be tolerated. In our
model, we analyze repetition and MDS (maximum distance
separable) codes. Moreover, to further utilize the fastest worker
nodes, we investigate the assignment of multiple MDS coded
subpackets to each worker node, i.e., multi-message MDS
(MM-MDS). We analyze the effects of these uncoded and
coded schemes on the timeliness of the computations.

To quantify the timeliness we use the age of information
metric. At time t age at the destination node, which is the
source node in our model, is a random process Δ(t) = t−u(t)
where u(t) is the time-stamp of the most recent update at the
destination node. The metric we use, long term average age, is

Δ = lim
τ→∞

1
τ

∫ τ

0

Δ(t)dt, (1)

where Δ(t) is the instantaneous age as defined above.

III. AGE OF UNCODED AND CODED TASK

DISTRIBUTION ALGORITHMS

From the perspective of the CU, we have i.i.d. exponential
interarrivals with λ. Since a dropping policy is implemented,
not every arriving packet actually goes into service at the
CU. We denote the packets that find the CU idle and thus
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go into service as the successful packets. Let Tj−1 and T ′
j−1

denote the time at which the jth successful packet is generated
at the source node and is received by the CU, respectively.
Random variable Y denotes the update cycle at the CU, time
in between two consecutive successful arrivals, and Yj =
T ′

j−T ′
j−1. As described in Section II, update cycle Yj consists

of computation (service) time Sj and idle waiting time Zj .
We note that Zj , Sj and Dj are mutually independent where
Dj denotes the transmission delay experienced by the jth
successful packet, i.e., Dj = T ′

j−1 − Tj−1. In our model,
the interarrival process at the CU, D, and service times S are
independent, and sequences {D1, D2, . . . } and {S1, S2, . . .}
form i.i.d. processes.

We observe that Z is stochastically equal to the transmission
delay D, i.e., interarrival time at the CU, due to the memory-
less property of the transmission delay D. On the other hand,
computation time S changes depending on the task distribution
algorithm adopted by the master node. We use order statistics
to express the distribution of S. We denote the kth smallest
of X1, . . . , Xn as Xk:n. For a shifted exponential random
variable X with (c, μ), we have [49]

E[Xk:n] = c +
1
λ

(Hn − Hn−k), (2)

V ar[Xk:n] =
1
λ2

(Gn − Gn−k), (3)

where Hn =
∑n

j=1
1
j and Gn =

∑n
j=1

1
j2 . Using (2) and (3),

E[X2
k:n] =

(
c+

1
λ

(Hn− Hn−k)
)2

+
1
λ2

(Gn− Gn−k) . (4)

We note for future reference that when n is large and k
is linear in n, i.e., k = αn, for 0 < α < 1, the variance
of the kth order statistic of the shifted exponential random
variable, Xk:n, shown in (3), becomes negligibly small and
tends to 0 as n increases because both Gn and Gn−k sequences
converge to π2

6 . Thus, for large n, an ordered sequence of
n shifted exponential random variables essentially becomes a
deterministic sequence such that the kth realization takes the
mean value given by (2). This observation will be useful in
designing age optimal codes.

Our model here resembles the M/G/1/1 queue with block-
ing model analyzed in [4] with one difference: here arriving
packets at the CU have experienced a transmission delay.
Therefore, they have aged by D by the time of their arrival at
the CU. Noting this difference, we perform a similar graphical
analysis using Fig. 2 to find the long term average age which
is the average area under the age curve and is given by [4]

Δ = lim sup
n→∞

1
n

∑n
j=1 Qj

1
n

∑n
j=1 Yj

=
E[Q]
E[Y ]

, (5)

where Q denotes the shaded area and Y is its length in Fig. 2,
and the second equality follows from the ergodicity of the
system. By using Fig. 2, we find Yj = Sj + Zj and observe
that the area Qj can be decomposed into a right trapezoid with
bases Dj and Dj +Yj and height Yj ; and a parallelogram with

Fig. 2. Sample age evolution Δ(t) at the destination (source) node.
Successful updates are indexed by j. The jth successful update leaves the
source node at Tj−1 and arrives at the CU at T ′

j−1. Update cycle at
the CU is the time in between two successive arrivals and is equal to
Yj = Sj + Zj = T ′

j − T ′
j−1.

