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Age of Information Games Between Power
Constrained Schedulers and Adversaries
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Abstract—We consider a time slotted communication network
consisting of a base station (BS), an adversary, 𝑁 users and
𝑁𝑠 communication channels. In the first part of the paper, we
consider the setting where 𝑁𝑠 communication channels N𝑠 are
heterogeneously divided among 𝑁 users. The BS transmits an
update to the 𝑖th user on a subset of the communication channels
N𝑠,𝑖 where N𝑠,𝑖 ∩ N𝑠, 𝑗 is not necessarily an empty set. At each
time slot, the BS transmits an update packet to a user through a
communication channel and the adversary aims to block the
update packet sent by the BS by blocking a communication
channel. The BS has 𝑛 discrete transmission power levels to
communicate with the users and the adversary has 𝑚 discrete
blocking power levels to block the communication channels.
The probability of successful transmission of an update packet
depends on these power levels. The BS and the adversary have a
transmission and blocking average power constraint, respectively.
We provide a universal lower bound for the average age of
information for this communication network. We prove that
the uniform user choosing policy, the uniform communication
channel choosing policy with any arbitrary feasible transmission
power choosing policy is 4 optimal; and the max-age user
choosing policy, the uniform communication channel choosing
policy with any arbitrary feasible transmission power choosing
policy is 2 optimal. In the second part of the paper, we consider
the setting where the BS chooses a transmission policy and the
adversary chooses a blocking policy from the set of randomized
stationary policies and N𝑠,𝑖 = N𝑠 for all 𝑖, i.e., all users can receive
updates on all channels. We show that a Nash equilibrium may
or may not exist for this communication network, and identify
special cases where a Nash equilibrium always exists.

Index Terms—Age of information, Nash equilibrium, power
constrained adversary.

I. INTRODUCTION

WE consider a wireless communication system consisting
of 𝑁 users, one base station (BS), 𝑁𝑠 communication

channels and an adversary. A communication channel can have
different channel gains to different users, and thus, all the sub-
carriers may not be available to all the users for transmission
of an update packet [54]. We consider the static setting. Thus,
the communication channels are divided into 𝑁 potentially
overlapping sets, where each set corresponds to a user. We
denote the set of communication channels available to user 𝑖
as N𝑠,𝑖 . A sub-carrier can be an element of multiple sets,
and thus, the set N𝑠,𝑖 ∩ N𝑠, 𝑗 is not necessarily empty. The
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cardinality of N𝑠,𝑖 is 𝑁𝑠,𝑖 . The set of all available channels
is N𝑠 =

⋃
𝑖 N𝑠,𝑖 , and has cardinality 𝑁𝑠 . There are 𝑛 discrete

power levels available to the BS for transmission of an update
packet to the users and 𝑚 discrete power levels available to
the adversary to block the transmission of an update packet.
We consider a slotted time model. At each time slot, the BS
chooses a transmission power to transmit an update packet to
a user via a communication channel and the adversary chooses
a communication channel and a blocking power to block any
update packet that is being sent on the chosen channel. Though
there are multiple communication channels available, because
of the transmission power constraint, we assume that at each
time slot, the BS can transmit an update packet to only one
user. However, after choosing a power level, how the BS
should split that power and transmit update packets to multiple
users can be an interesting extension of this work. The system
model studied in this paper is a useful abstraction of scenarios,
where there is a transmitter who wants to minimize the age and
a jammer who wants to maximize the age at a receiver, in the
case the power constrained transmitter has multiple channels
to use for transmitting update packets.

A large amount of work has been done on the analysis
of age of information for various applications and system
models, such as, scheduling policies for wireless networks,
gossip networks, caching systems, source coding problem,
remote estimation, energy harvesting systems and many more,
see e.g., [1]–[6], [10]–[15], [17]–[24], [27]–[32], [35]–[39],
[41]–[47], [49]–[53], [55], [56]. These papers consider systems
without an adversary. The age of information in the presence
of an adversary in a wireless communication network has been
studied in the recent literature [7]–[9], [16], [26], [33], [34],
[40], [48]. In particular, [33], [34] consider an adversarial
gossip network. In this paper, we do not consider a gossip
network, rather we consider that a central node, i.e., the BS
transmits the update packets to the users. [26], [40] consider
an adversary which decreases the signal to noise ratio of a
communication link through jamming, due to which the rate
of the communication decreases which results in a higher age
for the communication system. In this paper, we consider
that when the adversary blocks a communication channel
it completely eliminates the update packet with a positive
probability. [48] considers an adversary which blocks the
communication channel for a duration in time which increases
the average age of the system by disabling communication
in that interval. In this paper, we consider that the adversary
blocks the communication channel in a time slotted manner.
[7], [16] consider an adversary which completely eliminates
the update packet, however, they do not consider any power

1229-2370/23/$10.00 © 2023 KICS



632 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25, NO. 5, OCTOBER 2023

constraint on the adversary. In this paper, we consider a power
constrained adversary. [8], [9] consider a power constrained
adversary which completely eliminates the update packet.
They have considered that on the time horizon 𝑇 , the adversary
blocks 𝛼𝑇 time slots where 0 < 𝛼 < 1. On the contrary,
in this paper, we consider that at each time slot 𝑡, the
adversary chooses one of the 𝑚 blocking power levels with
a pmf d(𝑡) and the expected power to be less than or equal
to a power constraint. Different than the adversary in [8], [9],
the adversary in this paper completely eliminates the update
packet with a positive probability (strictly less than 1), and
this probability depends on the blocking power chosen by the
adversary and the transmission power chosen by the BS.

References [7], [16] have considered the problem in an
online learning setting and studied the competitive ratio.
Different than these works, in the first part of this paper,
we study the behavior of the average age in the presence
of the worst adversarial actions, as formally defined in (4).
First, we find a lower bound on the average age for this
setting. Then, we propose algorithms and study how they
perform under the worst adversarial actions for the described
wireless communication network. Specifically, we show that
the uniform user choosing policy together with the uniform
communication channel choosing policy and any arbitrary
feasible transmission power choosing policy is 4 optimal, and
in a special case, it is 2 optimal. We also show that the
maximum-age user choosing policy together with the uniform
communication channel choosing policy and any arbitrary
feasible transmission power choosing policy is 2 optimal.
References [8], [9] have considered a power constrained
adversary, however due to the difference in how we define
the power constraint in this paper compared to [8], [9], as
discussed above, the techniques we use in this paper to prove
the lower bound on the average age are different.

In the second part of this paper, we relax the system model
and consider that at each time slot the BS can choose any one
of the 𝑁𝑠 sub-carriers for transmission of an update packet
to any one of the 𝑁 users, i.e., N𝑠,𝑖 = N𝑠 , for all 𝑖. We also
restrict the action space of the BS and the action space of the
adversary only to the stationary policies. As the BS aims to
minimize the average age and the adversary aims to maximize
the average age of the communication network, we pursue a
multi-objective solution concept in a game theoretic setting.
Specifically, we study the Nash equilibrium of this problem,
as opposed to the first part of the paper, where we evaluate
the performance of different transmission policies under the
worst-case adversarial actions. If a Nash equilibrium for this
problem exists, then we know that this point is optimal for
both the adversary and the BS if they act simultaneously, i.e.,
neither of them could improve their performance by changing
their policy while the other’s policy remains unchanged.

If the power level choosing algorithms are not fixed for the
BS and for the adversary and if those are included in the action
space of the BS and the action space of the adversary, then we
show that in the stationary policy regime a Nash equilibrium
may not exist. We give a counter example to prove this. We
also show a special case in which the Nash equilibrium exists.
However, when the power level choosing algorithms for the

BS and for the adversary are fixed, i.e., those are not included
in the list of the actions of the BS and the list of the actions
of the adversary, then the Nash equilibrium always exists.

II. SYSTEM MODEL AND PROBLEM FORMULATION

At each time slot, the BS schedules a user 𝑖 out of 𝑁 users,
𝑁 > 1, with a user choosing algorithm 𝜋𝑢 and chooses a
communication channel out of 𝑁𝑠,𝑖 communication channels,
𝑁𝑠,𝑖 > 1, with a communication channel choosing algorithm
𝜋𝑠 to transmit an update packet to the scheduled user 𝑖. In
this paper, we use sub-carrier and communication channel
interchangeably. We consider that 𝑛 discrete transmission
powers, namely {𝑝1, 𝑝2, · · ·, 𝑝𝑛} are available to the BS, and
at each time slot the BS chooses one of these 𝑛 transmission
powers, following a power choosing algorithm 𝜋𝑝 . Thus, an
action of the BS is a triplet (𝜋𝑢, 𝜋𝑠 , 𝜋𝑝) and we call a valid
triplet as a BS scheduling algorithm π. We call the set of all
causal scheduling algorithms as 𝚷. Let us consider that 𝜋𝑝 is
such that at time slot 𝑡 the BS chooses the 𝑖th transmission
power with probability 𝑒𝑖 (𝑡). We consider the following power
constraint for the BS,

𝑛∑︁
𝑖=1

𝑒𝑖 (𝑡)𝑝𝑖 ≤ 𝑝, 𝑡 ∈ {1, · · ·, 𝑇}. (1)

We consider that an adversary is present in the system as
well. At each time slot, the adversary chooses a sub-carrier
out of 𝑁𝑠 sub-carriers following an algorithm 𝜓𝑠 to block any
update packet that is being transmitted by the BS in that sub-
carrier. We consider that 𝑚 discrete blocking powers, namely
{𝑝′1, 𝑝

