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Age-Minimal Transmission for Energy Harvesting
Sensors With Finite Batteries: Online Policies

Ahmed Arafa™, Member, IEEE, Jing Yang ™, Member, IEEE, Sennur Ulukus

and H. Vincent Poor

Abstract— An energy-harvesting sensor node that is sending
status updates to a destination is considered. The sensor is
equipped with a battery of finite size to save its incoming energy,
and consumes one unit of energy per status update transmission,
which is delivered to the destination instantly over an error-free
channel. The setting is online in which the harvested energy is
revealed to the sensor causally over time after it arrives, and
the goal is to design status update transmission times (policy)
such that the long term average age of information (Aol) is
minimized. The Aol is defined as the time elapsed since the
latest update has reached at the destination. Two energy arrival
models are considered: a random battery recharge (RBR) model,
and an incremental battery recharge (IBR) model. In both models,
energy arrives according to a Poisson process with unit rate, with
values that completely fill up the battery in the RBR model, and
with values that fill up the battery incrementally in a unit-by-unit
fashion in the IBR model. The key approach to characterizing
the optimal status update policy for both models is showing the
optimality of renewal policies, in which the inter-update times
follow a renewal process in a certain manner that depends
on the energy arrival model and the battery size. It is then
shown that the optimal renewal policy has an energy-dependent
threshold structure, in which the sensor sends a status update
only if the Aol grows above a certain threshold that depends
on the energy available in its battery. For both the random and
the incremental battery recharge models, the optimal energy-
dependent thresholds are characterized explicitly, i.e., in closed-
form, in terms of the optimal long term average Aol. It is also
shown that the optimal thresholds are monotonically decreasing
in the energy available in the battery, and that the smallest
threshold, which comes in effect when the battery is full, is equal
to the optimal long term average Aol.
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I. INTRODUCTION

EAL-TIME sensing applications in which time-sensitive

measurement status updates of some physical phenom-
enon are sent to a destination (receiver) call for careful trans-
mission scheduling policies under proper metrics that assess
the updates’ timeliness and freshness. The age of information
(Aol) metric has recently attracted attention as a suitable
candidate for this purpose. The Aol is defined as the time
spent since the latest measurement update has reached the
destination, and hence it basically captures delay from the
destination’s perspective. When sensors (transmitters) rely on
energy harvested from nature to transmit their status updates,
they cannot transmit all the time, so that they do not run out
of energy and risk having overly stale status updates at the
destination. Therefore, the fundamental question as to how to
optimally manage the harvested energy to send timely status
updates needs to be addressed. In this work, we provide an
answer to this question by deriving optimal status update
policies for energy harvesting sensors with finite batteries in
an online setting where the harvested energy is only revealed
causally over time.

The online energy harvesting communication literature,
in which energy arrival information is only revealed causally
over time, is mainly studied via Markov decision processes
modeling and dynamic programming techniques, see, e.g., [3]—
[9], and also via specific analyses of the involved stochastic
processes, as in [10]-[12]. A different approach is introduced
in [13], and then extended in [14]-[23] for various system
models, in which an online fixed fraction policy, where
transmitters use a fixed fraction of their available energy for
transmission in each time slot, is shown to perform within
a constant gap from the optimal online policy. Such fixed
fraction online policies are simpler than usual online policies
introduced in the literature, with provable near-optimal perfor-
mance. In the online setting of this work, we also investigate a
relatively simple online policy, and show its exact optimality.

The Aol metric has been studied in the literature under
various settings; mainly through modeling the update system
as a queuing system and analyzing the long term average
Aol, and through using optimization tools to characterize
optimal status update policies, see, e.g., [24]-[36], and also
the recent survey in [37]. In this work, we employ tools from
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optimization theory to devise age-minimal online status update
policies in systems where sensors are energy-constrained,
and rely on energy harvested from nature to transmit status
updates. Some related works to this problem are summarized
next.

Aol analysis and optimization in energy harvesting com-
munications have been recently considered in [38]—-[49] under
various service time (time for the update to take effect), battery
capacity, and channel assumptions. With the exception of [42],
an underlying assumption in these works is that energy expen-
diture is normalized, i.e., sending one status update consumes
one energy unit. References [38], [39] consider a sensor with
infinite battery, with [38] focusing on online policies under
stochastic service times, and [39] focusing on both offline
and online policies with zero service times, i.e., with updates
reaching the destination instantly. Reference [40] studies the
effect of sensing costs on Aol with an infinite battery sensor
transmitting through a noisy channel. Using a harvest-then-use
protocol, [40] presents a steady state analysis of Aol under
both deterministic and random energy arrivals. The offline
policy in [39] is extended to non-zero, but fixed, service
times in [41] for both single and multi-hop settings, and
in [42] for energy-controlled variable service times. The online
policy in [39] is analyzed through a dynamic programming
approach in a discretized time setting, and is shown to have
a threshold structure, i.e., an update is sent only if the age
grows above a certain threshold and energy is available for
transmission. Motivated by such results for the infinite battery
case, [43] then studies the performance of online threshold
policies for the finite battery case under zero service times,
yet with no proof of optimality. Reference [44] proves the
optimality of online threshold policies under zero service
times for the special case of a unit-sized battery, via tools
from renewal theory. It also shows the optimality of best
effort online policies, where updates are sent over uniformly-
spaced time intervals if energy is available, for the infinite
battery case. Such best effort online policy is also shown to be
optimal, for the infinite battery case, when updates are subject
to erasures in [45] and [46]; with no erasure error feedback
in [45] and with perfect erasure error feedback in [46]. Under
the same system model of [45], reference [47] analyzes the
performances of the best effort online policy and the save-and-
transmit online policy, where the sensor saves some energy
in its battery before attempting transmission, under coding to
combat channel erasures. A slightly different system model
is considered in [48], in which status updates are externally
arriving, i.e., their measurement times are not controlled by
the sensor. With a finite battery, and stochastic service times,
reference [48] employs tools from stochastic hybrid systems to
analyze the long term average Aol. An interesting approach is
followed in [49] where the idea of sending extra information,
on top of the measurement status updates, is introduced and
analyzed for unit batteries and zero service times.

In this paper, we show the optimality of online thresh-
old policies under a finite battery setting, with zero service
times. We consider two energy arrival (recharging) models,
namely, a random battery recharge (RBR) model, and an
incremental battery recharge (IBR) model. In both models,

energy arrives according to a Poisson process with unit rate,
yet with the following difference: in the RBR model, energy
arrivals completely fill up the battery, while in the IBR model,
energy arrivals fill up the battery incrementally in a unit-by-
unit fashion. We invoke tools from renewal theory to show that
the optimal status update policy, the one minimizing the long
term average Aol, is such that specific update times, depending
on the recharging model, follow a remewal process with
independent inter-update delays. Then, we follow a Lagrangian
approach to show that the optimal renewal-type policy, for
both recharging models, has an energy-dependent threshold
structure, in which an update is sent only if the Aol grows
above a certain threshold that depends on the energy available
in the battery, the specifics of which vary according to the
recharging model. Our approach enables characterizing the
optimal thresholds explicitly, i.e., in closed-form, in terms of
the optimal long term average Aol, which is in turn found
by a bisection search over an interval that is strictly smaller
than the unit interval. We also show that, for both recharging
models, the optimal thresholds are monotonically decreasing
in the available energy, i.e., the higher the available energy
the smaller the corresponding threshold, and that the smallest
threshold, corresponding to a full battery, is equal to the
optimal long term average Aol.

We acknowledge an independent and concurrent work [50]
that considers the same setting of the IBR model considered
in this work, and also shows the optimality of online threshold
policies. In there, tools from the theory of optimal stopping,
from the stochastic control literature, are invoked to show
such result, along with some structural properties. The optimal
thresholds are found numerically. Different from [50], how-
ever, and as mentioned above, the approach followed in this
work for the IBR model, namely, proving the renewal structure
of the optimal policy followed by the Lagrangian approach,
allows characterizing the optimal energy-dependent thresholds
in closed-form in terms of the optimal Aol.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a sensor node that collects measurements from
a physical phenomenon and sends updates to a destination
over time. The sensor relies on energy harvested from nature
to acquire and send its measurement updates, and is equipped
with a battery of finite size B to save its incoming energy.
The sensor consumes one unit of energy to measure and send
out an update to the destination. We assume that updates are
sent over an error-free link with negligible transmission times
as in [39], [43], and [44]. Energy arrives (is harvested) at
times {t1, 12, . .. } according to a Poisson process of rate 1. Our
setting is online in which energy arrival times are revealed
causally over time; only the arrival rate is known a priori.
We consider two models for the amount of harvested energy
at each arrival time. The first model, denoted random battery
recharge (RBR), is when energy arrives in B units. This
models, e.g., situations where the battery size is relatively
small with respect to the amounts of harvested energy, and
hence energy arrivals fully recharge the battery. We note that
this RBR model has been previously considered in the online
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scheduling literature in [13]-[23] and in the information-
theoretic approach considered in [51]. The second model,
denoted incremental battery recharge (IBR), is when energy
arrives in units, i.e., when the battery is recharged incremen-
tally in a unit-by-unit fashion. We mathematically illustrate
the difference between the two models below.

Let s; denote the time at which the sensor acquires (and
transmits) the ith measurement update, and let £(¢) denote
the amount of energy in the battery at time . We then have
the following energy causality constraint [52]:

E(sy) =1, Vi (1)

We assume that we begin with an empty battery at time 0. For
the RBR model, the battery evolves as follows over time:

E(s;)=min{€(s;_) =1+ B-A(x),B}, (2

where x; £ s; —s;j_1, and A(x;) denotes the number of energy
arrivals in [s;_1, s;). Note that A(x;) is a Poisson random
variable with parameter x;. We denote by Fp the set of feasible
transmission times {s;} described by (1) and (2) in addition to
an empty battery at time 0, i.e., £(0) = 0. Similarly, for the
IBR model, the battery evolves as follows over time:

E(s7)=min{€(s_,) —1+Ax),B}. G)

We denote by F, the set of feasible transmission times {s;}
described by (1) and (3) in addition to an empty battery at
time 0, i.e., £(0) = 0.

For either recharging model, the goal is to choose an online
feasible transmission policy {s;} (or equivalently {x;}) such
that the long term average of the Aol experienced at the
destination is minimized. The Aol is defined as the time
elapsed since the latest update has reached the destination,
which is formally defined as follows at time :

a(t) &t —u(r), 4)

where u(f) is the time stamp of the latest update received
before time ¢. Let n(¢) denote the total number of updates
sent by time . We are interested in minimizing the area under
the age curve representing the total cumulative Aol, see Fig. 1
for a possible sample path with n(r) = 3. At time ¢, this area
is given by
1 n(t) 1
2 2
JOEE: ;xi 5 (=) )

and therefore the goal is to characterize the following quantity
for the RBR model:

1

pp £ min limsup —E [r(T)] (6)
xeFp T—oo T

representing the long term average Aol, where E(-) is the

expectation operator. Similarly, for the IBR model, the goal

is to characterize

1

p £ minlimsup —E [r(T)]. 7
xeF Tooo T

We discuss problems (6) and (7) in Sections IV and V,

respectively. In the next section, we discuss the special case
of B =1 in which the two models are equivalent.

age
0 s1 so sg t time
L 1 1 |
1 T2 T3
Fig. 1. Example of the age evolution versus time with n(t) = 3.