base Dj−1 +Sj−1 +Zj−1 −Dj and height Sj . Thus, we find

E[Qj ] = E[Dj(Sj + Zj)] +
1
2
E[(Sj + Zj)2]

+ E[Sj(Dj−1 + Sj−1 + Zj−1 − Dj)] (6)

= E[Dj ]E[(Sj + Zj)] +
1
2
E[(Sj + Zj)2]

+ E[Sj ]E[Dj−1 + Sj−1 + Zj−1 − Dj] (7)

= E[Dj ]E[(Sj + Zj)] +
1
2
E[(Sj + Zj)2]

+ E[Sj ]E[Sj−1 + Zj−1], (8)

where (7) follows by noting that the service process is i.i.d. and
independent of the arrival process along with the fact that Dj ,
Sj and Zj are mutually independent. Further, (8) follows by
noting that E[Dj−1] = E[Dj ] since the system is stationary
and ergodic. Since we focus on the long term behavior,
we drop the subscript index and find

E[Q] = E[D](E[S] + E[Z]) +
1
2
E[(S + Z)2]

+ E[S](E[S] + E[Z]). (9)

Similarly, we have

E[Y ] = E[S] + E[Z]. (10)

Then, using (9) and (10) in (5), we find the long term average
age as

Δ =
E[Q]
E[Y ]

= E[D] + E[S] +
E[Y 2]
2E[Y ]

, (11)

where Y = S + Z as noted above. The first term in (11)
reflects that arriving packets at the CU have aged on average
by E[D].1 Our goal is to minimize the average age given
in (11) by adjusting computation (service) time S at the CU
through different task distribution algorithms.

1We note that, in a possibly more intuitive setting, if the source node sends
the next update upon receiving the previous computed update back from the
CU, unlike the current model in which the source node sends the next update
as soon as the current one reaches the CU, the average age expression in (11)
would stay the same as D and Z are stochastically identical.
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A. Uncoded Scheme

In the uncoded scheme, the master node divides the
received status update packet into n subpackets, one for each
worker node. Using the mother runtime distribution detailed
in Section II, we see that in the uncoded scheme local
computation time at each worker X̃ follows a shifted expo-
nential distribution with parameters

(
c
n , nμ

)
. This sped-up

distribution highlights the fact that each worker node performs
a part of the overall computation. Thus, in order to reveal the
information in the received update packet, the master node
needs to collect the results from all n worker nodes. Hence,
the computation time is S = X̃n:n. Calculating the moments
of S using (2)-(4) and substituting them into (11) we find the
average age when the uncoded scheme is utilized, Δunc, as

Δunc =
1
λ

+
c

n
+

Hn

nμ

+

(
c
n + Hn

nμ

)2

+ Gn

n2μ2 + 2
λ

(
c
n + Hn

nμ

)
+ 2

λ2

2
(

c
n + Hn

nμ + 1
λ

) . (12)

The following theorem states the asymptotic average age
performance of the uncoded scheme as the number of worker
nodes n increases.

Theorem 1: With i.i.d. exponential transmission delays and
i.i.d. shifted exponential computation times at each worker,
the average age of the uncoded distribution scheme for large
n is 2

λ + O
(

log n
n

)
.

The proof of Theorem 1 follows from the fact that for
large n, we have Hn ≈ log n and Gn ≈ π2

6 . The constant
2
λ in the result reflects the sum of E[D] = 1

λ , which is
the expected delay packets experience on the way from the
source to the CU, and E[Z] = 1

λ , which is the expected
waiting time for a new packet at the CU when it is idle.
The O

(
log n

n

)
term in the result shows that the average age

decreases with n, the number of worker nodes at the CU. Here,
the 1

n term in O
(

log n
n

)
reflects the fact that computation

tasks get smaller and consequently workers become faster as
n increases, whereas the log n term in O

(
log n

n

)
indicates

that the uncoded scheme is limited by the performance of
the slowest worker. Since the increase in the computation
rates, i.e., decrease in the average straggling behavior, over-
comes the increase in the computation time of the slowest
worker, average age of the uncoded scheme decreases as
n increases.

