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Abstract—We provide an alternative proof for the capacity
region of the degraded Gaussian multiple-input multiple-output
(MIMO) broadcast channel. Our proof does not use the channel
enhancement technique as opposed to the original proof of
Weingertan et al. and the alternative proof of Liu et al. Our proof
starts with the single-letter description of the capacity region
of the degraded broadcast channel, and by using it, obtains a
tight (i.e., achievable) outer bound for the capacity region of the
degraded Gaussian MIMO broadcast channel, by using two main
technical tools. The first one is the generalized de Bruijn identity
due to Palomar et al. which provides a connection between the dif-
ferential entropy and the Fisher information matrix. The second
tool we use is an inequality due to Dembo which lower bounds the
differential entropy in terms of the Fisher information matrix.

Index Terms—Capacity region, de Bruijn identity, Fisher infor-
mation matrix, Gaussian MIMO broadcast channel.

I. INTRODUCTION

T HE GAUSSIAN multiple-input multiple-output (MIMO)
broadcast channel consists of one transmitter and an arbi-

trary number of receivers, where the transmitter and receivers
are equipped with multiple antennas. In this channel, each
link between the transmitter and each receiver is modeled by
a linear additive Gaussian channel. In general, the Gaussian
MIMO broadcast channel is nondegraded, thus, we do not have
a single-letter description of the capacity region. Despite this
lack of a single-letter description, the capacity region of the
Gaussian MIMO broadcast channel is successfully obtained in
[1]. Subsequently, an alternative proof is given in [2]. In both
proofs, the channel enhancement technique [1] is the main tool.
Reference [1] obtains the capacity region of the Gaussian

MIMO broadcast channel in three main steps. As the first step,
[1] finds the capacity region of the degraded Gaussian MIMO
broadcast channel. To this end, [1] first shows that as opposed
to the scalar Gaussian broadcast channel [3], the entropy-power
inequality falls short of providing a converse proof for the
degraded Gaussian vector, i.e., MIMO, broadcast channel.
This insufficiency of the entropy-power inequality is alleviated
by the invention of the channel enhancement technique [1].
Using this technique, [1] constructs a new degraded Gaussian

Manuscript received February 19, 2010; revised July 27, 2011; accepted Oc-
tober 30, 2011. Date of current version March 13, 2012. This work was sup-
ported by the National Science Foundation under Grants CCF 04-47613, CCF
05-14846, CNS 07-16311, and CCF 07-29127. The material in this paper was
presented in part at the 2010 IEEE Information Theory Workshop.
The authors are with the Department of Electrical and Computer Engineering,

University of Maryland, College Park, MD 20742 USA (e-mail: ersen@umd.
edu; ulukus@umd.edu).
Communicated by S. N. Diggavi, Associate Editor for Shannon Theory.
Digital Object Identifier 10.1109/TIT.2011.2177557

MIMO broadcast channel for each point on the boundary of
the Gaussian rate region1 of the original degraded channel,
where the boundaries of the Gaussian rate regions of both
channels intersect at that point, and the capacity region of the
constructed degraded channel includes the capacity region of
the original one. Then, [1] completes the first step of the proof
by showing that the Gaussian rate region is the capacity region
of the constructed degraded channel, for which Bergmans’
converse [3] can be adapted as opposed to the original channel.
Secondly, [1] considers the aligned Gaussian MIMO broad-

cast channel, where the transmitter and all receivers have the
same number of antennas. This channel is not degraded, thus,
there is no single-letter expression for its capacity region. Ref-
erence [1] shows that the achievable rate region obtained by
using dirty paper coding (DPC), i.e., the DPC region, is the ca-
pacity region of the aligned channel. For this purpose, [1] uses
the channel enhancement technique one more time along with
the capacity result obtained for the degraded Gaussian MIMO
broadcast channel in the first step.
Finally, [1] considers the general, not necessarily degraded

or aligned, Gaussian MIMO broadcast channel and shows that
the DPC region again amounts to the capacity region by using
some limiting arguments in conjunction with the capacity result
obtained for the aligned channel.
Similar to the proof of [1], the alternative proof in [2] uses the

channel enhancement technique as well. The alternative proof
in [2] can be divided into two parts. In the first part, [2] con-
siders an optimization problem which is the maximization of
the difference of two differential entropy terms (see [2, The-
orem 1]) which cannot be solved by a stand-alone use of the
entropy-power inequality. Next, [2] provides two proofs for the
fact that the Gaussian distribution is the maximizer of this op-
timization problem. In both proofs provided in [2], the channel
enhancement technique is used. In the second part, [2] considers
Marton’s outer bound [4] for the general broadcast channel, and
evaluates it for the aligned Gaussian MIMO broadcast channel
by using the optimization problem solved in the first part. This
evaluation yields the capacity region of the two-user aligned
Gaussian MIMO broadcast channel.
We note that though the proof in [2] is for the aligned, not

necessarily degraded, Gaussian MIMO broadcast channel, if
this proof is adapted to find the capacity region of the degraded
Gaussian MIMO broadcast channel, again the channel enhance-
ment technique will be needed. In particular, for the degraded
case, the optimization problem solved in the first part of the
proof in [2] will change slightly, however the need for channel