III. UNIT BATTERY CASE: A REVIEW

In this section, we review the case B = 1 studied in [44].
Observe that for B = 1, Fp = F and problems (6)
and (7) are identical. In studying this problem, reference [44]
first shows that renewal policies, i.e., policies with update
times {s;} forming a renewal process, outperform any other
uniformly bounded policy, which are defined as follows (see
[44, Definition 3]).

Definition 1 (Uniformly Bounded Policy) An online policy
whose inter-update times, as a function of the energy arrival
times, have a bounded second moment.

Then, reference [44] shows that the optimal renewal policy is
a threshold policy, where an update is sent only if the Aol
grows above a certain threshold. We review this latter result
in this section.

Let z; denote the time until the next energy arrival since
the (i — 1)th update time, s;_j. Since the arrival process
is Poisson with rate 1, 7;’s are independent and identically
distributed (i.i.d.) exponential random variables with parameter
1. Under renewal policies, the ith inter-update time x; should
not depend on the events before s;_j; it can only be a
function of 7;. Moreover, under any feasible policy, x;(z;)
cannot be smaller than 7;, since the battery is empty at s;_1.
Next, note that whenever an update occurs, both the battery
and the age drop to 0, and hence the system resets. This
constitutes a renewal event, and therefore using the strong law
of large numbers of renewal processes [53], problem (6) (or
equivalently problem (7)) reduces to
E [x(7)?] ®
2E[x(2)]”
where expectation is over the exponential random variable 7.

In order to make problem (8) more tractable to solve,
we introduce the following parameterized problem:

p1 = min

x(1)>1

1
()& min SE [x(0?] = 2ELx (). ©)

This approach was discussed in [54]. We now have the
following lemma, which is a restatement of the results in [54],
and provide a proof for completeness.

Lemma 1 p{(A) is decreasing in A, and the optimal solution
of problem (8) is given by 1* that solves p1(1*) = 0.

Proof: Let 1; > 0, and let the solution of problem (9) be
given by x® for A = 4;. Now for some 1, > A, one can
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write

2

%E [(x(l))z] — LE [x(l)}

> p1(42),

i) = 2 [(x(l))z] —ME [xu)}

Vv

(10)

where the last inequality follows since x(!) is also feasible in
problem (9) for 4 = 4,.

Next, note that both problems (9) and (8) have the same
feasible set. In addition, if pj(1) = 0, then the objective
function of (8) satisfies %IE L(x(l))z J/E [x(l)} = A. Hence,
the objective function of (8) is minimized by finding the
minimum A > 0 such that p;(4) = 0. Finally, by the first
part of lemma, there can only be one such A, which we
denote 1*. W

By Lemma 1, one can simply use a bisection method to
find A* that solves pi(4*) = 0. This A* certainly exists
since p1(0) > 0 and lim;_ p1(41) = —oo0. We focus on
problem (9) in the rest of this section, for which we introduce
the following Lagrangian [55]:

1 o0 o
L :—/ x2(t)e Tdr — z/ x(t)e "dr
2 Jo 0

—/0 () (<) — 1) dr, (10

where u(7) is a non-negative Lagrange multiplier. Taking
derivative with respect to x(¢) and equating to 0 we get

u(t)

x(t) =1+ —. (12)
e

Now if + < A, then x(¢#) has to be larger than 7, for if
it were equal, the right hand side of the above equation
would be larger than the left hand side. By complementary
slackness [55], we conclude that in this case u(t) = O,
and hence x(f) = A. On the other hand if + > /, then
x(t) has to be equal to 7, for if it were larger, then by
complementary slackness u(#) = 0 and the right hand side
of the above equation would be smaller than the left hand
side. In conclusion, we have

A
x(t) = {t ’

This means that the optimal inter-update time is threshold-
based; if an energy arrival occurs before 4 amount of time
since the last update time, i.e., if 7 < 4, then the sensor should
not use this energy amount right away to send an update.
Instead, it should wait for 2 — 7 extra amount of time before
updating. Else, if an energy arrival occurs after A amount of
time since the last update time, i.e., if 7 > A, then the sensor
should use that amount of energy to send an update right away.
We coin this kind of policy A-threshold policy. Substituting
this x(¢) into problem (9) we get

t<2i

P> (1)

1
pi)=e*— 512, (14)

which admits a unique solution of 4* ~ 0.9012 when equated
to 0. In the next two sections, we extend the above approach to

battery recharge
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Fig. 2. Age evolution over time in the ith epoch, with j + 1 < B updates.

characterize optimal policies for larger (general) battery sizes
under both RBR and IBR models.

IV. RANDOM BATTERY RECHARGE (RBR) MODEL
A. Renewal-Type Policies

In this section, we focus on problem (6) in the general case
of B > 1 energy units. Let /; denote the ith time that the
battery level falls down to B — 1 energy units. We use the term
epoch to denote the time duration between two consecutive
such events, and define xp ; £ [, —1;_ as the length of the ith
epoch. The main reason behind choosing such specific event to
determine the epoch’s start/end times is that the epoch would
then contain at most B updates, and that any other choice
leads to having possibly infinite number of updates in a single
epoch, which is clearly more complex to analyze. Let z; denote
the time until the next energy arrival after /;_;. One scenario
for the update process in the ith epoch would be that starting
at time /;_1, the sensor sends an update only after the battery
recharges, i.e., at some time after /;_1 + 7;, causing the battery
state to fall down from B to B — 1 again. Another scenario
would be that the sensor sends j < B — 1 updates before the
battery recharges, i.e., at some times before /;_1 + 7;, and then
submits one more update after the recharge occurs, making in
total j + 1 updates in the ith epoch.

Let us now define x;;, 1 < j < B — 1, to be the time it
takes the sensor to send B — j updates in the ith epoch before
a battery recharge occurs. That is, starting at time /;_;, and
assuming that the ith epoch contains B updates, the sensor
sends the first update at /;_j +xp_1;, followed by the second
update at /;_1 +xp_2,;, and so on, until it submits the B — 1st
update at /;_1 4+x1;, using up all the energy in its battery. The
sensor then waits until it gets a recharge at [;_; + 7; before
sending its final Bth update in the epoch. See Fig. 2 for an
example run of the Aol curve during the ith epoch given that
the sensor sends j + 1 < B updates.

In general, under any feasible status updating online policy,
{x j,i}f;f and xp,; may depend on all the history of status
updating and energy arrival information up to /;_1, which we
denote by H,_1. In addition to that, the value of xp ; can also
depend on 7;. However, by the energy causality constraint (1),
the values of {x j,i}fz_ll cannot depend on 7;. This is due to



538 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 1, JANUARY 2020

the fact that if the sensor updates j + 1 times in the same
epoch, then the first j updates should occur before the battery
recharges. Focusing on uniformly bounded policies, we now
have the following theorem. The proof is in Appendix VIII-A.

Theorem 1 The optimal status update policy for problem (6)
in the case B > 1 is a renewal policy, i.e., the sequence {l;}
forms a renewal process. Moreover, the optimal {x j,,-}fz_ll are
constants, and the optimal xp ; only depends on t;.

B. Threshold Policies

Theorem 1 indicates that the sensor should let its battery
level fall down to B — 1 at times that constitute a renewal
policy. Next, we characterize the optimal renewal policy by
which the sensor sends its updates. Using the strong law of
large numbers of renewal processes (renewal reward theorem)
[53, Th. 3.6.1], problem (6) reduces to an optimization over a
single epoch as follows:

5 = min E[R (x)]
x  Elxp(r)]
s.t. xp_1>0
Xj1=2xj, 2<j<B-1

xg(t) = 7, Vr, (15)

where x £ {x1,...,xp}, with xp(t) denoting the length
of an epoch in which the battery recharge occurs after ¢
time units of its beginning, and R (x) denotes the area
under the age curve during an epoch. Note that the expec-
tation is over the exponential random variable 7. Using the
renewal-reward theorem enables one, by the i.i.d. property
of epochs, to consider optimizing the status update policy
over a single epoch, and then repeat it over all other epochs,
without losing optimality. This is the main essence of prob-
lem (15). Similar to the B = 1 case, we define pp(1) as
follows:

P & min B[R (x)] — 2E [x5(7)]

s.t. constraints of (15). (16)

As in Lemma 1, one can show that prbr(/l) is decreasing in 1,
and that the optimal solution of problem (15) is given by A*
satisfying piP"(1*) = 0.

Since the optimal solution for the B > 1 case cannot be
larger than that of the B = 1 case, which is 0.9012, one
can use, e.g., a bisection search over (0,0.9012] to find the
optimal /4 for B > 1. We now write the following Lagrangian
for problem (16) after expanding the objective function:

e NB-1 4 — Z

1 [¥B-1
—|——/ xg(r)ze”dr
2 Jo

1B
+5 Z/ (
j=27%

1 o o
+ = / (xp(t) —x1)’e Tdr — i/ xp(t)e tdr
X1 0

—Xj

1
£—2x3 —Xjt1) e

xp(t) — xj)zeffdr

2

x4 (t) [

A+ x1

A+ xo

A+ x3

Ty

A x3 T2 x1

Fig. 3. Optimal multi threshold structure of x4 (7).

— UB-1XB— 1—2#]

- /O 10 (rp(0) — 1) dr,

where {1, ..., up—1, up(r)} are non-negative Lagrange mul-
tipliers. Taking derivative with respect to xp(f) and equating
to 0 we get

- x1+1)

a7

B-1
B(
xB(t)_i‘i‘ij XjSt<xj_ 1+,U ),

j=1

(18)

where 14 equals 1 if the event A is true, and O oth-
erwise. Now let us assume that A is smaller than
min {xp_1, minj<j<p_2x; — x;j41}, and verify this assump-
tion later on. Proceeding similarly to the analysis of the B = 1
case, we get

A, t <2
t, A<t <xp_
A+xp_1, xp_1 =<t <A+xp_
xp(t) =<1 A+xp-1 <t <xp-2. (19)
A+ xi, X1 <t <A+x
t, t> A4+ x

A depiction of the above policy for B = 4 is shown in Fig. 3.

Thus, the optimal update policy has the following structure.
Starting with a battery of B — 1 energy units and zero age,
if the next battery recharge occurs at any time before 1 time
units, then the sensor updates at exactly + = A. While if
it occurs at any time between A and xp_i, then the sensor
updates right away. This is the same as the A-threshold policy,
the solution of the B = 1 case, except that it has a cut-off at
t = xp—1. This cut-off value has the following interpretation:
if the battery recharge does not occur until # = xp_1, then
the sensor updates at t = xp_1, causing the battery level and
the age to fall down to B — 2 and 0, respectively. The sensor
then repeats the A-threshold policy described above with a new
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cut-off value of xp_», i.e., if the recharge does not occur until
t = xp_2, then the sensor updates again at r = xp_», causing
the battery level and the age to fall down to B — 3 and 0,
respectively. This technique repeats up to + = x;, when the
sensor updates for the (B — 1)th time, emptying its battery.
At this time, the sensor waits for the battery recharge and
applies the A-threshold policy one last time, with no cut-off
value, to submit the last Bth update in the epoch. Note that
if the battery recharge occurs at some time 7 < xp_, then
there would be 1 update in the epoch. On the other hand,
if x; <7 <xj_q, for some 2 < j < B — 1, then there would
be B — j + | updates. Finally, if 7 > x1 then there would be
B updates.