′
2, · · ·, 𝑝

′
𝑚} are available to the adversary and at each time

slot the adversary chooses one of these powers, following a
blocking power choosing algorithm 𝜓𝑝 , to block any update
packet on the sub-carrier chosen by 𝜓𝑠 . Thus, an action of
the adversary is a pair (𝜓𝑠 , 𝜓𝑝) and we call a valid pair as an
adversarial action ψ. We call the set of all valid adversarial
actions as 𝚿. Let us consider that 𝜓𝑝 is such that at time
slot 𝑡, the adversary chooses the 𝑖th blocking power with
probability 𝑑𝑖 (𝑡). We consider the following power constraint
for the adversary,

𝑚∑︁
𝑖=1

𝑑𝑖 (𝑡)𝑝′𝑖 ≤ 𝑝, 𝑡 ∈ {1, · · ·, 𝑇}. (2)

We create an 𝑛 ×𝑚 matrix F , whose (𝑖, 𝑗)th element, 𝑓𝑖, 𝑗 ,
represents the probability of successful transmission of an
update packet corresponding to the BS transmission power 𝑝𝑖
and adversary blocking power 𝑝′

𝑗
. Thus, at time slot 𝑡 if the BS

schedules the user 𝑘 , and chooses the sub-carrier 𝑙 to transmit
an update packet with power 𝑝𝑖 and if the adversary blocks
the sub-carrier 𝑙 with power 𝑝′

𝑗
, then with probability 𝑓𝑖, 𝑗 the

age of the 𝑘th user at time slot (𝑡 + 1) becomes 1 and with
probability 1 − 𝑓𝑖, 𝑗 the age of the 𝑘th user at time slot 𝑡 + 1
increases by one.

The age of user 𝑖 at time slot 𝑡 is defined as 𝑡 − 𝑡𝑖 (𝑡), where
𝑡𝑖 (𝑡) is the last time slot when the 𝑖th user has successfully
received an update packet. Note that the minimum value for
the age of user 𝑖 is 1. We consider that at each time slot the BS
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Fig. 1. The top figure illustrates the system model with 4 sub-carriers, 2
adversarial power levels, and 2 transmission power levels. The top figure
shows how the BS chooses a sub-carrier and a transmission power level for
a specific user, say user 1 for this example, and how the adversary chooses a
sub-carrier and a blocking power level over the time horizon 𝑇 . In this figure,
for user 1, if the BS chooses the lower transmission power then the sub-carrier
which is chosen by the BS is shown with a light green box, and if it chooses
the higher transmission power then the sub-carrier which is chosen is shown
with a light blue box. It can happen that the BS does not schedule user 1
at a given time slot, for example, see time slot 4, where there are no green
or blue boxes. Similarly, at a given time slot, if the adversary chooses the
lower blocking power then the sub-carrier which is chosen by the adversary
at that time slot is shown with an orange cross, and if it chooses the higher
blocking power then the sub-carrier which chosen is shown with a red cross.
The bottom figure illustrates the age evolution for user 1, corresponding to
the BS and adversarial actions in the top figure. Note that whenever the BS
and the adversary choose the same sub-carrier the age of user 1 drops down
by a certain probability, which depends on the corresponding blocking and
transmission power levels.

has a fresh update packet to transmit for every users present in
the system. Here by fresh update packet, we mean the update
packet for the 𝑖th user at time slot 𝑡 is generated at time slot 𝑡.
As we are interested in freshness, we assume that if the 𝑖th
user does not receive the corresponding update packet at time
slot 𝑡, then that update packet gets dropped at the BS without
any cost. This is a valid assumption used in [7]–[9], [16]. For a
pictorial representation of the system model and the evolution
of age, please see Fig. 1.

The adversary has the knowledge of 𝜋𝑢, 𝜋𝑠 , and 𝜋𝑝 .
However, as the BS uses a randomized algorithm at time
slot 𝑡, the adversary has no knowledge about which user
will get scheduled, which sub-carrier will get chosen and
which transmission power will get used at time slot 𝑡′ when
𝑡 ≤ 𝑡′ ≤ 𝑇 . However, at time slot 𝑡 it has full knowledge
about all these for time slot 𝑡′ when 1 ≤ 𝑡′ < 𝑡, and
the adversary can optimize its future actions based on these
available information. The adversary has full knowledge about
the elements of each set N𝑠,𝑖 . The age of user 𝑖 at time slot 𝑡
corresponding to a BS scheduling algorithm π and adversarial
action ψ is denoted as 𝑣

(π,ψ)
𝑖

(𝑡), thus, 𝑣 (π,ψ)
𝑖

(𝑡) = 𝑡 − 𝑡𝑖 (𝑡),
and the expected age of user 𝑖 at time slot 𝑡, is denoted as
Δ
(π,ψ)
𝑖

(𝑡). Note that, if the BS successfully transmits an update
packet to user 𝑖 at time slot 𝑡, then 𝑣

(π,ψ)
𝑖

(𝑡+1) = 1, otherwise
𝑣
(π,ψ)
𝑖

(𝑡 + 1) = 𝑣
(π,ψ)
𝑖

(𝑡) + 1. The average age of the overall
system corresponding to the BS scheduling algorithm π and
adversarial action ψ is,

Δ(π,ψ) = lim sup
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1

1
𝑁

𝑁∑︁
𝑖=1

Δ
(π,ψ)
𝑖

(𝑡). (3)

For the simplicity presentation, in the rest of the paper we
ignore the superscript (π,ψ), unless we specify otherwise.
Now as the BS has no control over the adversary, we consider

the following constrained optimization problem,

Δ∗ = sup
ψ∈𝚿

inf
π∈𝚷

Δ(π,ψ)

s.t. (1), (2). (4)

For the second part of the paper, we consider a relaxed
system model. We consider that at each time slot, all the
𝑁𝑠 sub-carriers are available to the BS to transmit an update
packet to any one of the 𝑁 users, i.e., N𝑠,𝑖 = N𝑠 for all 𝑖.
The BS chooses a scheduling algorithm and the adversary
chooses an adversarial action from the corresponding sets of
stationary randomized policies. In other words, 𝜋𝑢 is such
that at each time slot the BS chooses a user following a
pmf u = [𝑢1, 𝑢2, · · ·, 𝑢𝑁 ], 𝜋𝑠 is such that at each time slot the
BS chooses a sub-carrier following a pmf s = [𝑠1, 𝑠2, · · ·, 𝑠𝑁𝑠

]
and 𝜋𝑝 is such that at each time slot the the BS chooses a
power following a pmf e = [𝑒1, 𝑒2, · · ·, 𝑒𝑛]. Similarly, 𝜓𝑠 is
such that at each time slot the adversary blocks a sub-carrier
following a pmf a = [𝑎1, 𝑎2, · · ·, 𝑎𝑁𝑠

] and 𝜓𝑝 is such that
at each time slot the adversary chooses a blocking power
following a pmf d = [𝑑1, 𝑑2, · · ·, 𝑑𝑚]. Thus, the power con-
straints for the adversary and the BS become

∑𝑚
𝑖=1 𝑑𝑖 𝑝

′ (𝑖) ≤ 𝑝

and
∑𝑛

𝑖=1 𝑒𝑖 𝑝(𝑖) ≤ 𝑝, respectively. When we restrict ourselves
only to the stationary randomized policies, instead of writing
Δπ,ψ as in (3), we write the average age of the overall system
corresponding to pmfs u, s, e (these three pmfs are chosen
by the BS) and the pmfs a, d (these two pmfs are chosen by
the adversary) as Δu,s,e,a,d. We denote the expected age of
user 𝑖 at time slot 𝑡 as Δu,s,e,a,d

𝑖
(𝑡). Thus, the average age for

the 𝑖th user becomes

Δ
u,s,e,a,d
𝑖

= lim sup
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1

Δ
u,s,e,a,d
𝑖

(𝑡). (5)

Let us assume that the set of all valid user choosing pmfs,
the set of all valid sub-carrier choosing pmfs and the set of all
valid transmission power choosing pmfs are F𝑢, F𝑠 , and F𝑒,
respectively. Similarly, the set of all valid sub-carrier blocking
pmfs and the set for all valid blocking power choosing pmfs
are F𝑎 and F𝑑 , respectively. For a given adversarial action,
namely a sub-carrier blocking pmf a, and a blocking power
level choosing pmf d, the BS aims to minimize the average
age of the overall system by selecting a scheduling algorithm,
namely a user choosing pmf u, a sub-carrier choosing pmf s
and a transmission power choosing pmf e from the set 𝐵(a,d),
where 𝐵(a,d) is defined as follows,

𝐵(a,d) = arg min
(u∈F𝑢 ,s∈F𝑠 ,e∈F𝑒 ,

∑𝑛
𝑖=1 𝑒𝑖 𝑝𝑖≤ �̄�)

Δu,s,e,a,d. (6)

Similarly, for a given scheduling algorithm, i.e., a triplet of
pmfs (u, s, e), the adversary aims to maximize the average
age by choosing a pair of pmfs, namely (a,d) from the set
𝐵(u, s, e), where 𝐵(u, s, e) is defined as

𝐵(u, s, e) = arg max
(a∈F𝑎 ,d∈F𝑑 ,

∑𝑚
𝑖=1 𝑑𝑖 𝑝

′ (𝑖)≤ �̃�)
Δu,s,e,a,d. (7)

We call a 5-tuple of pmfs, namely (u, s, e,a,d) as a Nash
equilibrium point if and only if (u, s, e) ∈ 𝐵(a,d) and
(a,d) ∈ 𝐵(u, s, e).
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In the previous Nash equilibrium setting we consider that
the transmission power choosing pmf e and blocking power
choosing pmf d are components of the action space of the BS
and the action space of the adversary, respectively. However,
if e and d are fixed and not included in the action space of
the BS and the action space of the adversary, respectively, then
we define,

𝐵(a) = arg min
(u∈F𝑢 ,s∈F𝑠 )

Δu,s,e,a,d. (8)

Similarly, we write,

𝐵(u, s) = arg max
(a∈F𝑎 )

Δu,s,e,a,d. (9)

We call a triplet of pmfs, namely (u, s,a) as a Nash equilib-
rium point if and only if (u, s) ∈ 𝐵(a, ) and a ∈ 𝐵(u, s).