1The Gaussian rate region refers to the achievable rate region obtained by
superposition coding and successive decoding with Gaussian codebooks.
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enhancement will remain. In fact, the optimization problem
needed for the degraded case is a special case of the original
optimization problem solved in the first part of the proof in [2],
which is given in [2, Corollary 4].
Here, we revisit the degraded Gaussian MIMO broadcast

channel and provide an alternative proof for the capacity region
of this degraded channel, without using the channel enhance-
ment technique. Though channel enhancement is an elegant
technique that finds itself diverse applications, we believe that
our proof is more direct. On the other hand, our proof is limited
to the degraded case and does not seem to be extendable for
the general case. In other words, to obtain the capacity region
for the general case after finding the capacity region for the
degraded case through our proof, one needs to use the channel
enhancement technique [1].
Our proof starts with the single-letter description of the ca-

pacity region of the degraded broadcast channel, and by using
it, obtains a tight (i.e., achievable) outer bound for the capacity
region of the degraded Gaussian MIMO broadcast channel, by
using two main technical tools. The first one is the generalized
de Bruijn identity due to [5] that states a connection between
the differential entropy and the Fisher information matrix. The
second tool we use is an inequality due to [6], [7] that gives a
lower bound for the differential entropy in terms of the Fisher
information matrix.
Finally, our technique used in this alternative proof can

be useful in other vector Gaussian multiterminal information
theory problems when proving the optimality of Gaussian
random vectors. In fact, we have used a variant of this tech-
nique in proving the secrecy capacity region of the Gaussian
MIMO multireceiver wiretap channel in [8], and the secrecy
capacity region of the Gaussian MIMO degraded compound
multireceiver wiretap channel in [9].

II. CHANNEL MODEL AND MAIN RESULT

The (aligned) degraded -user Gaussian MIMO broadcast
channel is defined by

(1)

where is Gaussian with covariance matrix ,
and the channel input and outputs satisfy

the Markov chain

(2)

which is equivalent to the covariance matrices satis-
fying the following order:

(3)

The channel input is subject to a covariance constraint

(4)

where we assume . The covariance constraint in (4) is
more general than many other constraints including the trace
constraint, in the sense that, once the capacity region is found

for the constraint in (4), capacity regions arising from the use of
other constraints subsumed by (4) can be obtained by using this
capacity region [1].
We next note that the definition of degradedness can be gen-

eralized to the case where receivers get arbitrary linear combi-
nations of the channel inputs, i.e.,

(5)

The broadcast channel defined in (5) is said to be degraded,
i.e., satisfies the Markov chain in (2), if there exist matrices

such that and [10].
However, once the capacity region of the aligned degraded
Gaussian MIMO broadcast channel defined by (1) is obtained,
the capacity region of the general degraded Gaussian MIMO
broadcast channel defined by (5) can be obtained by following
the analysis given in Section V of [10], which essentially
relies on some limiting arguments. Since the key step to obtain
the capacity region of the general degraded Gaussian MIMO
broadcast channel defined by (5) is to establish the capacity
region of the aligned degraded Gaussian MIMO broadcast
channel defined by (1), here we consider only the latter channel
model.
The capacity region of the Gaussian MIMO broadcast

channel is established in [1] for the most general case. For the
degraded case, it is given as follows.

Theorem 1 ([1, Theorem 2]): The capacity region of the
-user degraded Gaussian MIMO broadcast channel is given

by the union of rate tuples satisfying

(6)

where the union is over all positive semi-definite matrices
such that .

In the next section, we provide an alternative proof for this
theorem for , and in Section IV we extend this proof to
the case . In both cases, we use the capacity region of
the degraded broadcast channel which is stated in the following
theorem, for the Gaussian MIMO channel at hand.

Theorem 2 ([11, Theorem 15.6.2]): The capacity region of
the degraded broadcast channel is given by the union of rate
tuples satisfying

(7)

where , and the union is over all
such that

(8)

III. PROOF OF THEOREM 1 FOR

A. Background

We need some properties of the Fisher information and the
differential entropy, which are provided next.
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Definition 1([8, Definition 3]): Let be an arbitrarily
correlated length- random vector pair with well-defined den-
sities. The conditional Fisher information matrix of given
is defined as

(9)

where the expectation is over the joint density , and the
conditional score function is

(10)

(11)

We first present the conditional form of the Cramer-Rao in-
equality, which is proved in [8].