In the sequel, we find the optimal values of {x; }f;ll (and 1)
by taking derivatives of the Lagrangian with respect to x;’s
and equating to 0. Before doing so, we simplify the objec-
tive function of problem (16) by evaluating the expectations
involved and using (19). After some simplifications we get

E[R (x)] — AE [xp(1)] = * — %12

B—1
+AM)Y e (xpoy 4+ e
j=1
B-2
= (= xj 1) e,
j=1

(20)

where f1(1) & 1+ e+ — %22. Using the above in the
Lagrangian and taking derivatives we get

x1=x2+ fi(A) + pie,
Xj=xjp1+ [id) 4+ (uj — pj1 —e51) e,
2<j=<B-2, (22
xp—1= fi(A) + (up—1 — up—2 — e *B2) *B-1. (23)
Now let us assume that x; > xj41, 1 < j < B — 2, and
xp—1 > 0. Hence, by complementary slackness we have u; =

0, 1 < j < B — 1. One can then substitute x; — x> in (22) for
Jj =2 to find x; — x3 and proceed recursively to get

21

xj—xjp1=fj(A), 1<j=<B-2, (24)
xp—1 = fp-1(4), (25)

where we have defined
f[i2 AR —e P 2<j<B—-1. (26)

We have the following result on the structure of {f;(4)}.

Lemma 2 For a fixed A, the sequence { f; (/1)}5:11 is decreas-
ing; and for a fixed j, fj() is decreasing in A.

Proof: The proofs of the two statements follow by induction.
Clearly, we have f>(1) < fi(4). Now assume f;(1) <
fi—1(4) for some j > 2. Therefore f;j1(4) = fi(1) —
e i < f1(h) — e fi-1™® = f;(2). This shows the first
statement.

Next, direct first derivative analysis shows that fj(1) is
decreasing in A. Now assume that f;(A) is decreasing in A for

some j > 2, and observe that df-’;’i'(ﬁ) = %-w*f.i(i)%,
which is negative by the induction hypothesis. This shows
the second statement, and completes the proof of the
lemma. B

Note that f;(4) represents the inter-update delay between
updates B—j—1 and B— j. With this in mind, Lemma 2 has an
intuitive explanation: it shows that when the amount of energy
in the battery is relatively low, the sensor becomes less eager
to send the next update, so that it does not run out of energy,
and oppositely, when the amount of energy in the battery is
relatively high, the sensor becomes more eager to send the next
update so that it makes use of the available energy before the
next recharge overflows the battery. Next, by equations (24)
and (25), we proceed recursively from j =B —1to j =1to
find the values of x;’s in terms of 4. This gives

B—1
xj=Y fud), 1<j<B-1 27)
m=j
Finally, we substitute the above in (20) to get
; 1 B-1 B—1 (s
PR =™ = S22+ (A = f2) = 1) e Tns I
j=1
(28)
1 )
=t — 512 — e 51 (29)

and perform a bisection search over 4 € (0,0.9012] to find
the optimal A* that solves pg’r (4*) = 0. We note that for
B = 1, the summation in (29) vanishes and we directly
get (14). Finally, observe that pg’r(/l) = 0 implies fp_1(1) =
—log (e_i — %/12). Since 0 < A < 0.9012, we have 0 <
e *—132 <1, and hence fB—1(A4) > 0; moreover fp_1(4) >
—log e‘i) = A. By Lemma 2, the above argument shows
that: 1) f; (A*) > 0, 1 < j < B — 1, which further
implies by (21)-(23) that all Lagrange multipliers are zero,
as previously assumed; and 2) 2* < f; (4*), 1 < j < B —1,
which verifies the previous assumption regarding the optimal
age being smaller than all inter-update delays.

In summary, given the functions {f; (/1)}5:21 through the
recursive formulas in (26) with fi(A) = A +e™* — 122,
the optimal solution of problem (6) is given by a bisection
search for A* that satisfies p%’r(/l*) = 0 in (29), and the
thresholds {x;‘}f;}l of the optimal policy in (19) are given
by (27).

V. INCREMENTAL BATTERY RECHARGE (IBR) MODEL
A. Renewal-Type Policies

In this section, we focus on problem (7) in the general case
of B > 1. Similar to what we have shown in the previous
section, we first show that the optimal update policy that
solves problem (7) has a renewal structure. Namely, we show
that it is optimal to transmit updates in such a way that
the inter-update delays are independent over time; and that
the time durations in between the two consecutive events of
transmitting an update and having k < B — 1 units of energy
left in the battery are i.i.d., i.e., these events occur at times that
constitute a renewal process. We first introduce some notation.
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Let the pair (£(¢), a(t)) represent the state of the system
at time ¢. Fix k € {0,1,..., B — 1}, and consider the state
(k,0), which means that the sensor has just submitted an
update and has k units of energy remaining in its battery.
Let /; denote the time at which the system visits (k, 0) for
the ith time. We use the term epoch to denote the time in
between two consecutive visits to (k, 0). Observe that there
can possibly be an infinite number of updates occurring in an
epoch, depending on the energy arrival pattern and the update
time decisions. For instance, in the ith epoch, which starts
at /;_, one energy unit may arrive at some time /;_| + 71 ;,
at which the system goes to state (k + 1, 71,;), and then the
sensor updates afterwards to get the system state back to (k, 0)
again. Another possibility (if & > 1) is that the sensor first
updates at some time /;_1 + xi,;, at which the system goes to
state (k — 1,0), and then two consecutive energy units arrive
at times /;_y +11,; and [;_| +11,; + 72,;, respectively, at which
the system goes to state (k + 1,71,; + 72,;), and then the
sensor updates afterwards to get the system state back to (k, 0)
again. Depending on how many energy arrivals occur in the ith
epoch, how far apart from each other they are, and the status
update times, one can determine the length of the ith epoch
and how many updates it has. Observe that the update policy
in the ith epoch may depend on the history of events (energy
arrivals and transmission updates) that occurred in previous
epochs, which we denote by H;_;. Our first main result in
this section shows that this is not the case, under uniformly
bounded policies as per Definition 1, and that epoch lengths
should be i.i.d. Our next theorem formalizes this. The proof
is in Appendix VIII-B.

Theorem 2 The optimal status update policy for problem (7)
in the case B > 1 is a renewal policy, i.e., the sequence {l;}
denoting the times at which the system visits state (k,0), for
some fixed 0 <k < B — 1, forms a renewal process.

Based on Theorem 2, the next corollary now follows.

Corollary 1 In the optimal solution of problem (7), the inter-
update times are independent.

Proof: Observe that whenever an update occurs the system
enters state (j, 0) for some j < B — 1. The system then starts
a new epoch with respect to state (j,0). Since the choice
of k energy units in Theorem 2 is arbitrary, the results of
the theorem now tell us that the update policy in that epoch,
and therefore its length, is independent of the past history,
in particular the past inter-update lengths. W

Based on Corollary 1, we have the following observation.
Let us assume that the optimal policy is such that the state
at time ¢ is (j, 7). This means that the previous status update
occurred at time # — t. By Corollary 1, the policy at time 7 is
independent of the events before time ¢ — 7. However, it may
depend on the events occurring in [f — 7, f). For instance, for
j > 1, it may be the case that at time (¢ — t)* the sensor had
Jj — 1 energy units in its battery, and then received another
energy unit at some time in [t — 7, t); or, it may have already
started with j energy units at time (t — 7)™ and received no
extra energy units in [t — 7, t). The question now is whether
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the optimal policy at time ¢ is the same in either of the two
scenarios. The following result concludes that it is indeed the
same.

Lemma 3 The optimal status update policy of problem (7) is
such that at time t the next scheduled update time is only a
function of the system state (E(t), a(t)).

Proof: Let us assume that the optimal policy is such that the
state at time 7 is (j, 7). Then this means that the previous status
update occurred at time t+ — 7. By Corollary 1, the optimal
policy at time ¢ in this case is independent of the events
before ¢+ — 7. Starting from time ¢, the sensor then solves
a shifted problem defined as follows. We basically use the
same terminology and random variables that constitute (5) to
characterize the area under the age curve starting from time ¢
until time ¢ + 7' (instead of starting from time O to time 7),
and denote it by r,(7T), with a(t) = 7. We also characterize
a shifted feasible set F;, in which the battery evolves exactly
as in (3) and starts with j energy units at time r. Therefore,
given a state of (j, 7) at time 7, the sensor solves the following
shifted problem:

1
min lim sup —E [r,(T)]

xeF Tooo T (30)
to find the optimal solution from time ¢ onwards (cost-to-go).
The above solution depends only on future energy arrivals
after time ¢, which are, by the memoryless property of the
exponential distribution, independent of the events in [ —7, t).
Only the age and the battery state at time ¢ are needed to solve
this problem. This concludes the proof. B

By Theorem 2, focusing on state (k, 0) for some k < B—1
and defining the epochs with respect to this state, problem (7)
reduces to an optimization over a single epoch. Based on
Corollary 1 (and Lemma 3), we introduce the following nota-
tion, which is slightly different than that used in Section IV.

Once the system goes into state (k,0), for 1 <k < B — 1,
at some time /, the sensor schedules its next update after xj
time. Since x; does not depend on the history before time [,
and cannot depend on the future energy arrivals by the energy
causality constraint, we conclude that it is a constant. Now if
the first energy arrival in that epoch occurs at time / + 7 with
71 > Xk, the sensor transmits the update at / + xj, whence the
state becomes (k — 1, 0), and if k£ > 2 the sensor schedules its
next update after x;_i time, i.e., at [ + x; 4+ xx—1. On the other
hand, if the first energy unit arrives relatively early, i.e., 71 <
Xy, the state becomes (k + 1, 7;) at [ 4+ 71, and the sensor
reschedules the update to be at [ + yr41(z1) instead of [ 4 x.
Note that yx4 only depends on 77, since it does not depend
on the history before time /. If the second energy arrival in
that epoch occurs at time [ + 71 + 7o with 75 > yr41(71),
the sensor transmits the update at / + yg4+1(71), whence the
state returns to (k, 0). On the other hand, if the second energy
arrival occurs relatively early as well, i.e., 72 < yr41(71), and
if Kk < B — 2, the state becomes (k+2, 71 + 12) at [ + 71 + 12,
and the sensor reschedules the update at [ + yr42(71 + 12)
instead of [ + yr4+1(z1).

In summary, the optimal update policy is completely
characterized by B — 1 constants: {x,x2,...,xp_1}, and
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— > (0,0)
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Fig. 4. Transitions among system states after only one update. Each transition from state (i, 0) to (j, 0) occurs with probability p;, ; as indicated on the tree

branches.

B functions: {y{(-), y2(-), ..., yg(-)}, where x; represents the
scheduled update time after entering state (k,0Q), and yk ()
represents the scheduled update time after entering state (k, 1)
at some time 7. We emphasize the fact that by Corollary 1,
the constants {x;} neither depend on each other, nor on the
functions {yx(-)}.