The main downside of the uncoded scheme is the fact that
it is prone to large delays due to straggling nodes as the
master node needs all of the computation results to extract the
useful information from the status update packet. Therefore,
if some servers are much slower than the rest, service time of
the update packet increases significantly. To cope with these
straggling worker nodes, redundant computation tasks may be
created via coding. In what follows we analyze the effects of
repetition coded, MDS coded and MM-MDS coded schemes
on the average age.

B. Repetition Coded Scheme

We consider an n
k -repetition code where the packet is

divided into k equal sized subpackets where k ≤ n and each
subpacket is repeated n

k times. In other words, each subpacket
has n

k replicas and the master node needs to collect k distinct
results from n worker nodes. Thus, each worker node has
a shifted exponential computation time distribution, X̃ , with
parameters

(
c
k , kμ

)
. Since there are n

k workers for each of
the k subpackets the computation time of each subpacket is
the minimum among these n

k i.i.d. random variables which
is denoted by X̄ = X̃1: n

k
. Since the minimum of shifted

exponentials is also a shifted exponential with the same
shift but scaled straggling parameter, X̄ follows a shifted
exponential distribution with

(
c
k , nμ

)
. Since we need k distinct

results, the overall computation time in this case is S = X̄k:k.
Using (11) along with the moments of order statistics given
in (2)-(4), we find the average age of the repetition coded
scheme, Δrep, as

Δrep =
1
λ

+
c

k
+

Hk

nμ

+

(
c
k + Hk

nμ

)2

+ Gk

n2μ2 + 2
λ

(
c
k + Hk

nμ

)
+ 2

λ2

2
(

c
k + Hk

nμ + 1
λ

) . (13)

The following theorem states the asymptotic average age
performance of the repetition coded scheme as n increases.

Theorem 2: With i.i.d. exponential transmission delays and
i.i.d. shifted exponential computation times at each worker,
the average age of the n

k -repetition coded scheme for large n

with k = αn where 0 < α ≤ 1 is 2
λ + O

(
log n

n

)
.

The proof of Theorem 2 follows similarly from that of
Theorem 1. Here, we observe that although a coding scheme is
implemented, asymptotically, we achieve the same average age
performance as the uncoded scheme. Thus, repetition coded
scheme is asymptotically no better than the uncoded scheme.
This is because of the fact that the repetition coded scheme
still suffers from the log n term in O

(
log n

n

)
as the runtime

of this scheme is limited by the slowest of the k distinct
subtask computations needed, where k is linear in n. Thus,
the resulting average age scales the same as the uncoded
scheme even though replication brings the 1

n term.
Next, we analyze the performance of the MDS coded

schemes.

C. MDS Coded Scheme

To implement an (n, k)-MDS code where k < n, the update
packet is first divided into k equal sized subpackets. From
these k subpackets a total of n subpackets are created with
coding by using n−k redundant subpackets so that the master
node can decode the result of the computation as soon as it
receives k computation results. Since the overall computation
task is divided into k subtasks as in repetition coding, each
worker node completes its local task in X̃ which is a shifted
exponential with ( c

k , kμ). The computation time for the overall
task is, however, S = X̃k:n. Using this along with (2)-(4)
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in (11), we find the average age when an (n, k)-MDS code is
implemented, Δmds, as

Δmds =
1
λ

+
c

k
+

Hn − Hn−k

kμ

+

(
c
k + Hn−Hn−k

kμ

)2

+ Gn−Gn−k

k2μ2

2
(

c
k + Hn−Hn−k

kμ + 1
λ

)

+
2
λ

(
c
k + Hn−Hn−k

kμ

)
+ 2

λ2

2
(

c
k + Hn−Hn−k

kμ + 1
λ

) . (14)

The following theorem gives the asymptotic average age
performance of the MDS coded scheme for large n.

Theorem 3: With i.i.d. exponential transmission delays and
i.i.d. shifted exponential computation times at each worker,
the average age of the (n, k)-MDS coded scheme for large n
with k = αn where 0 < α < 1 is 2

λ + O
(

1
n

)
.