Lemma 1 ([8, Lemma 13]): Let be arbitrarily correlated
random vectors with well-defined densities. Let the conditional
covariance matrix of be , then we have

(12)

which is satisfied with equality if is jointly Gaussian
with conditional covariance matrix .
The following lemma will be used in the upcoming proof.

The unconditional version of this lemma, i.e., the case ,
is proved in [8, Lemma 6].

Lemma 2 ([8, Lemma 6]): Let be random vec-
tors such that and are independent. Moreover,
let be Gaussian random vectors with covariance ma-
trices such that . Then, we have

(13)

The following lemmawill also be used in the upcoming proof.

Lemma 3 ([8, Lemma 8]): Let be positive semi-def-
inite matrices satisfying , and be a ma-
trix-valued function such that for .
Moreover, is assumed to be gradient of some scalar field.
Then, we have

(14)

The following generalization of the de Bruijn identity [12],
[13] is due to [5], where the unconditional form of this identity,
i.e., , is proved. Its generalization to this conditional form
for an arbitrary is rather straightforward, and is given in [8,
Lemma 16].

Lemma 4 ([8, Lemma 16]): Let be an arbitrarily cor-
related random vector pair with finite second order moments,
and also be independent of the random vector which is zero-
mean Gaussian with covariance matrix . Then, we have

(15)

The following lemma is due to [6], [7] which lower bounds
the differential entropy in terms of the Fisher information ma-
trix.

Lemma 5 ([6], [7]): Let be an -dimensional
random vector, where the conditional Fisher information matrix
of , conditioned on , exists. Then, we have

(16)

In [6] and [7], the unconditional version of this lemma, i.e.,
, is provided. A proof for its generalization to this condi-

tional form is given in Appendix I.

B. Proof for

We first rewrite the capacity region of the degraded broadcast
channel given in Theorem 2 for two users as a union of rate pairs

satisfying

(17)

(18)

where we dropped the subscript of the auxiliary random vari-
able and denoted it simply as . The involved random vari-
ables satisfy the Markov chain . To obtain
the capacity region of the degraded Gaussian MIMO broadcast
channel, we need to evaluate this region. In particular, we will
show that the optimal random vector that exhausts this
region is Gaussian, and the corresponding capacity region is
given by the union of rate pairs satisfying

(19)

(20)

where the union is over all such that . We note
that the region described by (19)–(20) comes from Theorem 1
by dropping the subscript of and denoting it simply as .
We begin with the bound on . Starting from (18), we get

(21)

(22)

(23)

where the inequality in (23) comes from the maximum entropy
theorem [11]. We now bound in (23). We first get an
upper bound as

(24)

where the first inequality comes from the fact that conditioning
cannot increase entropy, and the second inequality is due to the
maximum entropy theorem [11]. Furthermore, using Lemma 5,
we can get the following lower bound for

(25)
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We next define the following function:

(26)

where is given as

(27)

We first note that

(28)

(29)

(30)

(31)

where (28) is a consequence of Lemma 1, and (30) comes from
the fact that the conditional covariancematrix is smaller than the
unconditional one in the positive semi-definite ordering sense.
This implies that for any , satisfies

(32)

Using , bounds in (24) and (25) can be rewritten as

(33)

Since is continuous in [8], due to the intermediate value
theorem, there exists a such that

(34)

where satisfies (32). Plugging (34) into (23) yields

(35)

which is the desired bound on given in (20).
We now obtain the desired bound on . To this end, using

(32) and Lemma 2, we get

(36)

(37)

for any Gaussian random vector with covariance matrix
where . The order in (37) is equivalent to

(38)

Next, we consider the bound on given by (17). To this end,
we first find an upper bound for the differential entropy term

which will be subsequently used to obtain the desired
bound on .

(39)

(40)

(41)

(42)

(43)

(44)

where (40) is due to (34), (41) is obtained by using Lemma 4,
and (42) is due to (38) and Lemma 3. Using (44) in (17), we get

(45)

(46)

(47)

which is the desired bound on given in (19); completing the
proof.

IV. EXTENSION TO THE -USER CASE

We now extend our alternative proof presented in the pre-
vious section to the case . For that purpose, we need the
following lemma due to [8] in addition to the tools introduced
in Section III-A.