B. Renewal State Analysis

To analyze the optimal solution of our problem, in view of
Theorem 2, we now need to choose some renewal state (k, 0),
k < B — 1, and define the epoch with respect to that state.
Unlike the random battery recharges problem in Section IV,
unfortunately, there is no choice of k that guarantees a finite
number of updates in an epoch; for all choices of k < B — 1
there can possibly be an infinite number of updates in a single
epoch. In the sequel, we continue our analysis with state (0, 0)
as the renewal state and define the epochs with respect to it,
i.e., an epoch from now onwards denotes the time between two
consecutive visits to state (0,0). We note, however, that any
other renewal state choice yields the same results with equiv-
alent complexity. We use the notation R (x, y) and L (x, y)
to denote the area under the age curve in a given epoch and
its length, respectively, as a function of the constants x £
[x1,x2,...,xp—1] and the functions y £ [vi, y2,...,yB].
Using the strong law of large numbers of renewal processes
(renewal reward theorem) [53, Th. 3.6.1], problem (7) now
reduces to:

. E[R (x,y)]
p=min — =
x,y IE[L (x,y)]
st. x>0, 1<k=<B-1
w(r) 27, 1<k<B. (31)

As in the previous section we introduce the auxiliary parame-
terized problem:

p}gyr(i) AL r;l’I)I} E [R (x, y)} — AE [L (x, J’)]

s.t. constraints of (31). (32)

In view of Lemma 1, we solve for the unique A* such that
(%) =0,

One main goal now is to express E [R (x, y)} and
E [L (x, y)} explicitly in terms of x and y in order to proceed
with the optimization. In our previous work [1], we do so for
the case B = 2 through some involved analysis. We note,
however, that the analysis approach in [1] does not directly
extend for general B as it is of a complex combinatorial nature.
In what follows, we introduce a novel technique that expresses
the objective function of problem (32) explicitly in terms of
x and y for general B, and in fact shortens the analysis in [1]
for B = 2.

For convenience, we remove the dependency on {x, y} in
the sequel. Observe that starting from state (0, 0) the system
can go to any other state (j,0), 0 < j < B — 1, by the
next status update, i.e., after only one update, each with
some probability. Then, from state (j,0), 1 < j < B — 1,
the system can only go to one of the following states by
the next update: {(j — 1,0), (j,0), ...,(B — 1,0)}, each
with some probability. We denote by p; ; the probability of
going from state (i, 0) to state (J, 0) after one update. Clearly
pi,j = 0 for j < i —2. We also denote by r; ; and ¢; ; the
area under the age curve and the time taken when the system
goes from state (i, 0) to state (j, 0) in one update, respectively.
Finally, since the goal is to compute the area under the age
curve in an epoch together with the epoch length, we define R;
and L as the area under the age curve and the time taken to go
from state (j, 0) back to (0, 0) again (in however many number
of updates). See Fig. 4 where we depict the relationships
between the previous variables/notation in the form of a tree
graph. The graph basically represents the transitions between
different system states (nodes on the graph) after only one
update, which occur with probabilities indicated on the arrows
in the graph that connect the nodes. We emphasize that, for
instance, state (0,0) in the first column of the graph is no
different than state (0, 0) in the second column, and that the
arrow connecting them merely represents a loop connecting
a state to itself; we chose to expand such loop horizontally
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for clarity of presentation. From the graph, one can write the
following equations:

B—1

E[R] = pook [roo] + > poj (E[ro;] +E[R;]), (33)
j=1
B-1

E[L] = po,oE [to,0] + Z po,j (E[to;] +E[L;]). (34)
j=1

Next, we evaluate the above equations. We use the following

short-hand notation for nested integrals:

a;  an an
/ drl"é/ /.../drldrz...drn. (335)
ap]

71=0 70=0 7,=0

We first begin by the terms po_;, E [ro,j}, and E [50,]-}, 0<
Jj < B —1, which are directly computable as follows. Without
loss of generality, let us assume that we start at state (0, 0)
at time 0. To go from state (0,0) to (0, 0) after one update
means that the sensor receives the first energy arrival in the
epoch after time 7; and then updates after time yj(z1). This
occurs if and only if the second energy arrival after the start
of the epoch arriving at time 71 + 72 occurs relatively late,
i.e., 72 > yi(r1) — 71. Note that 7y and 7; are i.i.d. exponential
random variables with parameter 1. Thus,

e—yl(Tl)dTI.

po,o =P (2 > yl(fl)—fl)=/ (36)

7=
The area under the age curve and the time taken to go from
state (0,0) to state (0,0) after one update are respectively
given by the expectation of % yi(71)? and y|(z1) conditioned
on the event 7o > yi(7r1) — 71. Hence,

1
P0,0E [ro.0] = pooE [5)’1(1’1)2 2 > yi(r1) — Tl}

1
= / Soi(e)?e > Wda, 37)
71=0
P0,0E [€0.0] = po,oE [y1(t1)|12 > yi(z1) — 71]
o0
:/ yl(Tl)eiyl(rl)d‘L']. (33)
71=0

Next, to go from state (0,0) to (n,0), 1 <n < B —2, after
one update means that the sensor receives n + 1 energy units
consecutively before updating. This occurs if and only if each
of the n + 1 energy units arrive relatively early. That is, after
the first arrival at time 7] the sensor receives the second arrival
at 71 + o with 75 < yi(71) — 71, and then the third energy
arrival occurs at 71 + 7 + 73 with 73 < y2(7r1 + 2) — (71 +
72), and so on. Only the (n 4 2)th arrival occurs relatively
late so that the sensor updates exactly after n + 1 arrivals,
ie., Ty42 > Yugp1(r1 + -+ 1p1) — (11 + - - + 7y q1). Thus,
for1 <n < B—2, pp,, is given by (39) at the top of the next
page, where the last equality is according to the short-hand
notation defined in (35), together with defining

n
GEY T, n=2 (40)
i=1

We note that using the notation ¢;, is mainly for presentational
conciseness. Whenever it is invoked in an integral, it is merely
a proxy for Y !, 7;.! Now proceeding similarly, we have

1 —
pO,nE [rO,n] = / Eyn_H(Cn_H)ze yn+1(Cn+I)del+l,

[oo, yi(tr1)=71, «os Yn(Cn)—Cnl
(41

p(),nE [fo,n] = yn+1(Cn+1)e_yn+l((n+l)d.[1n+l.

[o0, YI(TI)*TI, ooy Yn(édn)*é‘n]
(42)

Finally, to go from state (0, 0) to (B — 1, 0) after one update
means that the sensor receives B consecutive energy units,
i.e., until its battery is full, with relatively early inter-arrival
times. Thus,

Po,a—1 =P(ra < yi(r1) — 11,13 < »2(2) — 25 - - s
8 < yp-1({B-1) — {B-1)

= / e “Bdzp. (43)
[oo, yi(z1)=71, oy YB—1({B-1)—CB-1]
Similarly, we have
1
po,8—1E [ro,a—1] = Eyg(ég)ze’@drlg,
[oo, yi(z1)=11, oy YB—1({B—1)—CB-1]
(44)
po.s—1E [lo,p-1] = yp(Cp)e Bdtl.
[oo, yi(z1)=71, «or YB—1(CB-1)—CB-1]
(45)

We now move on to computing the terms E [R j} and
E [L j} , 1 < j < B —1. These are not as directly computable
as the terms po ;, E [ro,j} ,and E [lo,j] ,0<j<B-1,andare
evaluated via recursive formulas from the tree in Fig. 4, which
we explain as follows. We notice that the tree starts with one
root node, state (0, 0), and that it has all other possible states in
its second stage. Starting from that second stage, and focusing
on the terms E |R;|, 1 < j < B — 1, for now (calculations
for the terms E {LJJ, 1 < j < B — 1 are analogous), one can
write

B—1

B—1
E[Ri1=>_ priE[ri] + > prEIR],
i=0

i=1

(46)

B—-1

> piEIR], 2<j<B—1.
i=j—1

B—1

E[Rj]= Y pjiElr]+
i=j—1

47)

Next, we begin from the last equation, i.e., (47) with j = B—1,
and make use of the fact that pp_j p_2 4+ pp—1,3-1 =1 to

n the single-column pre-print version of this paper, we do not face such
space difficulty and therefore do not need to work with (,’s. We refer the
reader to such version as well [56] for convenience.
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pon =P (12 < yi(r1) — 71,73 < yalr1 + 12) —

Tpp1 < yul(t1 +- -+ 1) — (71 + -+

(Tl +‘[2)9'-"
+ 1), Tag2 > Yur1(r1 4+ -

/OO /)‘1(11)—71 /yn(Tl+'”+Tn)_(Tl+"'+1n)
71=0 J1,=0 Tp4+1=0

+ tu1) — (71 + - F Tut1))

e—yn+l(11+”'+Tn+l)d‘[ld‘[2 - dTn+l

— e*yn+1(Cn+1)dT{1+1‘ (39)
[oo, yi(t1)=71, ooy Yn(Gn)—(&n)]
write and with the constants ¢, , defined as
1
E |Rp—1|=E |rg—1,p—2| +——pB—1.B—1E |rp—1,B—1 B-1
R =21 ] PB-1,8-2 [ ] erppr & — > Puis (52)
+E [Rp-2] . (48) Prn=13 2050
m—1 B—1
We then work our way backwards; we substitute (48) in (47) A 1 )
with j = B — 2, and again make use of the fact that Cn,m ie'P({n-; I 1"1[ 1_[11 lz(:m) Pj.l>
PB-2,B-3 + Pp—2,—2 + pp—2,-1 = I, to get after some 77 j= np] I ]J; g
simple manipulations that J¢i
i n+2<m<B-1, (53)
E [Rg—2] =E [rp—2,8-3] + ————pp—2,82E [rp—2,8-2)
PB-2,B-3 where P (w) is the power set of the set w (note that the
1 summand i in (53) is actually a subset), and j;(m £
+ ——ps28-1E[rp_25-1]
PB-2,B-3 ' ’ min{{j +1,...,m}\ i}. Observe that one can rewrite the
PB—2,B—1 E equations in (50) slightly differently after some simple back-
+ PB—2 B3 [rB_l’B_z} ward substitutions as follows:
1 = = 5 ;
+;——:mlﬁnmmhgd> E[Rj]=Rj+Rj1+ - +R+E[R], 2<j<B-1
B—1,B—
’ 54
+E[Rp_s]. (49) oY

We then substitute (48) and (49) in (47) with j = B —3 to get
E [RB_3] in terms of E [RB_AJ, and so on. Continuing this
way recursively, we get B — 2 equations with each equation
having a term E [Rj} in terms of E [R]_l], 2<j<B-1,
which can be written as follows:

E[R;]] =R +E[Rj-1], 2<j<B—1, (50

with R ;j defined as

i | Bl
R; =E [rj:jfl} +— ZPJ iE [rl J
Pj,j—1 g
+cj it | Elrjan] Z Pj+1iE [rjs,i]

pj+1,] =it

+cjjt2 <]E [rj42.j+1]