The proof of Theorem 3 follows similarly to that of Theo-
rem 1 by noting that Hn−k ≈ log(n−k). Thus, when k = αn,
we get Hn−Hn−k = − log(1−α) which is independent of n.
Further, Gn−Gn−k = Gn−G(1−α)n tends to 0 as n increases.
With these, the result follows.

We observe that the average age in Theorem 3 has a O
(

1
n

)
term as opposed to O

(
log n

n

)
terms in Theorems 1 and 2.

Thus, for large n, MDS coded scheme outperforms repeti-
tion coded and uncoded schemes in terms of average age
performance. Up to now, we have investigated uncoded and
coded schemes in which each worker node is assigned one
subtask to compute. Although we achieve better performance
in combating the straggling nodes through coding, there is
still room for improvement. In all these schemes, the fastest
worker nodes which finish their computations earlier stay idle.
To utilize them even more, we can assign multiple subtasks to
each worker node. With multiple assignments to each worker
node we can utilize partial straggling worker nodes, which are
the ones that cannot finish all tasks that are assigned to them
but still return some partial results. In the next subsection,
we consider the performance of MDS coded scheme when
each worker is given multiple subtasks to compute.

D. Multi-Message MDS (MM-MDS) Coded Scheme

In multi-message MDS coded scheme, each worker node is
assigned � subpackets to compute, where � denotes the load
of each worker node. That is, each worker node has a job
queue of size � in each update cycle. Thus, we implement
an (n�, k)-MDS code. For this, the overall update packet is
divided into k subtasks where k < n� and from these subtasks
n�− k redundant subtasks are generated such that the master
node only needs to receive k computation results to extract
the embedded information in the status update received from
the source node. Unlike regular MDS coded scheme in which
each worker has one subtask to compute, in this scheme faster
workers can perform multiple computations to aid the overall
computation time. Hence, we utilize partial stragglers, also
called non-persistent stragglers [43], i.e., worker nodes that
finish some portion of the subtasks that are assigned to them.

Fig. 3. The earliest k computed tasks for n = 10, � = 3, and k = 7.

In line with the mother computation distribution model
presented in Section II, computation time of a subtask at each
worker, X̃ , has a shifted exponential distribution with

(
c
k , kμ

)
.

Following the model in [43], we assume that the duration of
each computation performed by a worker during an update
cycle is identical. In other words, if a worker finishes m
of the � subtasks during an update cycle, duration of each
computation is identical which is sampled from a shifted
exponential with parameters

(
c
k , kμ

)
. Therefore, the time it

takes for a worker node to perform m computations, mX̃ ,
is also a shifted exponential with (mc

k , kμ
m ). It remains to

determine E[S] and E[S2] to calculate the average age in this
setting by using (11).

In what follows, the mth level refers to the set of subtasks
that are located in the mth position in each worker’s job queue.
In other words, the mth level includes a total of n subtasks
which are performed in the mth position by the corresponding
worker nodes upon completion of their first m − 1 subtasks.
We note that in the uncoded, repetition coded, and MDS coded
schemes there is only one level as � = 1 in those schemes.
Let km denote the number of subtasks computed in the mth
level upon completion of the overall task at the CU during an
update cycle. We have

∑�
m=1 km = k since exactly k subtasks

need to be performed to finish the overall computation. Fig. 3
shows an example for n = 10, k = 7, and � = 3. Here,
each column represents the computation times of � subtasks
that a worker node is assigned and row m represents the
computation times of the mth level subtasks. Without loss
of generality, we order level one, i.e., X̃1 in Fig. 3 is the
smallest computation time of a level 1 subtask and X̃10 is the
largest one. Correspondingly, all other levels are ordered as
well. Hence, column i in Fig. 3 in fact shows the computation
times of the ith fastest worker node, where i = 1, . . . , n.
In this example, we observe that by the time the earliest k = 7
computations are finished, the fastest worker completed three
subtasks, the second fastest worker completed two subtasks,
the third and fourth fastest workers completed one subtask
each, and the remaining six workers completed zero subtasks.
That is, 4 first level, 2 second level and 1 third level subtasks
are computed. Thus, we have k1 = 4, k2 = 2 and k3 = 1.