Lemma 6 ([8, Lemma 17]): Let be length-
random vectors with well-defined densities. Moreover, as-
sume that the partial derivatives of with respect to

exist and satisfy

(48)

for some integrable function . Then, if satisfy
the Markov chain , we have

(49)

First, following the proof in Section III-B, we can show the
existence of a covariance matrix such that

(50)

(51)

(52)

where (50), (51), and (52) can be obtained from (38), (34), and
(44), respectively, by an appropriate change of indices. Since
we have

(53)

from the maximum entropy theorem [11], we can get the desired
bound on as follows:

(54)

When as in Section III-B, showing the existence of
an having the properties listed in (50)–(52) is sufficient
to conclude the proof. However, when , we need an
additional tool, which is Lemma 6, and using this tool we need to
repeat this step until we are left with showing the desired bound
on the first user’s rate . We now present the basic step that
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needs to be repeated. In particular, we now show the existence
of a covariance matrix such that

(55)

(56)

(57)

We first note the following order

(58)

(59)

(60)

where (58) is due to (50), (59) comes from Lemma 2, and (60)
follows from Lemma 6 as we can get

(61)

by noting the Markov chain .
Next, we consider the following lower bound on

which is due to Lemma 5

(62)
Moreover, we can get the following upper bound:

(63)

(64)

(65)

where (63) is due to the Markov chain ,
(64) comes from the fact that conditioning cannot increase en-
tropy, and (65) is due to (52).
We now define the following function:

(66)

where is given by

(67)
Using , we can recast bounds on in
(62) and (65) as

(68)

Since is continuous in [8], due to the intermediate
value theorem, there exists a such that

, i.e.,

(69)

where we define . Thus, we established
(56). Furthermore, it is clear that we also have (55) because of
(60), (67) and .
We now show (57). To this end, we note the following order:

(70)

(71)

for any Gaussian with covariance matrix due
to Lemma 2. The order in (71) is equivalent to

(72)

We now consider as follows:

(73)

(74)

(75)

(76)

where (74) comes from Lemma 4 and (56), and (75) is due to
(72) and Lemma 3. Thus, we showed (57) as well. Also, we can
establish the desired bound as follows

(77)

(78)

(79)

(80)

where (78) comes from the Markov chain
, (79) comes from (52), and

(80) is due to (56).
As of now, we outlined the basic step that needs to be repeated

until we are left with getting the desired bound on the first user’s
rate . Following the analysis from (55) to (76), we can show
the existence of covariance matrices for
such that

(81)

(82)

(83)

where we set Using these relations, we can get the
bound on for any as

(84)

(85)

(86)

(87)

where we set . The equality in (85) comes from
the Markov chain , (86) is obtained by using
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(83), and (87) is due to (82). For , we can get the bound
on as

(88)

(89)

(90)

where (90) comes from (83). Finally, we define
for where , and plug

these into (87)–(90) which yields the expressions in Theorem 1.

V. CONCLUSIONS

We provide an alternative proof for the capacity region of
the degraded Gaussian MIMO broadcast channel. As opposed
to the existing proofs in [1] and [2], our proof does not use
the channel enhancement technique [1]. Our proof starts with
the single-letter description of the capacity region of the de-
graded broadcast channel, and by using it, obtains a tight (i.e.,
achievable) outer bound for the capacity region of the degraded
Gaussian MIMO broadcast channel, by using two main tech-
nical tools. The first one is the generalized de Bruijn identity
that gives a connection between the differential entropy and the
Fisher information [5]. The second one is an inequality due to
[6] and [7] that lower bounds the differential entropy in terms
of the Fisher information matrix.

APPENDIX
PROOF OF LEMMA 5

We define the function as follows:

(91)
where .
We need to prove that . We will show that

is monotonically decreasing in , and that .
This will prove . To this end, we introduce the fol-
lowing lemma, which will be used subsequently.

Lemma 7 ([8, Corollary 4]): Let be length-
random vectors and let the density for any combination of these
random vectors exist. Moreover, let and be conditionally
independent given . Then, we have

(92)

Fix such that . Using Lemma 4, we have

(93)

where is a Gaussian random vector with covariance matrix
such that , and independent of .

Using Lemma 7 in conjunction with Lemma 1, we get

(94)

Plugging (94) into (93) and invoking Lemma 3, we get

(95)

Rearranging (95) yields

(96)

which proves that is monotonically decreasing in .
We now consider upper and lower bounds on . We have

the following upper bound on :

(97)

(98)

(99)

(100)

where (98) comes from the maximum entropy theorem [11]
and denotes the covariance matrix of . In (100), we de-
note the eigenvalues of with , and of

with . Furthermore, we have
the following lower bound on :

(101)

(102)

(103)

(104)

where (102) comes from the fact that conditioning cannot
increase entropy, and in (104), we denote the eigenvalues of

with . Comparison of (100)
and (104) yields

(105)

Taking the limit as yields . Com-
bining this with the fact that decreases monotonically in
yields , and consequently,

(106)

completing the proof.
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