III. ALGORITHM AND ANALYSIS OF AGE

We find a fundamental lower bound for the optimization
problem in (4). Let us define 𝑥 = arg max𝑖∈{1, · · ·,𝑚} 𝑝

′
𝑖
≤ 𝑝.

Consider the following adversarial action: at each time slot
the adversary blocks any one of the 𝑁𝑠 sub-carriers with a
uniform pmf and chooses the power level 𝑝𝑥 . We denote this
adversarial action as ψ̄ = (�̄�𝑠 , �̄�𝑝). At each time slot, if the BS
schedules the user which has the maximum age and breaks the
tie with scheduling the lower indexed user, we call that user
choosing policy as the max-age policy.

Lemma 1. For the adversarial action ψ̄, an optimal user
choosing policy is the max-age policy; and if the 𝑖th user gets
chosen by the max-age policy, then an optimal sub-carrier
choosing policy is to choose a sub-carrier in N𝑠,𝑖 uniformly.

Proof: Let us assume that the user choosing algorithm em-
ployed by the BS is �̄�𝑢, and the action of the BS corresponding
to the 𝑖th user at time slot 𝑡 is �̄�𝑢,𝑖 (𝑡). Here, �̄�𝑢,𝑖 (𝑡) ∈ {0, 1},
and �̄�𝑢,𝑖 (𝑡) = 0 implies that the BS does not schedule user 𝑖

at time slot 𝑡, �̄�𝑢,𝑖 (𝑡) = 1 implies that the BS schedules
user 𝑖 at time slot 𝑡. Similarly, assume that the BS employs
�̄�𝑠 as the sub-carrier choosing algorithm. At time slot 𝑡, the
action of the BS corresponding to the sub-carrier 𝑗 , 𝑗 ∈ N𝑖 ,
is �̄�𝑠,𝑖 (𝑡), where �̄�𝑠,𝑖 (𝑡) ∈ {0, 1}. Here, �̄�𝑠,𝑖 (𝑡) = 0 implies
that the BS does not choose sub-carrier 𝑗 at time slot 𝑡, and
�̄�𝑠,𝑖 (𝑡) = 1 implies that the BS chooses sub-carrier 𝑗 at time
slot 𝑡. Assume that the BS chooses the transmission power 𝑝𝑦 ,
where 𝑦 = arg max𝑖∈{1, · · ·,𝑛} 𝑝𝑖 ≤ 𝑝. Now, we can write the
expected age of user 𝑖 at time slot 𝑡 + 1, conditioned on the
age of user 𝑖 at time slot 𝑡 as,

E[𝑣𝑖 (𝑡 + 1) |𝑣𝑖 (𝑡)]

= (𝑣𝑖 (𝑡) + 1) (1 − �̄�𝑢,𝑖 (𝑡)) +
𝑓𝑦,𝑥 �̄�𝑢,𝑖 (𝑡)

𝑁𝑠,𝑖

+ (𝑣𝑖 (𝑡) + 1) ©« 1
𝑁𝑠,𝑖

𝑁𝑠,𝑖∑︁
𝑗=1

�̄�𝑠, 𝑗 (𝑡)
ª®¬ (1 − 𝑓𝑦,𝑥)�̄�𝑢,𝑖 (𝑡)

+ ©«
𝑁𝑠,𝑖∑︁
𝑗=1

�̄�𝑠, 𝑗 (𝑡)
𝑁𝑠,𝑖 − 1
𝑁𝑠,𝑖

ª®¬ �̄�𝑢,𝑖 (𝑡). (10)

The first term of (10), corresponds to the fact that, if the
BS does not schedule the 𝑖th user at time slot 𝑡, the age of
the 𝑖th user increases irrespective of the sub-carrier choosing
algorithm �̄�𝑠 and sub-carrier blocking algorithm �̄�𝑠 . Now, if
the BS schedules user 𝑖 at time slot 𝑡, then the age of user 𝑖

at time slot 𝑡 + 1, depends on �̄�𝑠 , �̄�𝑠 and the probability
of successful transmission corresponding to the transmission
power 𝑝𝑦 and the blocking power 𝑝𝑥 , i.e., 𝑓𝑦,𝑥 . These facts
are reflected in the last three terms of (10).

Noting the fact that
∑𝑁𝑠,𝑖

𝑗=1 �̄�𝑠, 𝑗 (𝑡) = 1 for all 𝑡, taking the
expectation of 𝑣𝑖 (𝑡) in (10) and after simplifying, we obtain

Δ𝑖 (𝑡 + 1) =(Δ𝑖 (𝑡)+1)
(
1−�̄�𝑢,𝑖 (𝑡) +

1
𝑁𝑠,𝑖

(1− 𝑓𝑦,𝑥)�̄�𝑢,𝑖 (𝑡)
)

+ �̄�𝑢,𝑖 (𝑡)
(
𝑁𝑠,𝑖 − 1
𝑁𝑠,𝑖

+
𝑓𝑦,𝑥

𝑁𝑠,𝑖

)
. (11)

Note that (10) is independent of �̄�𝑠 , thus we can choose any
sub-carrier blocking policy and for simplicity of later theorems
we choose it to be a uniform pmf over the sub-carriers of the
set N𝑠,𝑖 , if the BS chooses user 𝑖. We define the overall age
of the communication system till time slot 𝑡 + 𝑘 , starting from
time slot 𝑡, corresponding to a scheduling policy π, and an
adversarial action ψ, as

𝑣 (π,ψ) (𝑡, 𝑡 + 𝑘) =
𝑡+𝑘∑︁
𝑗=𝑡

𝑁∑︁
𝑖=1

𝑣
(π,ψ)
𝑖

( 𝑗). (12)

Note that, 𝑣π,ψ (𝑡, 𝑡+𝑘) is the sum of all the instantaneous ages
of all the users till time slot 𝑡 + 𝑘 from the time slot 𝑡. Now,
consider the evolution of the overall age from time slot 𝑡 to
time slot 𝑡 + 𝑘 . Together with the uniform sub-carrier choosing
policy over the set of sub-carriers corresponding to the max-
age user and the transmission power level 𝑝𝑦 , we call the max-
age user choosing policy as π̃. Then, 𝑣π̃,ψ̄ (𝑡, 𝑡 + 1) can take
two values, one corresponding to the case when there is no
successful transmission and the other corresponding to the case
when there is a successful transmission. We call the possible
values of 𝑣π̃,ψ̄ (𝑡, 𝑡+𝑘) as the states of 𝑣π̃,ψ̄ (𝑡, 𝑡+𝑘). Note that,
𝑣π̃,ψ̄ (𝑡, 𝑡+𝑘1), 0 ≤ 𝑘1 ≤ 𝑘 , can take any one of the possible 2𝑘1

states. Now, consider a particular instance where the BS suc-
cessfully transmits update packets for all 𝑘 time slots. There is
only one possible state of 𝑣π̃,ψ̄ (𝑡, 𝑡 + 𝑘) which corresponds to
this particular instance of BS transmission, and the evolution
of 𝑣π̃,ψ (𝑡, 𝑡 + 𝑘1) corresponding to this particular instance is
deterministic. The probability of occurrence of this particular
BS transmission instance is ( 𝑁𝑠−1

𝑁𝑠
+ 𝑓𝑦,𝑥

𝑁𝑠
)𝑘 . Note that there are

no other instances of BS transmission for which the state of
𝑣π̃,ψ̄ (𝑡, 𝑡 + 𝑘) can be the same as the state of 𝑣π̃,ψ̄ (𝑡, 𝑡 + 𝑘)
which corresponds to all successful BS transmission instance.
Thus, with the probability ( 𝑁𝑠−1

𝑁𝑠
+ 𝑓𝑦,𝑥

𝑁𝑠
)𝑘 , 𝑣π̃,ψ̄ (𝑡, 𝑡+𝑘) will be

in that particular state. Together with the uniform sub-carrier
choosing policy and transmission power level 𝑝𝑦 , we call an
arbitrary user choosing policy as π̂. Note that 𝑣π̂,ψ̄ (𝑡, 𝑡+1) can
have maximum 𝑁 +1 states. Similarly, 𝑣π̂,ψ̄ (𝑡, 𝑡+ 𝑘1) can have
maximum (𝑁 +1)𝑘1 states. Now, consider the BS transmission
instance for which the BS successfully transmits the update
packets in all the 𝑘 time slots, again the probability of this
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instance is ( 𝑁𝑠−1
𝑁𝑠

+ 𝑓𝑦,𝑥

𝑁𝑠
)𝑘 . For this BS transmission instance,

𝑣π̂,ψ̄ (𝑡, 𝑡 + 𝑘) can have maximum 𝑁 𝑘 states. Using similar
arguments to those we used for the max-age user choosing
policy, we claim that the total probability of occurrence of
all these states is ( 𝑁𝑠−1

𝑁𝑠
+ 𝑓𝑦,𝑥

𝑁𝑠
)𝑘 . Note that the values of

𝑣π̂,ψ̄ (𝑡, 𝑡 + 𝑘) corresponding to all these 𝑁 𝑘 states are greater
than or equal to the value of 𝑣π̃,ψ̄ (𝑡, 𝑡 + 𝑘) corresponding to
the one state which occurs at the instance of all successful BS
transmission. Thus,

E[𝑣π̃,ψ̄ (𝑡, 𝑡 + 𝑘) |𝐼] ≤ E[𝑣π̂,ψ̄ (𝑡, 𝑡 + 𝑘) |𝐼] . (13)

where 𝐼 is the instance that the BS transmits the update packets
successfully for all the 𝑘 time slots. We can use the same
arguments for any instances of BS transmission. Thus,

E[𝑣π̂,ψ̄ (𝑡, 𝑡 + 𝑘)] ≤ E[𝑣π̃,ψ̃ (𝑡, 𝑡 + 𝑘)], (14)

completing the proof. ■
Let us define �̄� = arg min𝑖∈{1, · · ·,𝑛} 𝑝𝑖 ≥ 𝑝.