For simplicity and ease of exposition, consider the case
where � = 2. Assume that by the time a total of k computations
are performed k1 < k computations from the first level are
finished. Then, we have k2 = k − k1. When n is large,
the time it takes to compute k1 first level subtasks, X̃k1:n

is equal to E[X̃k1:n] due to the vanishing variance property of
order statistics of shifted exponentials for large n, discussed
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after (4). Similarly, k2 second level subtasks are performed
in E[2X̃k2:n] units of time. At this point, there can be
two possible scenarios: In the first scenario, k2 second level
computations are finished before the k1th first level subtask is
finished, i.e.,

E[2X̃k2:n] ≤ E[X̃k1:n] < E[2X̃k2+1:n]. (15)

We note that second inequality in (15) holds since the k1th first
level task needs to be performed before the k2 + 1th second
level task to be included in the earliest k subtasks. In this case,
the computation duration, i.e., service time, is S = X̃k1:n.
On the other hand, in the second scenario, the k2th second
level subtask is finished after the k1st first level subtask but
before the subtask k1 + 1 of the first level, i.e.,

E[X̃k1:n] ≤ E[2X̃k2:n] < E[X̃k1+1:n]. (16)

In this case, we have S = 2X̃k2:n. When k1 and k2 are linear
in n, i.e., k1 = α1 n and k2 = α2 n, with 0 < α1 < 1 and
0 < α2 < 1, for large n, we have

α1 =
k1

n
≈ k1 + 1

n
, (17)

α2 =
k2

n
≈ k2 + 1

n
, (18)

which imply that the bounds in (15) and (16) meet as n gets
large. Thus, by the sandwich theorem E[X̃k1:n] = E[2X̃k2:n]
is satisfied for large n in either scenario. By using (2), for
large n when both k1 and k2 are linear in n as defined above
we have

E[X̃k1:n] =
c

k
+

Hn − Hn−k1

kμ

=
c

2αn
+

1
2αnμ

log
(

1
1 − α1

)
, (19)

and

E[2X̃k2:n] = 2
(

c

k
+

Hn − Hn−k2

kμ

)

=
2c

2αn
+

1
2αnμ

log
(

1
1 − α2

)2

. (20)

Here, k = α2n with 0 < α < 1 when both k1 and k2 are
linear in n as defined above. We note that k1 + k2 = k is
equivalent to α1 + α2 = 2α. Equating (19) and (20) yields

1
1 − α1

= eμc 1
(1 − α2)2

, (21)

where α1+α2 = 2α. We note that (21) holds when MM-MDS
coded scheme is implemented for � = 2 if α2 > 0, i.e., k2 > 0.
When α2 = 0, we have α1 = 2α directly. That is, in that case
we have k1 = k.

A similar relationship between αms, equivalently between
kms, holds for the general case with � > 2 as well. When
we have � levels, we have at most

(
�
2

)
inequalities like (15)

and (16) to represent the ordering between the last subtasks
of each level that are included in the earliest k. For example,
when � = 2 we have one inequality, either (15) or (16),
to represent the relationship between the k1th first level and the
k2th second level subtasks provided that k2 is nonzero. When

� > 2, if km > 0 subtasks are finished in level m by the
time it takes to receive a total of k computations, completion
time of the kmth subtask of the mth level satisfies either one
of the following inequalities for any other level m̄ for which
km̄ > 0:

E[mX̃km:n] ≤ E[m̄X̃km̄:n] < E[mX̃km+1:n] (22)

which implies that the kmth subtask of the mth level is finished
earlier than the km̄th subtask of level m̄ or

E[m̄X̃km̄:n] ≤ E[mX̃km:n] < E[m̄X̃km̄+1:n], (23)

which implies that the kmth subtask of the mth level is finished
after the km̄th subtask of level m̄ is finished. Upon writing this
relationship between every (m, m̄) pair, we take km = αmn
with 0 < αm < 1 and proceed similarly to get

1
(1 − αm−1)m−1

= eμc 1
(1 − αm)m

, (24)

with
∑�

m=1 αm = �α similar to (21). We note that if after
some level m > m0, none of the level m subtasks are finished,
then, αm = 0 for all m > m0 and (24) holds for all nonzero
αms. With these, by using (24) and the fact that