Z p]+21

’”]+2,i} >

P/+2 j+1; 2 12
+...
+¢j,B-1 (E [”871,872}
1
+ ———pB-1,8-1E [rBfl,Bfl] ,
PB—1,B-2

2<j=B-1, &1V

Therefore, what remains to evaluate the terms IE[ ] 2 <
Jj < B —1, is to evaluate E [R{]. We do so by substituting all
B — 2 equations of (54) back in (46) to finally get

| Bl
]E[Rll—E[rlo}-l-pTZPl, [r1,]
j=1

+c12 r21 +—ZP2] rz,
+c13 [r3,1 +—ZP3, [73,7]
+ ...
+C1,B—1<E [rB—1,8-2]
1
+ ———ps-1,8—1E [ra—1,8-1] |,
PB—1,B-2

(55)

where the constants ¢y ,,, 2 < m < B—1, are as defined in (52)
and (53) for n = 1. Equations (54) and (55) fully characterize
thetermsE[ } 1<j<B-1 As forthetermsE[ }
1 < j < B —1, they can be completely characterized in the
exact same recursive manner as above with only switching the
terms r;; by ¢;; and defining L analogously to R; and so
on.
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B—1
E[R] = Z po,;E [ro,;]
j=0
B—1
+ Zpo,j f”10 +—Zp1j f”1]
j=1 Lo
B—1 B—1 B—1
+ Zpo,j-i-q,zZpoj E[r21] +—szj [r2,7]
- T P21
j=2 j=1 j=2
+.
B—1
+ ZPOJ"f‘Cn 1,n Z po,j + '+C1,nzp0,j IE[rn,n 1 anj r}’lj
_ i Pnn 15—
=n—1 j=1 j=n
+..
B—1 B—1
+ Z Po.B—1+cB-2.8-1(po.p—2+ po,p—1) +--- +c1,5-1 Z Po,j
j=n j=1
1
X (E [rB—1,8—2] + ————pp—1,8—1E [I”B—l,B—l}) . (56)
PB—1,B-2
B—1
E[L] = poE [¢o,]
j=0
B—1 | Bl
+ Zpo,,’ [ﬁo]—i——Zpu [€1,]
j=1 105
B—1 B—1
+ ZPO,j+Cl,2ZPO,j E[f21] +—ZP2] [€2,]
j=2 j=1
+.
B—1
+ ZPOJ + Ch—1,n Z PO] ‘+Cl,nZP0,j E[fn,nfl} + E[fn,j}
j=n—1 j=1
+.
B—1 B—1
+ Z po.a—1+cp-2.8-1(po.s—2+ po.p—1) + - +c1.5-1 Z po,j
j=n j=1
1
X (E [¢g—1,8-2] + ————pB—1,8-1E [531,310 . (57)
PB—1,B-2

Using (54) and (55) in (33), we get that E[R] is given
by (56) at the top of this page. Similarly, we also have that
E[L] is given by (57) at the top of this page as well.

What remains now is to characterize the terms pj », E [rjn],
and E[¢;,],1 <n<B-1,1<j < B—1. These are
directly computable terms via the same arguments involved
before in the computations of the terms po j, E [ro, j], and
E [€0,;], 0 < j < B — 1. We first consider the special case
when the system goes from state (j,0) to state (j — 1,0),
1 < j < B—1, after one update. This occurs if and only if the
first energy arrival arriving 71 time units after going through
state (j, 0) occurs relatively late, i.e., the sensor submits an
update after x; time units before receiving such energy unit.

Since 71 is an exponential random variable with parameter 1,
we have

pjj-1="P (rl > xj) =e . (58)
The area under age curve and the time taken to go from state
(j,0) to state (j —1,0), 1 < j < B — 1, after one update are

respectively given by the expectation of the constants %sz and
x;j conditioned on the event 71 > x;. Hence,
1 2 1 2
E[rj,j_l}:IE Exj T > Xj :Exj’ (59)
E[t)j-1] =E [xj|r1 > xj] = x;. (60)
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Next, we consider the case of going from state (j, 0) to (n, 0),
1 <j<B-1,j<n< B-—2,after one update. We proceed
similar to the way we derived the terms pg,, E [r(),,,}, and
E [fo,n] in (36), (37), and (38), respectively, for j = n = 0;
in (39), (41), and (42), respectively, for j =0 and 1 <n <
B —1; and in (43), (44), and (45), respectively, for j = 0 and
= B — 1. We state the results in what follows. First, for
<j<B—2andn=j, we have

pij=P(n1 <xj,712 > yjri(n1) — 1)

N
:/I e—)’jH(Tl)drl, (61)
71=0
;B [rii] = / 0—y,»+1(n)2e*y-f+l<">dn, (62)
1=
Xj .
pj,jE [fj,j} :/ Oyj_i_l(l-l)e*y_/ﬂ(rl)dn. (63)
1=

Next, for | < j <B—2and j+1<n < B —2, we have
Pjn =P(r1 < xj, 12 < yjt1(r1) — 71,
13 < yj+2(02) — s s Tnmjirt = YnlGn—j) — Gn—j

Tn—j+2 > Yn1(Gn—j1) — Cn—j+1)

= e_yn#»l((nfj#»l)d-l—ln*jﬁ'l, (64)
[xj, yi+1(@) =71, oy Yn(Cn—j)—(Cn—j]
and
1 o 4 .
p]’nE [rjjn] :/ Eyn+1(é‘n7j+l)2e yn+1(Cn—_l+I)d.[1” J+ ,
[xj, yirr(@) =11, ey Yu(Gaj)—Cn—jl
(65)
_y . —i41
pj,nE [rj,n] :/yn+1(Cn—j+1)e )n+1(§n—j+l)d1—1” J+ )
s Yir1 D=7, s Yu (e j)—Cn—j]
(66)
Then, for 1 < j < B—2and n = B — 1, we have
pjB—1 =P(r1 < xj, 12 < yjq1(r1) — 71,
13 < yj+2(02) — (2
t3—j < yB-1((B-1—j) —{B-1—})
= e_(B*jdtlej , (67)

[xj, yi+1(@)=71, oy YB-1(CB-1-j)—(B—1-j]

and

1 _ »
pis-1E[ripa1] = V() e tidn P,

[xj, yi+1(@)=71, -y YB-1(B-1-j)—C(B—1—j]
(68)
Pj.5-1E[rjp-1] = yB(Cp—j)e F-idr B
[xj, yi+1(@)=71, -y YB-1(B-1-j)—(B—1—j]
(69)
Finally, for j =n = B — 1, we have
XB-1 ] 5
pB—1,8—1E [rp_1,8-1] =/ —yg(r1)“e "'dry, (70)
71=0 2
XB_1
pB—1,8—1E [€p_1,B-1] =/ yp(t1)e "dry. (71)
71=0

Observe that the term pp_1 g—1 does not appear individually
in (56) or (57).

We now have every term needed to fully characterize
the objective function of problem (32) in terms of the
constants x and the functions y. We do so by basically
substituting (36)-(45), (52)-(53), and (58)-(71) in (56)
and (57). In the next subsection, we characterize the optimal
constants x and functions y that solve problem (32).

C. Threshold Policies

We introduce the
problem (32) [55]:
L =E[R] - AE[L]

B—1 B oo
SN RN O 00— dn (1)
i=1 i=17"=

where {7;} and {y;(-)} are non-negative Lagrange multipliers.
We now proceed by taking derivative of the Lagrangian
with respect to each variable and equating it to O in a
specific alternating order between the functions y and the
constants x. Specifically, we start by taking derivative of the
Lagrangian with respect to yp(t) first, followed by xp_i,
and then yp_1(f), and then xp_5, and so on until x; and
y1(t). The reason is that, as we explicitly illustrate below, this
specific order allows writing each variable only in terms of
the preceding variables in the order, which would be already
evaluated in terms of .

For simplicity of presentation, we illustrate this methodol-
ogy by focusing on the case of B = 4 energy units. This case
is sufficiently general in the sense that the techniques invoked
in characterizing its optimal solution can be readily extended
to any higher value of the battery capacity. For B = 4,

the objective function is given by
3

E[R] — AE[L] = po ;j(Elro, ;] — AE[£o ;1)
j=0

following  Lagrangian  for

3
+ " po.j EIR] — AE[L1])
j=1

3
+ ZPOJ (Rz — /11_,2)+p0,3 (R3—,1£3) .
j=2

(73)

We now write down the terms constituting the above objective
function explicitly in terms of the optimization variables
{x1,x2,x3} and {y1, y2, y3, y4}. We first start by

3

> " po.j(Elro j1 — AE[to, ;1)
j=0

* /1
= / <—y1(r)2 - ly1(r)> e 1Mdzg
=0 2

1 :
+ / <§y2(4“2)2 - Ayz(cz)) ey

[00,y1(t1)—11]

1 ),
i / (?3((3)2 - /ly3(é3)> e &g}

[00,y1(71)—71,y2(¢2) = (2]
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1 _
+ / <§y4(4“4)2 - ly4(C4)) e dry.
[00,y1(z1)—71,¥2(02) =2, ¥3(3)—¢3]
(74)
Then, we have
poi = e 2, (75)
[o0,y1(t1)—11]
P02 = e @dr, (76)
[0, y1(z1)—11,32(L2)— (2]
P03 = e Sdr) (77)
[00,y1(71)—71,¥2(2) =2, y3((3) —(3]
Next, by (55) we have
E[R] — AE[L4]
3
=Elriol = AElf10] + > puj (Blr 1 — AEL])
bl j=1
1,2+ P13
2T PL (E[rz,l] — JE[621]
P1,0

’g
L
o > p2.j (Elra.j1 = AEIL2,1) )

=2
+ P13 3
n <(P1,2 P13)P23 L P )
P1,0

P2,1P1,0
1
X (E[r3,2] — AE[€32] + s (Elr3 3] — iE[fs,ﬂ))

1 2
— _l
)Cl X1

X1 1
+et ( / <§y2(f)2 - zyz(r)) e ?dy
=0

1 :
+ / <§y3(52)2 - Ays(cz)) e}

[x1,y2(71)—171]

1 _
+ / <§y4(é3)2 - /ly4(4“3)> e adTlS)
[x1,y2(71)—71,y3(02)—2]

1
+ (p1.2+ p1.3)e™! (Ex% — Axa

2 1 ,
+e? ( / . (Em(f)z - zya(r)) e Wdr

+ / (%M(Cz)z - /ly4(4“2)> e_@dle))

[x2,y3(z1)—71]

1
+ ((p12+ p1.3)p23e™?e™ + pise™) (59632 — Ax3

+ e /_30 (%M(T)z - ly4(f)) 6_1d7>» (78)

where pi 2, p1.3, and py 3 are given by

pPla= / e*%((z)d-[l?,

[x1,y2(71)—71]

(79)

P13 = e 8dt?, (80)
[x1,y2 (1) =71,¥3(02) =]
P23 = / e 2dr? (81)
[x2,y3(z1)—71]
Finally, by (51) we have
Ry — AL,
L3
=Elra1] = 2Blf2a] + —— > p2.j (Blra, 1 — AE[L2 1)
=2
2,3 1
+ 223 (E[r3,2] — 2E[t32] + — (Elr3;3] — ilE[&,a]))
2,1 P32

1 2 1
=—x3 — dxy + €7 </ (—yg(r)2 - /1y3(r)) e 3 dq
2 o \2

+ / (%m(@)z - m(cz)) e@drf)

[x2,y3(z1)—71]

1
+ pa3e™ (§x32 — Ax3

+ev /fo (%m(f)z - iy4(f)) e_’df>,

_ - 1
Ry — AL3 =E[r3 2] — AE[f32] + 2 (Elrs 3] — AE[£3,3])

1
:§x32 — Ax3

4o / _30 (%mr)z - m(r)) eTdr. (83)

(82)

and

We now substitute equations (74)-(83) in the objective
function in (73) to have it written explicitly in terms of
the optimization variables, which makes it ready for taking
derivatives. Observe, however, that different from the random
battery recharges model studied in Section IV, the Lagrangian
in this incremental battery recharges model involves multiple
nested integrals, which renders taking derivatives a much more
involved operation. For that reason, we refer the reader to
Appendix VIII-C, in which we summarize some useful results
on derivatives under nested integrals that we constantly use
in the derivations below. As noted before, we take deriva-
tives in the following specific alternating order of variables:
ya(®), x3, y3(2), x2, y2(0), x1, yi(t).