Theorem 1. The average age of the communication network
defined in (3) is lower bounded by (𝑁+1)𝑁𝑠

2(𝑁𝑠−1+ 𝑓�̄�,𝑥 ) .

Proof: From Lemma 1, we know that when the adversarial
action is ψ̄, at each time slot, the optimal sub-carrier choosing
strategy for the BS is to choose any one of the sub-carriers
uniformly from the set of sub-carriers corresponding to the
max-age user and the optimal user choosing algorithm is the
max-age algorithm. We consider that the BS chooses power 𝑝 �̄�
for the transmission of an update packet, this violates the
power constraint of the BS, however, with this transmission
power we get a lower bound on the average age. Together with
the uniform sub-carrier choosing policy and the transmission
power 𝑝 �̄� , we call the max-age user choosing policy as π̌. For
a user 𝑖, the whole time horizon 𝑇 can be divided into multiple
blocks, where each block consists of consecutive time slots
where user 𝑖 does not receive any update packet and each
block ends when the user 𝑖 successfully receives an update
packet. Thus, if a block starts at time slot 𝑡, 𝑡 > 1, then it
implies that at time slot 𝑡 − 1 user 𝑖 has successfully received
an update packet. Consider such a block Γ. Now, Γ can be
divided into several sub blocks, Γ1, Γ2, · · ·, Γ𝑁 , where Γ 𝑗 is
the length of the consecutive time slots for which user 𝑗 is
scheduled by the BS but does not receive any update packet.
We define the total age of user 𝑖 in Γ as Γ𝑎𝑔𝑒. Thus,

Γ𝑎𝑔𝑒 =

𝑁∑︁
𝑗=1

Γ 𝑗 (Γ 𝑗 + 1)
2

+
𝑁∑︁
𝑘=2

( 𝑘−1∑︁
𝑗=1

Γ 𝑗

)
Γ𝑘 . (15)

The evolution of age corresponding to π̌ and ψ̄ is a re-
newal process and Γ is a renewal interval. Note that Γ 𝑗 ,
𝑗 ∈ {1, · · ·, 𝑁} is a geometric distributed random variable with
probability of successful transmission 𝑞 =

𝑁𝑠−1
𝑁𝑠

+ 𝑓�̄�,𝑥

𝑁𝑠
,

E
[
Γ𝑎𝑔𝑒

]
=
𝑁

2
E

[
Γ2

1 + Γ1 + (𝑁 − 1)Γ1Γ2
]

(16)

=
𝑁

2

(
𝑁 + 1
𝑞2

)
(17)

and

E[Γ] = 𝑁E [Γ1] =
𝑁

𝑞
. (18)

Thus, using the renewal reward theorem [25],

lim sup
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1

Δ
π̌,ψ̄
𝑖

(𝑡) =
E[Γ𝑎𝑔𝑒]
E[Γ] (19)

=
𝑁 + 1

2𝑞
(20)

=
(𝑁 + 1)𝑁𝑠

2(𝑁𝑠 − 1 + 𝑓�̄�,𝑥)
, (21)

proving the theorem. ■

Now, we consider that at each time slot the BS schedules
a user 𝑖 with probability 1/𝑁 and chooses one of the 𝑁𝑠,𝑖

sub-carriers with probability 1/𝑁𝑠,𝑖 , to transmit an update
packet to the scheduled user with transmission power 𝑝𝑦
with probability 𝛽 and with transmission power 𝑝 �̄� with
probability (1 − 𝛽), where 𝛽 satisfies the following identity:

𝛽𝑝𝑦 + (1 − 𝛽)𝑝 �̄� = 𝑝. (22)

Let us denote this BS scheduling policy as ˆ̃π. Let us define
𝑥 = arg min𝑖∈{1, · · ·,𝑚} 𝑝

′
𝑖
≥ 𝑝.

Theorem 2. The average age of the communication system
when the BS employs the scheduling algorithm ˆ̃π is upper
bounded by 2𝑁; when 𝑁𝑠,𝑖 = 𝑁𝑠 for all 𝑖, then the average
age is upper bounded by 𝑁𝑁𝑠

𝑁𝑠−1+𝛽 𝑓𝑦,�̄�+(1−𝛽) 𝑓�̄�, �̄� .

Proof: Let us assume that the blocking power for the adver-
sary is 𝑝′�̄� , this violates the power constraint of the adversary,
however, it gives an upper bound for the scheduling policy ˆ̃π.
First, consider the case when 𝑁𝑠,𝑖 = 𝑁𝑠 , for all 𝑖. Note that
the adversary always blocks one sub-carrier in every time slot.
Thus, for scheduling policy ˆ̃π and any adversarial sub-carrier
choosing policy, the probability of successful transmission of
the update packet to the 𝑖th user is given as,

𝑞𝑖 =
1
𝑁

(
𝑁𝑠 − 1
𝑁𝑠

+
(𝛽 𝑓𝑦, �̄� + (1 − 𝛽) 𝑓�̄�, �̄�)

𝑁𝑠

)
. (23)

Note that 𝑞𝑖 does not depend on the adversarial sub-carrier
blocking algorithm, thus, we choose the uniform sub-carrier
blocking pmf. Together with the blocking power 𝑝′�̄� , we call
the uniform sub-carrier blocking pmf as adversarial action ψ̃.
Note that the age of user 𝑖 is a renewal process. Thus,

lim sup
𝑡→∞

1
𝑇

𝑇∑︁
𝑡=1

Δ
ˆ̃π,ψ̃
𝑖

(𝑡) = 1
𝑞𝑖

(24)

=
𝑁𝑁𝑠

𝑁𝑠 − 1 + 𝛽 𝑓𝑦, �̄� + (1 − 𝛽) 𝑓�̄�, �̄�
, (25)

where (24) follows from the renewal reward theory [25].
Next, we consider the case when at least one of the 𝑁 sets

of the communication channels has less than 𝑁𝑠 sub-carriers.
If we consider that at each time slot the adversary blocks a
sub-carrier from each and every set N𝑠,𝑖 , then, we get a lower
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bound on 𝑞𝑖 . Thus,

𝑞𝑖 ≥
1
𝑁

(
𝑁𝑠,𝑖 − 1
𝑁𝑠,𝑖

+
(𝛽 𝑓𝑦, �̄� + (1 − 𝛽) 𝑓�̄�, �̄�)

𝑁𝑠,𝑖

)
. (26)

Therefore,

lim sup
𝑡→∞

1
𝑇

𝑇∑︁
𝑡=1

Δ
ˆ̃π,ψ̃
𝑖

(𝑡) = 1
𝑞𝑖

(27)

≤2𝑁, (28)

completing the proof. ■
Now, we consider that at each time slot the BS schedules

the max-age user, 𝑖, and chooses one of the 𝑁𝑠,𝑖 sub-carriers
with probability 1/𝑁𝑠,𝑖 . We also consider that the BS chooses
power 𝑝𝑦 with probability 𝛽 and power 𝑝 �̄� with probabil-
ity 1 − 𝛽, where 𝛽 satisfies (22). Denote this BS scheduling
policy as ˜̃π.

Theorem 3. The average age of the communication sys-
tem when the BS employs the scheduling algorithm ˜̃π
is upper bounded by (𝑁+1) �̄�𝑠

2( �̄�𝑠−1+𝛽 𝑓𝑦,�̄�+(1−𝛽) 𝑓�̄�, �̄� )
, where �̄�𝑠 =

min {𝑁𝑠,1, 𝑁𝑠,2, · · ·, 𝑁𝑠,𝑁 }.

Proof: At each time slot, the optimal action for the adversary
is to block any one sub-carrier from the set of sub-carriers
corresponding to the maximum age user. We call this sub-
carrier choosing policy, together with the blocking power 𝑝 �̄�

as the adversarial action �̌�. Thus, the probability of successful
transmission for any user 𝑖, 𝑞𝑖 , is lower bounded as,

𝑞𝑖 ≥
�̄�𝑠,𝑖 − 1
�̄�𝑠,𝑖

+
𝛽 𝑓𝑦, �̄� + (1 − 𝛽) 𝑓�̄�, �̄�

�̄�𝑠,𝑖

. (29)

From (20), the average age of use 𝑖 can be upper bounded as,

lim sup
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1

Δ
˜̃π,ψ̌
𝑖

(𝑡) =𝑁 + 1
2𝑞𝑖

(30)

≤ (𝑁 + 1)�̄�𝑠

2(�̄�𝑠 − 1 + 𝛽 𝑓𝑦, �̄� + (1 − 𝛽) 𝑓�̄�, �̄�)
,

(31)

completing the proof. ■
Next, we make some concluding remarks about the findings

of this section. From Theorem 1 and Theorem 2, we see that
in the general setting, ˆ̃π is 4𝑁 (𝑁𝑠−1+ 𝑓�̄�,𝑥 )

(𝑁+1)𝑁𝑠
optimal, where

4𝑁 (𝑁𝑠 − 1 + 𝑓�̄�,𝑥)
(𝑁 + 1)𝑁𝑠

≤ 4. (32)

For the special case, when N𝑠,𝑖 = N𝑠 , for all 𝑖, ˆ̃π is
2(𝑁+1) (𝑁𝑠−1+ 𝑓�̄�,𝑥 )

𝑁 (𝑁𝑠−1+ 𝑓𝑦,�̄� ) optimal, where

2(𝑁 + 1) (𝑁𝑠 − 1 + 𝑓�̄�,𝑥)
𝑁 (𝑁𝑠 − 1 + 𝑓𝑦, �̄�)

≤
2(𝑁𝑠 − 1 + 𝑓�̄�,𝑥)
(𝑁𝑠 − 1 + 𝑓𝑦, �̄�)

(33)

≤ 2𝑁𝑠

𝑁𝑠 − 1
(34)

≤4. (35)

If 𝑁𝑠 is large, then the right side of (34) can be approximated
as 2. Thus, for the aforementioned special case and for large
𝑁𝑠 , ˆ̃π is 2 optimal.