∑�
m=1 αm =

�α, each remaining nonzero αm and correspondingly each
remaining km can be determined. As a direct consequence
of (24), we see that the time it takes to receive the earliest
k computation results is equivalent to the time it takes to
receive km from level m such that km = αmn and αms
satisfy (24) and

∑�
m=1 αm = �α. With such kms, we then

have S = X̃k1:n. Hence, the average age when the MM-MDS
coded scheme is implemented with � subpackets at each node,
Δmm−mds, can now be computed using (11) as follows

Δmm−mds =
1
λ

+
c

k
+

Hn − Hn−k1

kμ

+

(
c
k + Hn−Hn−k1

kμ

)2

+ Gn−Gn−k1
k2μ2

2
(

c
k + Hn−Hn−k1

kμ + 1
λ

)

+
2
λ

(
c
k + Hn−Hn−k1

kμ

)
+ 2

λ2

2
(

c
k + Hn−Hn−k1

kμ + 1
λ

) . (25)

where km = αmn and αms satisfy (24) and
∑�

m=1 αm = �α.
The following theorem gives the asymptotic average age

performance of the MM-MDS coded scheme for large n.
Theorem 4: With i.i.d exponential transmission delays and

i.i.d. shifted exponential computation times at each worker,
the average age of the MM-MDS coded scheme with load �,
for large n with km = αmn where 0 < αm < 1, m = 1, . . . , �,
is 2

λ + O
(

1
�n

)
.

To prove Theorem 4 we first note that when km = αmn
for each level m, we have k = αn� where 0 < α < 1 such
that

∑�
m=1 αm = α�. With this, the proof follows similarly

from that of Theorem 3. We note that compared to the MDS
coded scheme where we have O

(
1
n

)
, here in the MM-MDS

coded scheme, we have O
(

1
�n

)
which reflects �, the number

of subtasks assigned to each worker node. Thus, for large n,
the best asymptotic performance is achieved when MM-MDS
coded scheme is implemented.
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The performance of repetition coded, MDS coded and
MM-MDS coded schemes can be optimized through the
selection of k, which will be the focus of Section IV.

IV. OPTIMIZING AGE BY PARAMETER SELECTION

In Section III, we showed that the age in uncoded, repetition
coded, MDS coded, and MM-MDS coded schemes depend on
n as O

(
log n

n

)
, O

(
log n

n

)
, O

(
1
n

)
, and O

(
1
�n

)
, respectively,

excluding the common constant term 2
λ . In repetition, MDS

and MM-MDS coded schemes, we have a parameter k that
depends on n linearly as k = αn�, where � = 1 for repetition
and MDS coded schemes, and � > 1 for MM-MDS coded
scheme. In this section, we consider the optimization of this
parameter k, which is equivalent to the optimization of the
parameter α. This is similar in spirit to the optimization of
k, correspondingly the optimization of α, in [7]–[9], [37].
Towards that goal, in order to unify our approach for all three
coded schemes (repetition, MDS, and MM-MDS), we first
provide the following theorem. This theorem shows that, in our
model, age minimization translates into computation (service)
time minimization which is not always the case in age opti-
mization problems.

Theorem 5: When the transmission delays are i.i.d. expo-
nentials and computation times at each worker are i.i.d.
shifted exponentials under the dropping policy at the CU, for
large n, minimization of the average age of repetition coded,
MDS coded and MM-MDS coded schemes, is equivalent to
minimization of the average computation time.
Proof: In the repetition, MDS and MM-MDS coded schemes,
the computation time S is characterized through the selection
of k. Using the average age expression in (11), the minimiza-
tion problem is

min
k

E[D] + E[S] +
E[(S + Z)2]
2E[S + Z]

= min
k

E[D]+E[S]+
E[S2]+2E[S]E[Z]+E[Z2]

2E[S + Z]
(26)

≈ min
k

E[D]+E[S]+
E2[S]+2E[S]E[Z]+E[Z2]

2(E[S]+E[Z])
(27)

= min
k

1
λ

+ E[S] +
E2[S] + 2E[S] 1

λ + 2
λ2

2(E[S] + 1
λ )

(28)