Hence, we start now by taking derivative of the Lagrangian
with respect to y4(¢) and equate to 0 to get

y4(t)
e~ fa(r)’

where the positive term f4() is given by

ya(t) = 4+ (84)

Ba(t) £ m3(00, yi, y2, 1)
3

+ ) poj (e ma(xr, y2. 1)
=
+ (p12+ pr3)e?e mi(xa, 1)
+ ((p12+p1,3)p2,3e™?e +pr3e™) )
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3

+ Y poj (€2mi(x2, 1) + pa3e®e™) + pose®,
i=

(85)

with, according to the notation derived in Appendix VIII-C,

m3(00, yi, y2,1) = dri.  (86)
[oo, yi(z1)—11, ¥2(2)—(2]
(3=t
Therefore, y4 is a A-threshold policy given by
A, t <A
ya(t) = { . (87)
t, t> A

Next, we take derivative of the Lagrangian with respect to
x3 and equate to O to get

OR3 — 1L3 _m

, 88
0x3 a3 (88)
where the positive constant a3 is given by
3
e Z po,j ((p12+ p13)p23e™e™ + pize™)
j=1
3
+ Y po.jp2ie™ + pos, (89)
=2
and
8§3 — 21:3
———=x3—4
0x3
X s 1 2 -7 1 2
+ e §y4(r) — Aya(r) ) e 'dr + 5)63 — Ax3.
—
(90)

Thus, for x3 > 0 we have 53 =
slackness [55] and therefore

0 by complementary

5 1
ex3/ (5)14(1)2 - /1y4(r)> e "dr + Exg —Axz3=/1 — x3.
=0
On

Using (87), the above simplifies to

1
X3 = 10g <m> .

Note that the above equation implies that x3 > 1.

We now state the following assumption for the upcoming
analysis; we verify the assumption in a step-by-step manner
as we move further into the characterization of the optimal
policy below.

92)

Assumption 1 The optimal policy for B = 4 satisfies the
following:

y3(t) >, Vi, 93)
X2 >X3, (94)
ya(t) >x3, Vt, 95)
X1 >Xx2, (96)
yi(t) >xp, Vt. 97)

Continuing with the specified order of taking derivatives,
we now take derivative of the Lagrangian with respect to y3(¢)
and equate to 0, and use (91), to get

3
ma(00, y1, )+ _ po.j (e mi(x1,1) + (p12+ p13)e™e™)
=1

3
+ Z pojjexz
Jj=2
1
X ((ys(t) —2)e 0~ (5y3 (1) - m(r)) e~ 0

+ <%y4 (y3(t)‘)2 — Aya (y3([)_)) e ya(3(07)

+ (4 —x3) ey3(t)> = y3(1),
(93)

where, according to the notation derived in Appendix VIII-C,

2
dty.

ma (00, y1,1) = /

[0, yi(z1)—71]
(=t

99)

We now use the first premise in Assumption 1, namely, y3 () >
A, V1, to conclude by (87) that y4 (y3(r)~) = y3(7), and hence
the above equation simplifies to

73(t)

OB (o

y3(t) = x3+
where the positive term f3() is given by

Ba(t) Ema(co, yi,1)
3
+ Z po,j (€ 'mi(x1,1) 4+ (p12 + p1,3)e?e™)
=1

3
+> poje. (101)
j=2
Therefore, y3 is an x3-threshold policy given by
X3, r<x3
y3(t) = { , (102)
t, t>x3

which verifies that y3(t) > A, V¢, the first premise of
Assumption 1, since x3 > A from (92).

We now take derivative of the Lagrangian with respect to
x7 and equate to 0, and use (91), to get

Ry — ALy _mn

, 103
0xp oo ( )
where the positive term a; is given by
3 3
a2 2 poj(pra+ piae” + > po.j. (104)

j=1 j=2
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and
6R2 — /11_,2
0xp

X2 1
+ e"2< / . <EY3(T)2 - Am(r)) e Vdy

+/ <%y4((2)2 - ly4(§2)> e 2dt}

[x2,y3(z1)—71]

1 -
+ (Eya(xz_)z - Am(x{)) emt)

y3(x)—=x2 /] 5
+/ <§y4(X2+rz)

=0

=x2— A

— Aya(x2 + Tz)> e~ 2t g,

v3(xy ) —x2
+ / e~y 4 pas | (A—x3) | . (105)
=0

We now use the second premise of Assumption 1, namely,
X2 > x3, to conclude by (102) that y3(x; ) = x, and hence
the above equation simplifies to
8R2 — /11_,2
0xp

X2 1
+ e"2< / (Eysmz - Aysu)) e dy
=0

1
+ / <§y4(62)2 - ly4(4“2)> e 2dti + prs(h — X3)>
[x2,y3(z1)—71]

2
2

=xy— A

1
—Xx5 — Axp.
+2x X2

Thus, for x > 0 we have 5 =
slackness [55] and therefore

X2 1
o < / (-ys(f)2 - m(r)) e O
=0 2

+ / (%yzt(éz)z - iy:t([z)) e 2dt? + pas (A — x3)>

[x2,y3(z1)—71]

(106)

0 by complementary

1
+§x§—1x2 =) —x. (107)

Using (87) and (102), the above simplifies to

1
=lo
2 g<(1+1)eﬂ+%/12+,1—x3 (e"3+1)>

o1
=—log ((AJr De " + 5/12 + A

1 o1
+ (e—ﬂ - 5/12 + 1) log (e—ﬂ - 5%) ) (108)

where the second equality follows from (92). We note that the
above equation has a real-valued solution only if 1 < 0.72.
However, we know from [1] that the optimal solution for the
B = 2 case is 0.72, and hence the optimal solution, i.e., ¥,
for B = 4 cannot be larger than 0.72. We also note that the
optimal A* cannot be smaller than 0.5, the solution for the
B = 00 case reported in [44]. Moreover, for 4 € [0.5,0.72],

it holds that xp > x3, verifying the second premise in
Assumption 1.

We now take derivative of the Lagrangian with respect to
y2(t) and equate to O to get

mj (oo, t) ((yZ(f) —2)e 20 <%y2(t)2 — /lyz(t)> 0]

+ <1y3 (yz(t)‘)2 — Ay3 (yz([)_)) e 13(2(07)

2

y3(02(0)7) =20 1 5
+ / 3 (y4 (y2(t)” + )

74=0

—2ya (y2(1)” + 14) )e(”(')““)dfzt)

01— po.j 3. GE[R(]— AE[L]
j=1D0.j 1 1
————— (E[R]-4AE[L1])+ 0,j
TR D DL
823-_ po.i , - _ 0 _ _
j=2P0.j P0,3
———— (R — iL2) + Rz — 2L3) = y2(1),
R )+ om0 ) =70
(109)
where, according to the notation derived in Appendix VIII-C,
o0
mi(oco,t) = dry =t, (110)
71=0
71t

and, using (91) and (107),

3
0 Ej:l Po, j

=m (0o, 1) ( — e 2 4 om0
aya (1)

13(y2 ()7 )—ya2(t
+/>z(>z )7) )2()8_(y2(t)+14)d‘r4>,

=0
(111)
OE[R] — AE[Ly]
Oy2(t) B

e (02 = e
- <%y2(t)2 - zyz(r)) e 20

+ <1y3 (J’Z(Z)_)z —Ay3 (yz(t)_)> e 13(2(07)

2
y3(32()7)=x2(0) 1 5
+ / 3 (y4 (y2(1)™ + )
74=0

— Aya (yz(t)f + 14) )e*(yz(t)+r4)dr4

+ —xz)e—y2(’)>, (112)

3 .
02 j=2Po.j —m) (o0, 1) (e—yg(t)
oy2(t)
()7 )=y (t
N /ya(yz )7 )—» )e_(yz(’)+’4)dr4> ,
74=0
(113)
Ry — ALy =) — x3, (114)
3 (v2 (1) )—yalt
opo.3 I t)/)s()z )7) )ze)_(”(’)*'”)dm.
oya (1) ©4=0

(115)



ARAFA et al.: AGE-MINIMAL TRANSMISSION FOR ENERGY HARVESTING SENSORS WITH FINITE BATTERIES: ONLINE POLICIES 549

We now use the third premise in Assumption 1, namely,
y2(1) > x3, V1, to conclude by (102) that y3 (y2(1)~) = y2(¢),
and hence the above equations simplify upon substituting
in (109) to

_ y2(t)
yz(r)_szrW’ (116)
where the positive term > () is given by
3
Ba(t) £ mi(oo, 1) + Y po je. (117)
j=1
Therefore, y, is an xp-threshold policy given by
X2, r<xp
y(t) = { , (118)
t t>x

which verifies that y,(r) > x3, Vr, the third premise of
Assumption 1, since x» > x3 from (108) for 4 € [0.5,0.72].

We now take derivative of the Lagrangian with respect to
x1 and equate to 0, and use (91) and (107), to get

JE[R;] — AE[L1] _m

o e (119)
where the positive constant o is given by
3
a1 £ pojs (120)
j=1

and w is given by (121) at the top of the next page.

We now use the fourth premise of Assumption I, namely,
X1 > x2, to conclude by (118) that y>(x;") = x1 and by (102)
that y3(x;” 4+ 72) = x1 + 12, V72, and hence (121) simplifies
to

OE[R;] — AE[L{]
0xq o

X1 1
e (/ (Eyz(r)2 - iyz(r)) e 2(qq
=0

1
+ / (Eya(é“z)z - iy3((2)) e 3@ dg?

[x1,y2(71)—71]

1
+ / <§y4(63)2 - iy4(§3)) e Sdt}
[x1,y2(71)—71,y3(22)—2]

+ P12+ p13) (4 —x2) + p13(d — xa))

xl—/l

L,
—x7 — Axp.
+2x1 X1

Thus, for x > 0 we have 5 =
slackness [55] and therefore

X1 1
e ( / <—y2(1)2 - zyzm) ez
=0 2

1 )
+ / <§y3(4“2)2 - /Iy3(g2)> e @ygg?