From Theorem 1 and Theorem 3, we see that the scheduling
policy ˜̃π is �̄�𝑠/(�̄�𝑠 − 1) optimal and as 𝑁𝑠,𝑖 > 1, for all 𝑖, ˜̃π
is 2 optimal. Note that when 𝑝 exactly matches with one of
the powers from the sets {𝑝1, 𝑝2, · · ·, 𝑝𝑛} and N𝑠,𝑖 = N𝑠 , for
all 𝑖, then ˜̃π is the optimal scheduling policy.

IV. EQUILIBRIUM POINTS OF THE AVERAGE AGE FOR
RANDOMIZED STATIONARY ACTION SPACE

Let us assume that at each time slot the BS chooses a user
following a pmf u, chooses a sub-carrier following a pmf s,
chooses a transmission power with a pmf e and the adversary
chooses a sub-carrier with a pmf a and chooses a blocking
power following a pmf d. Recall that for this section we use
a relaxed system model, where we consider that N𝑠,𝑖 = N𝑠 ,
for all 𝑖. At some ime slot 𝑡, user 𝑖 successfully receives an
update packet transmitted by the BS and then after waiting for
Γ𝑖 time slots it again receives another update packet from the
BS. Note that Γ𝑖 is a random variable. The evolution of the
age for the 𝑖th user is a renewal process and Γ𝑖 is a renewal
interval. Thus, from the renewal reward theorem,

Δ
u,s,e,a,d
𝑖

=
E

[
Γ2
𝑖
+ Γ𝑖

]
2E [Γ𝑖]

. (36)

Let the probability of successful transmission of the update
packet to user 𝑖 be 𝑞𝑖 . Then, Γ𝑖 is geometrically distributed
with success probability 𝑞𝑖 . Thus, (36) simplifies as,

Δ
u,s,e,a,d
𝑖

=
1
𝑞𝑖
. (37)

Theorem 4. The optimal sub-carrier choosing pmf s, for
a given adversarial action, namely, a pair of pmfs (a,d),
depends only on a and is independent of user choosing pmf u,
transmission power choosing pmf e and d. Moreover, if the
adversary blocks any 𝑙 sub-carriers with lowest probability
then the optimal choice for the BS is to choose any subset of
these 𝑙 sub-carriers with probability 1. Similarly, the optimal
user scheduling pmf u does not depend on a, s, d, e. The
optimal user scheduling pmf is the uniform pmf.

Proof: The probability of successful transmission of an update
packet to the 𝑖th user 𝑞𝑖 is as follows,

𝑞𝑖 = 𝑢𝑖

(
𝑁𝑠∑︁
𝑗=1

𝑠 𝑗 (1 − 𝑎 𝑗 )
) (

𝑛∑︁
𝑥=1

𝑒𝑥

𝑚∑︁
𝑦=1

𝑑𝑦 𝑓𝑥,𝑦

)
. (38)

Therefore, the total average age becomes,

Δu,s,e,a,d =

𝑁∑︁
𝑖=1

1
𝑞𝑖

(39)

=

(
𝑁∑︁
𝑖=1

1
𝑢𝑖

)
·
(

1∑𝑁𝑠

𝑗=1 𝑠 𝑗 (1−𝑎 𝑗 )

)
×

(
1∑𝑛

𝑥=1 𝑒𝑥
∑𝑚

𝑦=1 𝑑𝑦 𝑓𝑥,𝑦

)
. (40)
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Thus, for a given (a,d), the optimization problem

arg min
(u∈F𝑢 ,s∈F𝑠 ,e∈F𝑒 ,

∑𝑛
𝑖=1 𝑒𝑖 𝑝𝑖≤ �̄�)

Δu,s,e,a,d (41)

becomes(
arg min
u∈F𝑢

𝑁∑︁
𝑖=1

1
𝑢𝑖

)
·
(
arg min
s∈F𝑠

1∑𝑁𝑠

𝑗=1 𝑠 𝑗 (1 − 𝑎 𝑗 )

)
·
(

arg min
(𝑒∈F𝑒 ,

∑𝑛
𝑖=1 𝑒𝑖 𝑝𝑖≤ �̄�)

1∑𝑛
𝑥=1 𝑒𝑥

∑𝑚
𝑦=1 𝑑𝑦 𝑓𝑥,𝑦

)
. (42)

Thus, for a given adversarial action (a,d), Δu,s,e,a,d can be
optimized with respect to u independent of s and e. Similarly,
Δu,s,e,a,d can be optimized with respect to s independent of
u and e. First, we find the optimal solution for the following
problem,

arg min
u∈F𝑢

𝑁∑︁
𝑖=1

1
𝑢𝑖
. (43)

The Lagrangian for (43) is

L(u, 𝜆) =
𝑁∑︁
𝑖=1

1
𝑢𝑖

+ 𝜆

(
𝑁∑︁
𝑖=1

𝑢𝑖 − 1

)
. (44)

The optimal solution 𝒖∗ satisfies ∇L(u, 𝜆) |u∗ = 0. Solving
this gives, 𝑢𝑖 = 1/

√
𝜆, 𝑖 = 1, · · ·, 𝑁 , which using

∑𝑁
𝑖=1 𝑢𝑖 = 1,

yields 𝑢𝑖 = 1/𝑁 , for all 𝑖.
Now, for a given adversarial action (a,d), we find the

optimal solution for the following problem,

arg min
s∈F𝑠

1∑𝑁𝑠

𝑗=1 𝑠 𝑗 (1 − 𝑎 𝑗 )
. (45)

Without loss of generality, consider that 𝑎1 ≥ 𝑎2 ≥ · · · ≥
𝑎𝑁𝑠−𝑙 > 𝑎𝑁𝑠−𝑙+1 = 𝑎𝑁𝑠−𝑙+2 = · · · = 𝑎𝑁𝑠

, i.e., the adversary
blocks the last 𝑙 sub-carriers with the lowest probability. Then,
the equivalent problem of (45) becomes

arg max
s∈F𝑠

𝑁𝑠−𝑙∑︁
𝑗=1

𝑠 𝑗 (1 − 𝑎 𝑗 ) + (1 − 𝑎𝑁𝑠
)

𝑁𝑠∑︁
𝑗=𝑁𝑠−𝑙+1

𝑠 𝑗 . (46)

Now, (46) is maximized when
∑𝑁𝑠

𝑗=𝑁𝑠−𝑙+1 𝑠 𝑗 = 1 and 𝑠𝑘 = 0,
𝑘 = 1, · · ·, 𝑁𝑠 − 𝑙. ■

Theorem 5. The optimal sub-carrier blocking pmf, a, for
a given BS scheduling policy depends only on s and is
independent of u, e, and d. Moreover, if the BS chooses any
𝑙 sub-carriers with the highest probability, then the optimal
choice for the adversary is to block any subset of these 𝑙 sub-
carriers with probability 1.

Proof: Without loss of generality, let s = [𝑠1, 𝑠2, · · ·, 𝑠𝑁𝑠
] and

𝑠1 = 𝑠2 = · · · = 𝑠𝑙 > 𝑠𝑙+1 ≥ · · · ≥ 𝑠𝑁𝑠
. Form (42), we have to

solve the following problem

arg min
s∈F𝑠

1∑𝑁𝑠

𝑗=1 𝑠 𝑗 (1 − 𝑎 𝑗 )
(47)

which is equivalent to solving

arg min
s∈F𝑠

𝑠1

𝑙∑︁
𝑗=1

(1 − 𝑎 𝑗 ) +
𝑁𝑠∑︁

𝑗=𝑙+1
𝑠 𝑗 (1 − 𝑎 𝑗 ) (48)

which reduces to

arg max
s∈F𝑠

𝑠1

𝑙∑︁
𝑗=1

𝑎 𝑗 +
𝑁𝑠∑︁

𝑗=𝑙+1
𝑠 𝑗𝑎 𝑗 (49)

which is maximized when
∑𝑙

𝑗=1 𝑠 𝑗 = 1. ■
Without loss of generality, let 𝑝1 ≤ 𝑝2 ≤ · · · ≤ 𝑝𝑛 and

𝑝′1 ≤ 𝑝′2 ≤ · · · ≤ 𝑝′𝑚. Thus, we have 𝑓1, 𝑗 ≤ 𝑓2, 𝑗 ≤ · · · ≤ 𝑓𝑛, 𝑗
and 𝑓𝑖,1 ≥ 𝑓𝑖,2 ≥ · · · ≥ 𝑓𝑖,𝑚, 𝑖 = 1, · · ·, 𝑛, 𝑗 = 1, · · ·, 𝑚.
Algorithm 1 below provides an optimal transmission power
choosing pmf e for a given blocking power choosing pmf d.
The algorithm states that, if 𝑝 < 𝑝1, then there does not exist
a feasible e; if 𝑝𝑛 < 𝑝, then the optimal e is to choose the
power 𝑝𝑛 with probability 1; if 𝑝 exactly matches one of the
powers from the set {𝑝1, 𝑝2, · · ·, 𝑝𝑛}, then the optimal e is to
choose that particular power with probability 1. If these three
cases do not occur, then we define 𝑥 = arg max𝑖∈{1, · · ·,𝑛}, 𝑝𝑖≤ �̄� 𝑖

and 𝑦 = arg min𝑖∈{1, · · ·,𝑛}, 𝑝𝑖≥ �̄� 𝑖. Clearly, 𝑥 < 𝑦. We define a
constant, 𝑔𝑖 =