= min
k

1
λ

+ E[S] +
(E[S] + 1

λ)2 + 1
λ2

2(E[S] + 1
λ)

(29)

= min
k

3
2λ

+
3
2
E[S] +

1
λ2

2E[S] + 2
λ

, (30)

where (26) follows from the independence of S and Z ,
and (27) follows from the fact that E[S2] ≈ E2[S] in all of
these coding schemes due to the vanishing variance property
of order statistics of shifted exponentials for large n, discussed
after (4). The term ignored in (27) is 1

2ν2 (Gn−Gn−k)/(E[S]+
E[Z]), where ν denotes the computation rate and varies
depending on the task distribution algorithm. The numerator
of the vanishing term can be lower and upper bounded by
0 and 1

ν2
π2

6 , respectively, as Gn is upper bounded by π2

6 .
We note that as n → ∞, 1

ν2 → 0 as detailed in Section III for

repetition coded, MDS coded and MM-MDS coded schemes.
Thus, bounds meet for large n which yields the approximation
E[S2] ≈ E2[S].

In order to optimize the average age, we need to select the
optimal k in the repetition coded, MDS coded and MM-MDS
coded schemes in (30). We note that in (30) only E[S] depends
on k. Although the second term in (30) increases in E[S] and
the third term decreases in E[S], overall (30) is monotonically
increasing in E[S], as the derivative of (30) with respect to
E[S] is nonnegative. Thus, the average age is minimized when
E[S] is minimized. That is, the average age minimization is
equivalent to the average computation time minimization. �

For large n, average computation time is given, for the
repetition coded scheme, by

E[Srep] =
c

k
+

Hk

nμ
=

c

k
+

1
μn

log k

=
c

αn
+

1
μn

log(αn), (31)

for the MDS coded scheme by

E[Smds] =
c

k
+

Hn − Hn−k

kμ
=

c

k
+

1
μk

log
(

n

n − k

)

=
c

αn
+

1
μαn

log
(

1
1 − α

)
, (32)

and for the MM-MDS coded scheme by

E[Smm−mds] =
c

k
+

Hn − Hn−k1

kμ
=

c

k
+

1
μk

log
(

n

n−k1

)

=
c

αn�
+

1
μαn�

log
(

1
1 − α1

)
, (33)

where in (33) kms satisfy (24) and
∑�

m=1 αm = �α.
Reference [37] finds the optimal k for repetition coded and

MDS coded schemes when k is linear in n by noting that
both (31) and (32) have unique extreme points as functions
of k. In [37, Lemma 1] the following optimization problem is
solved to find the optimal computation time in the repetition
coded scheme:

min
k

E[Srep] = min
1≤k≤n

c

k
+

1
μn

log k

= min
0<α≤1

c

α
+

1
μ

log α (34)

Objective in (34) has a term that increases in α and another
term that decreases in α. Depending on μ and c values, there
is a unique α∗ which is the extremum point

α∗ =

{
1, cμ ≥ 1
cμ, cμ < 1

(35)

and correspondingly,

k∗ =

{
n, cμ ≥ 1
cμn, cμ < 1

(36)

for large n. Solutions in (35) and (36) are computation time
optimum, and also average age optimum from Theorem 5
for n

k -repetition coded scheme. Note that, for cμ ≥ 1,
the optimal repetition coded scheme is in fact the uncoded
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Fig. 4. Δunc, Δrep and Δmds for varying k with n = 100, and (λ, c) = 1:
(a) When μ = 1, (b) when μ = 0.5. Symbol ◦ marks the optimal k values.

scheme. However, when cμ < 1, repetition coded scheme
outperforms the uncoded scheme.

Similarly, to find the optimal computation time in the (n, k)-
MDS coded scheme, the following optimization problem is
solved in [37, Lemma 2]:

min
k

E[Smds] = min
1≤k<n

c

k
+

1
μk

log
(

n

n − k

)

= min
0<α<1

c

α
+

1
μα

log
(

1
1 − α

)
, (37)

and it is shown that the optimum α is

α∗ = 1 +
1

W−1(−e−μc−1)
, (38)

and correspondingly,

k∗ =
[
1 +

1
W−1(−e−μc−1)

]
n, (39)

for large n, which is also average age optimal from Theorem 5.
Here, W−1(·) is the lower branch of Lambert W function.