[x1,y2(71)—71]

1 _
+ / (§y4(4“3)2 - iy4(C3)> e 9dt}
x1,y2(t) —71,¥3(02)—(2]

(122)

0 by complementary

1
+ (P12 + p13)(A —x2) + p1,3(4 — X3)> + §X12 — Ax]

=l —x1. (123)

Using (87), (102), and (118), the above simplifies to
[P -1 1,
x1 = —log 5/1 +3.+6])e +2/1—§/1 — X2
1
—(x24+2)e ™ —x3— (7@2 +2x3 + 3> ex3>

1
=—log <<§/12 + A+ 1> et —x (e7+1)

1 —X3
- - o= 1
X3 <2x3e >> R

where the second equality follows from (92) and (108).
We note that the above equation admits a real-valued solution
only if 1 < 0.64. Moreover, for 1 € [0.5,0.64], it holds that
x1 > x2. Thus, to verify the fourth premise of Assumption 1,
we need to show that the optimal A* < 0.64 for B = 4, which
we indeed show towards the end of the analysis.

We finally take derivative of the Lagrangian with respect to
y1(¢) and equate to 0, and use (91), (107), and (123), to get
(125) on the next page. We now use the fifth and final premise
in Assumption 1, namely, y;(t) > x2, V¢, to conclude by (118)
that y, (y1()~) = y1(r) and by (102) that y3 (y1(t)~ + 73) =
y1(t) + 3, V3, and hence (125) simplifies to

(124)

_ 71(t)
) =x1+ -5 (126)
Therefore, yj is an xj-threshold policy given by
X1, r <xi
1) = . 127
yi (1) {t’ A (127)

The above verifies that y;(f) > xp, V¢, the fifth premise of
Assumption 1, only if x; > x, is verified, or equivalently if
A* < 0.64 as discussed after equation (124). We show that
this is indeed true by evaluating the optimal policy below.

We do so by basically substituting the optimal values of the
optimization variables, in terms of 4, in the objective function
to evaluate p}tbr (4). We then perform a bisection search over
A to find the optimal 1* that makes pi{‘c (4*) = 0. As noted in
the analysis, we know from [44] and [1] that A* € [0.5,0.72].
We have yet to show that 1* < 0.64 to verify the fourth
and fifth premises of Assumption 1. After some involved
simplifications, which we omit for brevity, we get that pibr )
is given by

. 1 3 1
ibr —2 3 2 2
A) = -1 —A°+644+10) — =1
py(4) =e (6 + 2 + 64+ > >
—( =)= (2—4)—(G3-4)
1
—(x1 +2)e " — (Exg +2x3 + 3) e ™

1
_ (_x§ 243 +4) e, (128)

6
with x3, xo, and x givenlby (92), (108), and (124), respec-
tively. In Fig. 5, we plot p}tbr (1) versus 4. We see that that the
optimal 1* ~ 0.6023, whence the fourth and fifth premises of
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OE[R] — AE[L(] _

xX; — A
0x1

X1 1
+ " (/ (Eyz(r)2 - iyg(r)) e 2Mqq
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Assumption 1 are verified, with x3 ~ 1.005, x7 ~ 1.243, and
x{ ~ 1.636.

We note that Assumption 1 has an intuitive explanation; it
basically says that the sensor is less eager to send an update
when it has relatively lower energy available in its battery than
it is when it has relatively higher energy available.

In summary, given the values of the thresholds 4%, xJ, x3
and x| above, the sensor uses each of them to determine
whether to send a new status update by comparing the Aol to
the threshold corresponding to the amount of energy available:
A* for full battery, and x;‘ for 1 < j < 3 energy units.
We finally note that while we work in this section with
B = 4, the methodology adopted to characterize the optimal
threshold policy in closed-form works for general B > 1.

As mentioned earlier, working with B = 4 strikes a balance
between simplicity of presentation and revealing the minute
details of the analysis.

VI. NUMERICAL EVALUATIONS

In this section, we present some numerical examples for
both the RBR and the IBR models. We compare the optimal
policy with two other update policies. The first is a best effort
uniform updating policy, where the sensor aims at sending an
update every 1/v, with v representing the average recharging
rate, only if it has energy available, and stays silent otherwise.
We note that v is equal to B in the RBR model, and is equal
to 1 in the IBR model. The rationale is that 1/v represents
the average inter-arrival time between unit arrivals, by which
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Fig. 6. Comparison of long term average age versus battery size under
different update policies for the RBR model.

the sensor aims at uniformly spreading its updates over time.
The other policy is a slight variation of the battery-aware
adaptive update policy proposed in [44], in which the sensor
aims at sending its next update depending on the status of its
battery: if the battery has more (resp. less) than B/2 units, the
sensor aims at sending the next update after 1/v(1+ f) (resp.
1/v(l — B)) time units; and if the battery has exactly B/2
units, then the sensor aims at sending the next update after
1/v time units. We choose f = log(B)/B [44].

In Fig. 6, we plot the long term average age of the optimal
policy in addition to the above two policies, for the RBR
model. We consider a system with 7 = 1000 time units,
and compute the long term average age over 1000 iterations.
We see from the figure that the optimal updating policy
outperforms both the uniform and the battery aware adaptive
updating policies, and that the gap between them grows larger
with the battery size.

We repeat the above for the IBR model, and plot the results
in Fig. 7. Again, we observe the superiority of the optimal
policy on the other two policies. In this case, however, the gap
between the policies shrinks, since all policies converge to
0.5, the optimal policy for the infinite battery case [44], as the
battery size grows large.
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Fig. 7. Comparison of long term average age versus battery size under
different update policies for the IBR model.

TABLE I

LONG TERM AVERAGE AGE ACHIEVED BY THRESHOLD POLICIES UNDER
MARKOVIAN ENERGY ARRIVALS VERSUS POISSON

Setting B=1 B=4(RBR) B=4(BR)
Poisson 0.9012 0.3592 0.6023
Markov ¢ = 0.1  2.446 1.664 1.517
Markov ¢ = 0.5 0.6916 0.2804 0.5354
Markov ¢ =1 0.4992 0.2517 0.5002

We conclude our numerical results by evaluating the optimal
threshold policies derived in this work under an energy arrival
model that is different from Poisson. Specifically, we consider
a first-order discrete time Markov energy arrival process,
which can be at two states: OFF and ON, during a time
slot. When the process is in the ON (resp. OFF) state, one
energy unit (resp. no energy) arrives at the sensor’s battery.
The process switches from ON to OFF with probability ¢,
and from OFF to ON with probability ¢;. This directly leads to
having the steady state probability of being in the ON state to
be qo‘fql , and the expected energy arrival value at steady state
also given by ‘IO“IE‘II energy units. In order to compare with
the unit rate Poisson process that we consider in this work,
we choose the time slot duration of the Markovian process
to be qo({fql time units, which makes the average recharge
rate B energy units (resp. 1 energy unit) per unit time for
the RBR (resp. IBR) model, regardless of the values of g
and q;. Observe that for relatively small values of ¢¢ and ¢,
the energy arrival process becomes bursty; once it switches to
OFF, it stays for a relatively long period of time, after which
it switches to ON, and charges the sensor’s battery also for a
relatively long period of time. While for relatively large values
of g and ¢q1, the charging process becomes more uniform over
time, switching from OFF to ON and vice versa relatively
often. We note that such comparison has been carried out for
the B = o0 and B =1 cases in [44].

In Table I, we list the long term average age achieved by the
threshold policies derived in this paper under the Markovian
energy arrival process described above. We set gy = g1 £ ¢
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and vary g. With the exception of the bursty arrivals case
when ¢ = 0.1, we see that for the other cases the achieved
age under Markovian arrivals is relatively low. In particular,
for the IBR case the results are very close to the 0.5 lower
bound [44], for ¢ = 0.5 and ¢ = 1. Similar conclusions
follow for the B = 1 case. This indicates that while Poisson
arrivals allowed optimal theoretical derivations of status update
threshold policies, such policies may perform relatively well
under general energy arrival models.

VII. CONCLUSION AND DISCUSSION

The optimality of online threshold status update policies
has been shown for an energy harvesting sensor with a finite
battery, and zero service times. We have considered two energy
recharging models: RBR, and IBR. In both models, energy
arrives according to a Poisson process with unit rate, at times
that are only revealed causally over time, yet with amounts
that fully recharge the battery in the RBR model, and with
unit amounts in the IBR model. For both models, we have
shown that the optimal status update policy has a renewal
structure, in which update times follow a specific renewal
process depending on the recharging model, and then have
shown that the optimal renewal policy is an energy-dependent
threshold policy, where an update is sent only if the Aol grows
above a certain threshold that depends on the energy available.
The optimal thresholds have been explicitly characterized in
terms of the optimal age, which has in turn been found via
a bisection search over a bounded interval that is strictly
contained inside the unit interval. The results have shown
that, for both recharging models, the optimal thresholds are
monotonically decreasing as a function of the energy available
in the battery, and that the smallest threshold, when the battery
is full, is equal to the optimal long term average Aol.

We note that although the paper addresses an online energy
arrival setting, in which the sensor needs to decide on when
to send a new update on the fly, all the computations can
be carried offline. That is, computing the optimal values of
the thresholds for both the RBR and IBR models can be
done before the communication session starts, based only
on the average arrival rate and battery size. Such threshold
policies are not only optimal, they are also relatively simple to
implement; the sensor only needs to compare the elapsed time
to some threshold before deciding on sending a new update.

We conclude by discussing some possible extensions of the
ideas in this paper. One extension is to study the problem
in which updates are subject to erasures, and show how
threshold policies behave under such setting. We note that
an effort toward that has been made for the setting in which
the sensor is equipped with a unit-sized battery in [57], [58],
where erasure-dependent threshold policies are shown to be
age-minimal. Another extension would be to combine both
recharging models studied in this paper in one setting where
energy also arrives according to a Poisson process, yet with
value e € {1,2,..., B} with some probability mass function
on the set {1, 2, ..., B}. Generally, it would be of interest to
study the effects of energy arrival processes other than Poisson,
that do not possess the memorylessness property of the inter-
arrival times, on the optimal policy, and whether threshold

policies are optimal under more general settings. Another
interesting setting is the case in which some updates may have
higher priorities, in the sense of having higher age penalty,
and therefore allocating more energy resources toward them
may be more beneficial. Finally, although the threshold policy
in itself is relatively simple, the proof of its optimality and
its analysis, especially in the IBR model, are rather involved.
Hence, it would be of interest to analyze the performance
of threshold policies and other forms of policies, especially
if erasures are included or if general energy arrival models
are considered, and show their near-optimality with respect to
the optimal solution, in the same sense of the online energy
harvesting literature in [13]-[23].