∑𝑚
𝑗=1 𝑑 𝑗 𝑓𝑖, 𝑗 , 𝑖 = 1, · · ·, 𝑛. We call the constant(

𝑔𝑖 + 𝑔𝑥
𝑝𝑦−𝑝𝑖

𝑝𝑥−𝑝𝑦
− 𝑔𝑦

𝑝𝑥−𝑝𝑖
𝑝𝑥−𝑝𝑦

)
as the coefficient for power 𝑝𝑖 ,

𝑖 ∈ {1, · · ·, 𝑛}\{𝑥, 𝑦}. Then, we traverse from power 𝑝𝑦+1
to power 𝑝𝑛, we call this procedure as the first traversing
procedure. During this traversing process, if we find that(
𝑔 𝑗 + 𝑔𝑥

𝑝𝑦−𝑝 𝑗

𝑝𝑥−𝑝𝑦
− 𝑔𝑦

𝑝𝑥−𝑝 𝑗

𝑝𝑥−𝑝𝑦

)
, 𝑗 > 𝑦, is a strictly positive

number, then we change the coefficient of the power 𝑝𝑘 as(
𝑔𝑘 + 𝑔𝑥

𝑝 𝑗−𝑝𝑘

𝑝𝑥−𝑝 𝑗
− 𝑔 𝑗

𝑝𝑥−𝑝𝑘

𝑝𝑥−𝑝 𝑗

)
, 𝑘 ∈ {1, · · ·, 𝑛}\{𝑥, 𝑗}. We keep

on doing this procedure till we reach 𝑝𝑛. Let us assume that
during this traversing procedure 𝑝𝑖 is the last power for which
we get a positive coefficient, then we define 𝑦 = 𝑖. Then,
we start performing a second traversing procedure from the
power 𝑝𝑥−1 to the power 𝑝1. During this traversing process,
if we find that the coefficient of 𝑝𝑙 , 𝑙 < 𝑥, is a strictly positive
number, then we change the coefficient of the power 𝑝𝑘 as(
𝑔𝑘 + 𝑔𝑙

𝑝𝑦−𝑝𝑘

𝑝𝑙−𝑝𝑦
− 𝑔𝑦

𝑝𝑙−𝑝𝑘

𝑝𝑙−𝑝𝑦

)
, 𝑘 ∈ {1, · · ·, 𝑛}\{𝑙, 𝑦}. We keep

on doing this procedure till we reach 𝑝1. Let us assume
that during this second traversing procedure 𝑝𝑟 is the last
power for which we get a positive coefficient, then we define
𝑥 = 𝑟 . Finally, the algorithm returns

(
�̄�−𝑝𝑦

𝑝𝑥−𝑝𝑦
𝑧𝑥 + 𝑝𝑥− �̄�

𝑝𝑥−𝑝𝑦
𝑧𝑦

)
as

an optimal e, where 𝑧𝑖 is the 𝑖th basis vector of R𝑛.
We note that, Algorithm 1 finds an optimal solution in 𝑂 (𝑛)

time. Next, we prove the optimality of Algorithm 1.

Theorem 6. For a given blocking power pmf d, Algorithm 1
gives an optimal transmission power pmf e.

Proof: From (42), we have to solve the following problem,

arg max
e

𝑛∑︁
𝑖=1

𝑒𝑖

𝑚∑︁
𝑗=1

𝑑 𝑗 𝑓𝑖, 𝑗

s.t.
𝑛∑︁
𝑖=1

𝑒𝑖 = 1

0 ≤ 𝑒𝑖 ≤ 1, 𝑖 = 1, · · ·, 𝑛
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Algorithm 1 For a given d finding an optimal e
Inputs: d, F , p, 𝑝
Define: g = (𝑔1, 𝑔2, · · ·, 𝑔𝑛), where 𝑔𝑖 =

∑𝑚
𝑗=1 𝑑 𝑗 𝑓𝑖, 𝑗 , 𝑥 =

arg max𝑖∈{1,2, · · ·,𝑛}, 𝑝𝑖≤ �̄� 𝑖 and 𝑦 = arg min𝑖∈{1,2, · · ·,𝑛}, 𝑝𝑖≥ �̄� 𝑖,
𝑧𝑖 is the 𝑖th basis vector for R𝑛

if 𝑝 < 𝑝1 then
Return: Solution does not exist

else if 𝑝𝑛 < 𝑝 then
Return: 𝑧𝑛

if 𝑥 = 𝑦 then
Return: 𝑧𝑥

else
for 𝑖 = 𝑦 + 1 : 𝑛 do

if
(
𝑔𝑖 + 𝑔𝑥

𝑝𝑦−𝑝𝑖

𝑝𝑥−𝑝𝑦
− 𝑔𝑦

𝑝𝑥−𝑝𝑖
𝑝𝑥−𝑝𝑦

)
> 0 then

𝑦 = 𝑖

for 𝑖 = 1 : 𝑥 − 1 do
if

(
𝑔𝑖 + 𝑔𝑥

𝑝𝑦−𝑝𝑖

𝑝𝑥−𝑝𝑦
− 𝑔𝑦

𝑝𝑥−𝑝𝑖
𝑝𝑥−𝑝𝑦

)
> 0 then

𝑥 = 𝑖

Return:
(

�̄�−𝑝𝑦

𝑝𝑥−𝑝𝑦
𝑧𝑥 + 𝑝𝑥− �̄�

𝑝𝑥−𝑝𝑦
𝑧𝑦

)
𝑛∑︁
𝑖=1

𝑒𝑖 𝑝𝑖 ≤ 𝑝. (50)

The first two constraints ensure that e ∈ F𝑒 and the last
one is the constraint on the BS transmission power. Now, if
𝑝 < 𝑝1, then the optimization problem of (50) is infeasible.
If 𝑝𝑛 < 𝑝, then the optimal solution for (50) is to choose 𝑝𝑛
with probability 1. If 𝑝 is exactly equal to one of the feasible
BS transmission powers, then the optimal solution for (50) is
to choose that transmission power with probability 1. Now,
we consider the case where 𝑝𝑥 < 𝑝 < 𝑝𝑦 . First, we solve
(50), ignoring the constraint 0 ≤ 𝑒𝑖 ≤ 1, 𝑖 = 1, · · ·, 𝑛. Thus,
the constraint set is given by

𝑒1 + 𝑒2 + · · · + 𝑒𝑛 =1
𝑒1𝑝1 + 𝑒2𝑝2 + · · · + 𝑒𝑛𝑝𝑛 + 𝑠 =𝑝

𝑠 ≥0, (51)

where 𝑠 is a slack variable. Now, we ignore the constraint
𝑠 ≥ 0 and pivoting on variables 𝑒𝑥 and 𝑒𝑦 , we get the following
constraints

𝑒1
𝑝1 − 𝑝𝑦

𝑝𝑥 − 𝑝𝑦
+ 𝑒2

𝑝2 − 𝑝𝑦

𝑝𝑥 − 𝑝𝑦
+ · · · + 𝑒𝑥 + · · · + 𝑒𝑦−1

𝑝𝑦−1 − 𝑝𝑦

𝑝𝑥 − 𝑝𝑦

+ 𝑒𝑦+1
𝑝𝑦+1 − 𝑝𝑦

𝑝𝑥 − 𝑝𝑦
+ · · · + 𝑒𝑛

𝑝𝑛 − 𝑝𝑦

𝑝𝑥 − 𝑝𝑦
+ 𝑠

𝑝𝑥 − 𝑝𝑦
=

𝑝 − 𝑝𝑦

𝑝𝑥 − 𝑝𝑦
,

𝑒1
𝑝𝑥 − 𝑝1
𝑝𝑥 − 𝑝𝑦

+ 𝑒2
𝑝𝑥 − 𝑝2
𝑝𝑥 − 𝑝𝑦

+ · · · + 𝑒𝑥−1
𝑝𝑥 − 𝑝𝑥−1
𝑝𝑥 − 𝑝𝑦

+ 𝑒𝑥+1
𝑝𝑥 − 𝑝𝑥+1
𝑝𝑥 − 𝑝𝑦

+ · · · + 𝑒𝑦 + · · · + 𝑒𝑛
𝑝𝑥 − 𝑝𝑛

𝑝𝑥 − 𝑝𝑦
− 𝑠

𝑝𝑥 − 𝑝𝑦

=
𝑝𝑥 − 𝑝

𝑝𝑥 − 𝑝𝑦
. (52)

Note that as 𝑝𝑥 < 𝑝 < 𝑝𝑦 , the right hand sides in (52) for both
the constraints are strictly positive. Now, replacing 𝑒𝑥 and 𝑒𝑦
into the objective function of (50), we obtain