In the MM-MDS coded scheme, as in the repetition coded
and MDS coded schemes, by selecting the optimal k, cor-
respondingly the optimal α, the computation time and by
Theorem 5, the age can be minimized. To do that, we need to

Fig. 5. (a) k∗, k∗
1 , and k∗

2 values as a function of n for � = 2 with μ = 1,
and (λ, c) = 1. Note that k∗ = k∗

1 + k∗
2 . (b) Δmm−mds , as a function of

load � for (n�, k∗)-MDS code with n = 100, μ = 0.01, and (λ, c) = 1.

solve the following optimization problem:

min
0<α,α1,··· ,α�<1

c

α
+

1
μα

log
(

1
1 − α1

)

s.t.
1

(1−αm−1)m−1
=

eμc

(1−αm)m
, m = 2, . . . , �

�∑
m=1

αm = �α (40)

To give an explicit example, for instance, for � = 3, the master
node solves the following optimization problem:

min
0<α,α1,α2,α3<1

c

α
+

1
μα

log
(

1
1 − α1

)

s.t.
1

1 − α1
= eμc 1

(1 − α2)2
1

(1 − α2)2
= eμc 1

(1 − α3)3
α1 + α2 + α3 = 3α (41)

We note that unlike the repetition coded and MDS coded
schemes, in the MM-MDS coded scheme, the optimization
problem (40) is more complicated. The optimization in (40)
is over α and all αms. Here, a closed-form expression for
k∗, or equivalently α∗, is not available unlike the former two
cases. We solve the problem in (40) in the next section using
numerical methods.
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V. NUMERICAL RESULTS

In this section, we provide simple numerical results.
First, we consider the uncoded, repetition coded and MDS

coded schemes. In Figs. 4(a) and 4(b) age performance of
the uncoded, repetition coded and MDS coded schemes are
presented when n = 100, λ = 1, and c = 1 for μ = 1 and
μ = 0.5, respectively, for varying k. We observe that in both
Figs. 4(a) and 4(b), MDS coded scheme performs the best
as expected. Optimal k values for the MDS coded scheme in
these cases are k∗ = 69 and k∗ = 58, respectively. Moreover,
we observe that when μ = 1 optimal k for repetition coded
scheme is in fact k∗ = n = 100. However, when μ = 0.5,
we get k∗ = 0.5∗100 = 50. These results are in line with (36).
We also observe in Fig. 4(b) that repetition coded scheme
beats the uncoded scheme when cμ < 1. However, as seen
in Fig. 4(a) when cμ ≥ 1, repetition coded scheme does not
present any advantage over the uncoded scheme.

Next, we consider the MM-MDS coded scheme. Fig. 5(a)
shows the optimal k values as a function of n for � = 2.
We observe that as the number of worker nodes, n, increases
optimal k increases as well. Fig. 5(b) shows the improvement
in the average age performance of MDS coded scheme when
worker nodes are assigned � subpackets to compute with n =
100, μ = 0.01, c = 1 and λ = 1. We note that when � = 1 we
recover the performance of the single message MDS coded
scheme analyzed in Section III-C and we observe that when
multiple subpackets are assigned to each worker, we achieve
a lower age than all the other schemes discussed.

VI. CONCLUSION

In contrast to the initial works on age of information which
assumed small sized status update packets, we have considered
a status update system encountered in emerging data-intensive
applications such as UAV and V2V systems, in which the
updates are more complex and require processing to extract
the useful information. This task is handled by a computa-
tion unit consisting of a master node and n worker nodes.
We have investigated the age performance of uncoded and
coded computation distribution algorithms and showed that the
MDS coded task distribution scheme asymptotically outper-
forms the uncoded and repetition coded schemes. In addition,
we observed that assigning multiple computations to each
worker node (MM-MDS coded scheme) further improves the
age performance of MDS coded scheme. By showing that
under certain arrival and service (computation) time profiles
minimizing age is equivalent to minimizing the computation
time, we have characterized the age-optimal repetition, MDS
and MM-MDS code parameter k (equivalently, αs).
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