VIII. APPENDIX
A. Proof of Theorem 1

Consider any feasible uniformly bounded policy. Let x; £
{x1,i, ..., Xk}, and let us denote by R (x;) the area under the
age curve during the ith epoch. Then

k—1
1 2
R (x;) =5 Z (*ji = xj+1,0) " Ly =g,
j=1
1 k—1 2
+ 5 Xk,i (Ti) - jz_:lxjji]lx'i’ifr[ <Xj-1,i 5
(129)

where 14 equals 1 if the event A is true, and O otherwise.
Next, for a given time T, let N7 denote the number of epochs
that have already started by time T, and for a fixed history
‘Hi—1, let us group all the status updating sample paths that
have the same 7; and perform a statistical averaging over all
of them to get the following average age in the ith epoch:

Ri ()., MHi—)) 2E [R(x;) |ti = 7, Hi—1] . (130)

Then, we have
E[R (x:) Li<ny ] =]EH,-,1[En [ﬁi (V,HH)} Li<ng Hifl} ,
(131)

where equality follows since 1;<y, is independent of z; given
‘H;—1. Similarly, define the average ith epoch length as

fi (7, Hic1) 2B [xagiln =y, Hica] - (132)
Next, note that by (5), the following holds:
r(T
= ZR taw 1 =0 < ZR Loy, (133)

Following similar analysis to that in [44, Appendix C-1], one
can show that limr_, M = 0 for any uniformly bounded
policy. Hence, the expected values of the upper and lower
bounds in (133) are equal as T — oo. Hence, in the sequel,
we derive a lower bound on %IE [Zfil R; lisNr] and use the

above note to conclude that it is also a lower bound on
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]E[r}T)] as T — oo. Towards that end, note
that E [3°72, xk,iLi<n; | = T. Then, we have
e E [0, R (x;) Lizn, |
—E R(x)Li<n, | > = =71 (134)
T ; o E [ xk,ili<ny ]

Next, we proceed by lower bounding the right hand side
of the above equation through a series of equations at
the top of the next page. There, (135) follows from (131)
and the monotone convergence theorem, R* (H;_) is the
. E,, [Ri(yaHi—l)]
minimum value of E, GG A
imum value of R*(H;—1) over all possible epochs and
their corresponding histories, i.e., the minimum over all i
and Hifl .

Observe that a policy achieving R* (H;_1) is a policy where
{x j,,-}];;% are constants and xi; is a function of 7; only, since
the history H;_; is fixed. Now, if we repeat the policy that
achieves Rpip over all epochs, we get a renewal policy where
Vi {xj,i}]j‘-;ll are constants and xj; is only a function of ;.
Since 7;’s are i.i.d., the epoch lengths are also i.i.d., and {/;}
forms a renewal process. This completes the proof.

and Ry, is the min-

B. Proof of Theorem 2

We prove this by showing that any given status update
policy that is uniformly bounded according to Definition 1 is
outperformed by a renewal policy as defined in the theorem.
The essence of the proof is similar to that of Theorem 1, yet
with some important different details. Let us consider the ith
epoch (time between two consecutive visits to state (k, 0)); we
introduce the following notation regarding the energy arrivals
occurring in it. Let 71; denote the time until the first energy
arrival after the epoch starts, and let there be jj status updates
after that energy arrival before a second energy arrival occurs.
If ji > 1, then let 75 ; denote the time until the first energy
arrival after the jith update. Otherwise, if ji = 0, then let 7o ;
denote the inter-arrival time between the first and the second
energy arrivals in the epoch. Similarly, let there be j, status
updates after the second energy arrival before a third energy
arrival occurs. If j, > 1, then let 73 ; denote the time until the
first energy arrival after the joth update. Otherwise, if jr, = 0,
then let 73,; denote the inter-arrival time between the second
and the third energy arrivals in the epoch. We continue defining
tji’s, j = 1,2,..., until the epoch ends by returning back
to state (k,0) again. Finally, in the event that the jth energy
arrival in the epoch makes the battery full, then we wait until
the first status update occurs after that event and denote by
7j4+1,; the time until the first energy arrival after that update,
i.e., we do not account for energy arrivals that cause battery
overflows.

As noted before Theorem 2, there can possibly be an infinite
number of updates before the system returns back to state
(k, 0), depending on the energy arrival pattern and the update
time decisions. For a given status update policy, one can
enumerate all such patterns. For instance, following the above
notation, the first pattern could be when the system goes from
state (k, 0) to state (k+ 1, 7;) and then to state (k, 0) again;
the second pattern could be when the system goes through

the following sequence of states: (k,0) — (k+ 1, 71,;) — (k +
2,11,i+712,;))—(k+1,0)—(k, 0); and so on. Let the vector 7, ;
contain all the 7;;’s in the mth pattern. Note that this vector’s
length varies with the pattern. For instance, we have 71 ; = 71;
and 1; = [71,,12,;] for the above two pattern examples,
respectively. For a given status update policy, one can also
compute the probability of occurrence of the mth pattern in
the ith epoch, denoted by py, i, with > > | p; = 1. Let us
also denote by R, ; the area under the age curve in that epoch,
given that it went through the mth pattern.

Next, for a fixed history H;_; and a pattern m, let us group
all the status updating sample paths that have the same 7, ;
and perform a statistical averaging over all of them to get
the following average age in the ith epoch given that it went
through the mth pattern:

Iém,i Ym» 7_{i—l) £ E [Rm,ilrm,i = VYm, Hi—l] .

Now for a given time 7, let Nr denote the number
of epochs that have already started by time 7. Then,
we have

E [Rm,i - Li<ny]
=By, [Bas [Rui O i) - iz,

where equality follows since 1;<y, is independent of 7, ;
given ‘H;_i. Similarly, let xi,, ; denote the length of the
ith epoch under the mth pattern, and define its (conditional)
average as

(139)

Hioa|, (140)

omi W Hic1) £ E [Xom,il T = ym, Hica] . (141)

Finally, we denote by R; and xi ; the area under the age curve
in the ith epoch and its length, respectively, irrespective of
which pattern it went through.

Next, note that by (5), the following holds

1 o0
T Z Rili<ns;—1 =
i=1

Following similar analysis as in [44, Appendix C-1], one can
E[RNT]

r

Ty 1 &
- S?ER,-L-ENT. (142)
1=

show that lim7_, o = 0 for any uniformly bounded
policy as in Definition 1. Hence, the expected values of
the upper and lower bounds in (142) are equal as T —
oo. Hence, in the sequel, we derive a lower bound on
%IE [Zfil R,-]l,-SNT] and use the above note to conclude
that it is also a lower bound on ELéTM as T — oo.
Towards that end, note that £ [Zfil xk,iLi< NT} > T. Then,
we have

. B[S Rilizn]
Rili<n, | = < L]
Z i l_NT] = E[E?il Xk,i]liSNT}

i=1

1
_E 143
T (143)

We now proceed by lower bounding the right hand side
of the above equation through a series of equations on the
next page. There, (144) follows from (140) and the monotone
convergence theorem, together with the fact that E[R;] =
> PmiE [[iji]; R* (H;—1) is the minimum value of

L=t Py, Iém’i(ym’HH)] and Ry, is the minimum value
. ; i um valu
Z?no=| pm,i]Etm’i [Xk,m,i (ym :H[—I)] ’ min

of R* (H;—1) over all possible epochs and their corresponding
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B[S0 R ) iy, ] _ S Bty [Bx [R G Heon)] Do [P (135)
E Y72 xkilisny] E [ xk,ilizny ]
o E,, Ri(y. Hiz1)
Zioil EH[" E‘[" [xk’i (y’ Hi_l)] ’ Er,‘ [I;zk,i(VaHil)] . ]liSNT Hi_1‘|
_ (136)
E [Z?il xk,i]lisNr]
Y By, [E,[ [Xei (7, Hic)] - R* (Hiz1) - Lizny HH} .
>
- E [ xkiliny ] D
> Rmin, (138)
E [0, Rili<n, ] S Eny |:ZS1O=1 Pm,ilq, ; [ﬁm,i (Vi HH)} “Li<ny Hifl}
i S - (144)
E [ xk,ilizny] E 372 xkiliny]
o Yot PmiBe, Roni rm Hiz1)
;?il EH[_I 2’31021 pm’i]ETm’i [Xk,m’i (}’m» Hi_l)] . Zrono:l pm,i]Etm,i [|:)Ack,m,i(7m,Hil)]] . ]liSNT Hi_1‘|
- (145)
E [Z?il xk,i]lisNr]
o1 Ex, {23111 i [Rimi (7, Hi=1)] - R* (Hi—1) - Lizny Hi—l} 4
>
- E [ xk,iliny] (140
> Rmin, (147)

histories, i.e., the minimum over all i and H;_. This, together
with the fact that E [x;| = Y| pm,iE [xkm,i], gives the
last inequality.

Observe that a policy achieving R* (H;_1) is a policy which
is a function of the possible energy arrival patterns in the
ith epoch 7,,;’s only, since the history H;_; is fixed. Since
the energy arrival process is Poisson with rate 1, it follows
that the random vector 7, consists of i.i.d. exponential
random variables with parameter 1, and that {z,, ;} are also
independent across epochs. Therefore, if we repeat the policy
that achieves Rp, over all epochs, we get a renewal policy
where the epoch lengths are also i.i.d., and {/;} forms a renewal
process. This completes the proof.

C. Useful Derivatives

In this appendix, we summarize some useful results that
we use in the derivation of the optimal threshold policy for
problem (32), which mainly arise while taking derivatives of
the Lagrangian constructed for this problem in (72).

Focusing on B = 4, we first start by stating the derivative of
the following nested integrals with respect to y4(¢), for some
differentiable function f:

Iy /f(m(n + s+ o) do
la, yi(r1))—11, y2(r1+12)—(71+72), y3(r1+12+73)—(71+72+73)]

y3(r1+2+73) ;3
/ £ () dudzs,
u=t1+172+13
la, yi(r1))—71, y2(r1+12)—(71+72)]

(148)

where the second equality follows by the change of variables:
u =11 4+ 12 4+ 13 + 74. This gives

oly

= dzi f' (ya(t
552 FACHO)
[a, yi(z1)—11, y2(tr1+12)—(71+72)]
T+ 10+13=<t
Em3(a, y1, y2, 1) £ (va(1)), (149)

where f’ is the derivative of the function f.

Next, we mention a couple of results that have to do with
taking derivative of the above nested integrals, /7, with respect
to boundary limits. The first is when we take derivative with
respect to the function in the inner most boundary limit, y3(z).
Towards that end, we apply the change of variables u = 71 +
72 + 73 and rewrite /7 as follows:

v(ti+n)  py3()—u
u=f
Uu=t1+10 74=0

f 4 (u + 1)) deadudz?.

[a, yi1(r1)—11]
(150)
Now using Leibniz’s rule, we get
oly / 2 -
= dri f (y4 (y3()
p—o if( )7)
[a, y1(r1)—71]
T+t

Ema(a, yi, 1) f (ya (13())7) - (151)

Finally, we discuss the case when we take derivative with
respect to a function in one of the boundary limits in the mid
integrals, yx(t), k = 1,2. For k = 2, similar to what we did
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above, we apply the change of variables u =

71 + 12, and

rewrite /¢ as follows:

a yi(z1)
=]
711=0 Ju=r

f Galu+ 13+ 4)) dridudts,

[y2(u)—u, y3(u+13)—(u+73)]
(152)

which, upon using Leibniz rule, gives

oly
oya (1)

a v3(n2(0)7)=>2(t)
:ﬁ—o dn / f(va(20)” + 1)) du
11121 2

4=0

. y3(32(t) ") =y2(t) B
=m1(a,f)/ [ (va (y2()™ + 14)) da.
74=0

(153)

For k = 1, we do not need a change of variables; we directly

get

ayi(t)

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

i / f (a0~ + 73 + w)) des.

21O =y1 @), y3(1 (@)~ +73)=(1 (1)~ +713)]
(154)
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