𝑒1ℎ1 (𝑥, 𝑦) + · · · + 𝑒𝑥−1ℎ𝑥−1 (𝑥, 𝑦) + 𝑒𝑥+1ℎ𝑥−1 (𝑥, 𝑦) + · · ·

+ 𝑒𝑦−1ℎ𝑦−1 (𝑥, 𝑦) + 𝑒𝑦+1ℎ𝑦+1 (𝑥, 𝑦) + · · · + 𝑒𝑛ℎ𝑛 (𝑥, 𝑦)

+ 𝑠

( 𝑔𝑦

𝑝𝑥 − 𝑝𝑦
− 𝑔𝑥

𝑝𝑥 − 𝑝𝑦

)
+ 𝑔𝑦

𝑝𝑥 − 𝑝

𝑝𝑥 − 𝑝𝑦
+ 𝑔𝑥

𝑝 − 𝑝𝑦

𝑝𝑥 − 𝑝𝑦
, (53)

where ℎ𝑖 (𝑥, 𝑦) =

(
𝑔𝑖 + 𝑔𝑥

𝑝𝑦−𝑝𝑖

𝑝𝑥−𝑝𝑦
− 𝑔𝑦

𝑝𝑥−𝑝𝑖
𝑝𝑥−𝑝𝑦

)
. Note that the

coefficient of 𝑠 in (53) is always a negative number as 𝑔𝑥 ≤ 𝑔𝑦 .
Now, assume that ℎ𝑖 (𝑥, 𝑦) < 0, 𝑖 ∈ {1, · · ·, 𝑛}\{𝑥, 𝑦}. Then,
𝑒𝑖 = 0, 𝑖 ∈ {1, 2, · · ·, 𝑛}\{𝑥, 𝑦} and 𝑠 = 0 optimize (53). Thus,
we get an optimal e as

(
�̄�−𝑝𝑦

𝑝𝑥−𝑝𝑦
𝑧𝑥 + 𝑝𝑥− �̄�

𝑝𝑥−𝑝𝑦
𝑧𝑦

)
.

Now, let us assume that during the first traversing pro-
cedure, we observe that ℎ𝑦1 (𝑥, 𝑦) > 0, where 𝑦1 =

min {�̄� |𝑦 < �̄� ≤ 𝑛, ℎ �̄� (𝑥, 𝑦) > 0}. Now, if we pivot 𝑒𝑥 and 𝑒𝑦1 ,
we claim that ℎ �̄� (𝑥, 𝑦1) ≤ 0, �̄� ∈ {𝑦, · · ·, 𝑦1 − 1}. From the def-
inition of 𝑦1, ℎ𝑦1 (𝑥, 𝑦) =

(
𝑔𝑦1 + 𝑔𝑥

𝑝𝑦−𝑝𝑦1
𝑝𝑥−𝑝𝑦

− 𝑔𝑦
𝑝𝑥−𝑝𝑦1
𝑝𝑥−𝑝𝑦

)
> 0.

Thus,

𝑝𝑦1 − 𝑝𝑥

𝑝𝑥 − 𝑝𝑦

(
𝑔𝑦 − 𝑔𝑦1

𝑝𝑥 − 𝑝𝑦

𝑝𝑥 − 𝑝𝑦1

+ 𝑔𝑥
𝑝𝑦1 − 𝑝𝑦

𝑝𝑥 − 𝑝𝑦1

)
> 0, (54)

𝑝𝑦1 − 𝑝𝑥

𝑝𝑥 − 𝑝𝑦
ℎ𝑦 (𝑥, 𝑦1) > 0. (55)

As
𝑝𝑦1 −𝑝𝑥

𝑝𝑥−𝑝𝑦
< 0, ℎ𝑦 (𝑥, 𝑦1) < 0. Now, consider ℎ �̄� (𝑥, 𝑦1), where

𝑦 < �̄� < 𝑦1. From the previous discussion, we know that the
following relations are true,

ℎ �̄� (𝑥, 𝑦) =
(
𝑔�̄� + 𝑔𝑥

𝑝𝑦 − 𝑝 �̄�

𝑝𝑥 − 𝑝𝑦
− 𝑔𝑦

𝑝𝑥 − 𝑝 �̄�

𝑝𝑥 − 𝑝𝑦

)
≤ 0, (56)

ℎ𝑦1 (𝑥, 𝑦) =
(
𝑔𝑦1 + 𝑔𝑥

𝑝𝑦 − 𝑝𝑦1

𝑝𝑥 − 𝑝𝑦
− 𝑔𝑦

𝑝𝑥 − 𝑝𝑦1

𝑝𝑥 − 𝑝𝑦

)
> 0. (57)

From (56), we get the following lower bound on 𝑔𝑦 ,

𝑔𝑦
𝑝𝑥 − 𝑝𝑦1

𝑝𝑥 − 𝑝𝑦
≥

(
𝑔�̄� + 𝑔𝑥

𝑝𝑦 − 𝑝 �̄�

𝑝𝑥 − 𝑝𝑦

)
𝑝𝑥 − 𝑝𝑦1

𝑝𝑥 − 𝑝 �̄�
. (58)

Now, substituting this lower bound to (57) and after simplifi-
cation we get

𝑔𝑦1 + 𝑔𝑥
𝑝 �̄� − 𝑝𝑦1

𝑝𝑥 − 𝑝 �̄�
− 𝑔�̄�

𝑝𝑥 − 𝑝𝑦1

𝑝𝑥 − 𝑝 �̄�
> 0, (59)

that is, ℎ𝑦1 (𝑥, �̄�) > 0 and from the above discussion we
know that, this implies ℎ �̄� (𝑥, 𝑦1) < 0. Now, similar arguments
can be made for the whole first traversing procedure and
the second traversing procedure as well. At the end of both
traversing procedures if the pivot variables are 𝑒𝑥2 and 𝑒𝑦2

then ℎ �̄� (𝑥2, 𝑦2) < 0, �̄� ∈ {1, · · ·, 𝑛}\{𝑥2, 𝑦2} < 0 and from
the previous discussion we know that we get an optimal e as(

�̄�−𝑝𝑦2
𝑝𝑥2 −𝑝𝑦2

𝑧𝑥 +
𝑝𝑥2 − �̄�

𝑝𝑥2 −𝑝𝑦2
𝑧𝑦

)
. ■

Algorithm 2 provides an optimal blocking power choosing
pmf d for a given e. In Algorithm 2, we perform a similar
traversing procedure as Algorithm 1. The only difference is
while traversing in Algorithm 1, we change the coefficient
of a power level if the corresponding coefficient is strictly
positive, in Algorithm 2, we change the coefficient if it is
strictly negative. Next, we state the optimality of Algorithm 2.

Theorem 7. For a given transmission power choosing pmf e,
Algorithm 2 gives an optimal blocking power pmf d.

Theorem 7 can be proved by similar lines of arguments as
in the proof for Theorem 6.
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Algorithm 2 For a given e finding an optimal d
Inputs: e, F , p, 𝑝
Define: g = (𝑔1, 𝑔2, · · ·, 𝑔𝑚), where 𝑔𝑖 =

∑𝑛
𝑗=1 𝑒 𝑗 𝑓 𝑗 ,𝑖 , 𝑥 =

arg max𝑖∈{1,2, · · ·,𝑚}, 𝑝′
𝑖
≤ �̃� 𝑖 and 𝑦 = arg min𝑖∈{1,2, · · ·,𝑚}, 𝑝′

𝑖
≥ �̃� 𝑖,

𝑧𝑖 is the 𝑖th basis function for R𝑛

if 𝑝 < 𝑝′1 then
Return: Solution does not exist

else if 𝑝′𝑛 < 𝑝 then
Return: 𝑧𝑛

if 𝑥 = 𝑦 then
Return: 𝑧𝑥

else
for 𝑖 = 𝑦 + 1 : 𝑛 do

if
(
𝑔𝑖 + 𝑔𝑥

𝑝′
𝑦−𝑝′

𝑖

𝑝′
𝑥−𝑝′

𝑦
− 𝑔𝑦

𝑝′
𝑥−𝑝′

𝑖

𝑝′
𝑥−𝑝′

𝑦

)
< 0 then

𝑦 = 𝑖

for 𝑖 = 1 : 𝑥 − 1 do
if

(
𝑔𝑖 + 𝑔𝑥

𝑝′
𝑦−𝑝′

𝑖

𝑝′
𝑥−𝑝′

𝑦
− 𝑔𝑦

𝑝′
𝑥−𝑝′

𝑖

𝑝′
𝑥−𝑝′

𝑦

)
< 0 then

𝑥 = 𝑖

Return:
(

�̃�−𝑝′
𝑦

𝑝′
𝑥−𝑝′

𝑦
𝑧𝑥 + 𝑝′

𝑥− �̃�

𝑝′
𝑥−𝑝′

𝑦
𝑧𝑦

)

Next, we present a counter example which suggests that
when the transmission power choosing pmf and the blocking
power choosing pmf are not fixed and are part of the action
space of the BS and the action space of the adversary,
respectively, then a Nash equilibrium may not exist. Consider a
system where the BS has three power levels and the adversary
has also three power levels, i.e., 𝑛 = 𝑚 = 3. Both the power
constraint for the BS and the adversary is 3.5 watts. The
feasible powers for the BS and for the adversary are the same,
which is [1, 3, 5]. The matrix F is chosen as

F =


0.5 0.35 0.2
0.6 0.55 0.4
0.8 0.7 0.65

 . (60)

We can show that for this example, for a given d, e cannot be
of the form [𝑒1, 𝑒2, 𝑒3], where 𝑒𝑖 > 0, 𝑖 ∈ {1, 2, 3} and satisfy∑3

𝑖=1 𝑒𝑖 𝑝𝑖 ≤ 𝑝. This can be shown by following the same line
of arguments made in the proof for Theorem 6. Now, from
Algorithm 1, we know that if the adversary chooses powers 3
and 5, then the optimal choice for the BS is to choose powers
3 and 5, similarly, if the adversary chooses powers 1 and 5,
then the optimal choice for the BS is to choose powers 1
and 5. From Algorithm 2, we know that if the BS chooses
powers 1 and 5, then the optimal choice for the adversary is
to choose powers 3 and 5, similarly, if the BS chooses powers
3 and 5, then the optimal choice for the adversary is to choose
powers 1 and 5. Thus, a Nash equilibrium does not exist for
this example.

In the next theorem, we consider the Nash equilibrium when
the transmission power choosing pmf and the blocking power
choosing pmf are not included in the action space of the BS
and in the action space of the adversary, respectively.

Theorem 8. The triplet of actions (û, ŝ, â) is the Nash
equilibrium point, where â and ŝ are the uniform pmfs over
𝑁𝑠 sub-carriers and û is the uniform pmf over 𝑁 users.

Proof: First, we prove that (û, ŝ, â) is a Nash equilibrium
point, then we prove that this is the only possible Nash
equilibrium point. From Theorem 4 and Theorem 5, it is
clear that (û, ŝ) ∈ 𝐵(â) and â ∈ 𝐵(û, ŝ). Thus, (û, ŝ, â)
is a Nash equilibrium point. Now, assume that (ǔ, š, ǎ)
is another Nash equilibrium point. From Theorem 4, it is
clear that Δû,š,ǎ ≤ Δǔ,š,ǎ, the equality holds only when
ǔ = û = [ 1

𝑁
, 1
𝑁
, · · ·, 1

𝑁
]. Without loss of generality, consider

that ǎ = [�̌�1, �̌�2, · · ·, �̌�𝑁𝑠
], where �̌�1 ≥ �̌�2 ≥ · · · ≥ �̌�𝑁𝑠−𝑙 >

�̌�𝑁𝑠−𝑙+1 = �̌�𝑁𝑠−𝑙+2 = · · · = �̌�𝑁𝑠
. From the assumption and

from Theorem 4, we can say that
∑𝑁𝑠

𝑖=𝑁𝑠−𝑙+1 𝑠𝑖 = 1. However,
from Theorem 5, we can say that ǎ ∉ 𝐵(ǔ, š). Thus, the triplet
(ǔ, š, ǎ) cannot be a Nash equilibrium point. Hence, the Nash
equilibrium unique. ■

Next, we present a special case in which the Nash equi-
librium exists even when the transmission power choosing
pmf and the blocking power choosing pmf are part of the
action space of the BS and the action space of the adversary,
respectively. Consider that the matrix F has the following
property,

𝑓𝑖, 𝑗 − 𝑓1, 𝑗 = 𝑙𝑖 , 𝑗 ∈ {1, · · ·, 𝑚}, 𝑖 ∈ {1, · · ·, 𝑛}, (61)

where 𝑙𝑖 are non-negative constants. Consider a fixed blocking
power choosing pmf d. Then, 𝑔𝑖 in Algorithm 1 is

𝑔𝑖 =

𝑚∑︁
𝑗=1

𝑑 𝑗 𝑓𝑖, 𝑗 (62)

=

𝑚∑︁
𝑗=1

𝑑 𝑗 𝑓1, 𝑗 + 𝑙𝑖 . (63)

Thus,

𝑔𝑖 + 𝑔𝑥
𝑝𝑦 − 𝑝𝑖

𝑝𝑥 − 𝑝𝑦
− 𝑔𝑦

𝑝𝑥 − 𝑝𝑖

𝑝𝑥 − 𝑝𝑦

=
©«

𝑚∑︁
𝑗=1

𝑑 𝑗 𝑓1, 𝑗
ª®¬
(
1 +

𝑝𝑦 − 𝑝𝑖

𝑝𝑥 − 𝑝𝑦
− 𝑝𝑥 − 𝑝𝑖

𝑝𝑥 − 𝑝𝑦

)
+ 𝑙𝑥

𝑝𝑦 − 𝑝𝑖

𝑝𝑥 − 𝑝𝑦

− 𝑙𝑦
𝑝𝑥 − 𝑝𝑖

𝑝𝑥 − 𝑝𝑦
+ 𝑙𝑖 . (64)

Thus, the sign of 𝑔𝑖 +𝑔𝑥
𝑝𝑦−𝑝𝑖

𝑝𝑥−𝑝𝑦
−𝑔𝑦

𝑝𝑥−𝑝𝑖
𝑝𝑥−𝑝𝑦

does not depend on
𝒅, which implies that the optimal transmission power choosing
pmf is the same for all d. Similarly, the sign of 𝑔𝑖 +𝑔𝑥

𝑝′
𝑦−𝑝′

𝑖

𝑝′
𝑥−𝑝′

𝑦
−

𝑔𝑦
𝑝′
𝑥−𝑝′

𝑖

𝑝′
𝑥−𝑝′

𝑦
in Algorithm 2 does not depend on e, in other words

the optimal blocking power choosing pmf is independent of
e. Now, run Algorithm 1 for any arbitrary d and denote the
output as ê, similarly run Algorithm 2 for any arbitrary e and
denote the output as d̂. Then, using Theorem 8, we have that
the 5 tuple (b̂, ĉ, ê, â, d̂) is the unique Nash equilibrium.

V. NUMERICAL RESULT

We consider a system with two sub-carriers, four blocking
power levels and four transmission power levels, i.e., 𝑁𝑠 = 2
𝑚 = 𝑛 = 4. We assume that all sub-carriers are available to
all users, i.e., 𝑁𝑠,𝑖 = 𝑁𝑠 , 𝑖 ∈ 1, 2, · · ·, 𝑁 . We compare the
performance of the policy ˜̃𝜋 and the policy ˆ̃𝜋 for varying
numbers of users. The blocking power levels are 1, 2, 3, and
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Fig. 2. Comparison of the performances the the proposed algorithms.

4, similarly, the transmission power levels are 1, 2, 3, and 4,
the transmission power constraint 𝑝 = 3.5 and the blocking
power level constraint is 𝑝 = 3. We assume that the matrix of
probability of successful transmission F is,

F =


0.4 0.3 0.2 0.1
0.5 0.4 0.3 0.2
0.7 0.6 0.5 0.4
0.9 0.8 0.7 0.6

 . (65)

For the simulations, we use the adversarial action �̄�, i.e., at
each time slot the adversary chooses one of the two sub-
carriers uniformly and chooses the blocking power level 3.
From Lemma 1, we know that the max-age user choosing
policy and the uniform sub-carrier choosing policy are the
optimal user choosing and the optimal sub-carrier choosing
policy for the adversarial action �̄�, respectively. That is the
reason we see in Fig. 2 that the lower bound of the average
age and the average age for the policy ˜̃𝜋 are very close.
Note that, the power choosing policies for both ˜̃𝜋 and ˆ̃𝜋
are the same, i.e., choose the power levels 3 and 4 with
probability 0.5 each, however as the user choosing policy of ˜̃𝜋
is optimal for the adversarial action �̄�, we see that the policy ˜̃𝜋
outperforms ˆ̃𝜋 in terms of the average age. We also note in
Fig. 2 that the performance gap between the policy ˜̃𝜋 and
the policy ˆ̃𝜋 increases as we increase the number of users 𝑁 .
This can be intuitively explained as follows: Note that for the
policy ˆ̃𝜋, the user choosing policy is the uniform user choosing
policy and as 𝑁 increases the probability with which the BS
chooses the maximum aged user decreases and as choosing
the maximum aged user is the optimal user choosing policy
for the adversarial action �̄�, the gap between the policies ˜̃𝜋
and ˆ̃𝜋 increases with 𝑁 .

VI. CONCLUSION

We considered a communication network with 𝑁 users, one
BS, 𝑁𝑠 sub-carriers and one adversary. The BS transmits an
update packet to the 𝑖th user via a communication channel
from a subset of these 𝑁𝑠 communication channels, called

N𝑠,𝑖 . At each time slot, the BS transmits an update packet to
a user via a communication channel to decrease the age of
the system and the adversary aims to block this update packet
to increase the age of the system. The BS has 𝑛 transmission
powers and the adversary has 𝑚 blocking powers available.
Both the BS and the adversary are subject to average power
constraints. First, we determined a universal lower bound for
the average age for this communication system. We showed
that the uniform user choosing policy, the uniform sub-carrier
choosing policy and any arbitrary power choosing policy is 4
optimal; and if N𝑠 = N𝑠,𝑖 and 𝑁𝑠 is large, then it is 2 optimal.
We then showed that the max-age user choosing policy, the
uniform sub-carrier choosing policy and any arbitrary power
choosing policy is 2 optimal; and if N𝑠 = N𝑠,𝑖 and the BS
power constraint exactly matches with one of the powers from
the feasible BS powers, then it is the optimal scheduling policy.
Second, we considered the scenario where N𝑠 = N𝑠,𝑖 and
the BS chooses its scheduling policy, the adversary chooses
its blocking policy from the set of stationary randomized
policies. We found that if the power choosing policies are
part of the action space of the BS and the action space of
the adversary, then a Nash equilibrium may or may not exist.
However, when those are not part of the action space of the
BS and the adversary, then the uniform user choosing policy,
the uniform sub-carrier choosing policy and the uniform sub-
carrier blocking policy form the Nash equilibrium point.
Finding a Nash equilibrium point in the most general setting
is an interesting research direction.
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