
Private Membership Aggregation
Mohamed Nomeir Sajani Vithana Sennur Ulukus

Department of Electrical and Computer Engineering
University of Maryland, College Park, MD 20742

mnomeir@umd.edu spallego@umd.edu ulukus@umd.edu

Abstract—We consider the problem of private membership
aggregation (PMA), in which a user counts the number of times
a certain element is stored in a system of independent parties
that store arbitrary sets of elements from a universal alphabet.
The parties are not allowed to learn which element is being
counted by the user. Further, neither the user nor the other
parties are allowed to learn the stored elements of each party
involved in the process. PMA is a generalization of the recently
introduced problem of K private set intersection (K-PSI). The
K-PSI problem considers a set of M parties storing arbitrary
sets of elements, and a user who wants to determine if a certain
element is repeated at least at K parties out of the M parties
without learning which party has the required element and which
party does not. To solve the general problem of PMA, we dissect
it into four categories based on the privacy requirement and
the collusions among databases/parties. We map these problems
into equivalent private information retrieval (PIR) problems. We
propose achievable schemes for each of the four variants of the
problem based on the concept of cross-subspace alignment (CSA).
The proposed schemes achieve linear communication complexity
as opposed to the state-of-the-art K-PSI scheme that requires
exponential complexity even though our PMA problems contain
more security and privacy constraints.

I. INTRODUCTION

Multi-party computation (MPC) is used in a wide range
of applications such as secure voting, privacy-preserving data
analysis, collaborative machine learning, secure social net-
works, etc [1]. Private set intersection (PSI) is one of the most
fundamental multi-party computations [2]–[8]. In PSI, there
are multiple parties, each storing a set of elements coming
from an alphabet. It is required to find the intersection of the
sets of all parties without leaking any information about the
remaining elements in each party beyond the intersection. [7]
formulates the two-party PSI problem from an information-
theoretic point of view, finds the optimal download cost and
proposes an optimum achievable scheme. [8] considers the
multi-party version of PSI, determines the optimal download
cost and gives a capacity-achieving scheme. The schemes
in [7], [8] are based on concepts from information-theoretic
private information retrieval (PIR).

A new variation of the multi-party PSI problem, called K-
PSI, is recently introduced in [9]. In K-PSI, there are M
parties storing arbitrary sets of elements out of an alphabet. A
user wishes to know if a certain element is repeated K times
or not among the M parties. In this problem, the parties do not
want to leak any information about their datasets to the other
parties or to the user; the user should not learn which parties
contain the queried element and which parties do not; and the
parties should not learn any information about the element
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Fig. 1: Private membership aggregation (PMA) system model.

being queried. In [9], a scheme is designed to solve the K-
PSI problem with an exponential communication complexity,
i.e., O(MK(K − 1)). The same complexity can be achieved
with weaker privacy using the existing schemes on PIR-based-
PSI [7], [8] if we allow each party to have N databases. This
motivates to look at K-PSI and its extensions through the
lens of PIR, as it provides the elemental privacy and security
requirements of any multi-server system [10]–[20].

In this paper, we generalize the problem of K-PSI by com-
puting the exact number of parties storing a certain element,
without revealing the user any information about the elements
stored in each party, and without letting the databases know
which element is being checked. In addition, we do not allow
the user to know which parties have the required element and
which do not. We coin this problem as private membership
aggregation (PMA); see Fig. 1. This is a fine-grained version
of K-PSI, as instead of asking if an element is repeated more
than K times in the parties, we ask how many times an element
is repeated in the parties. The main applications of PMA
include multiple identity detection and anomaly detection. For
example, in the health insurance industry, companies want to
make sure that a person with a certain social security number
does not have another account in another company. Another
application is to check the validity of certain information by
making sure that it exists in some of the other parties as well.

In this work, we consider four different variants of PMA,
described by the cases where: 1) different parties are allowed
to eavesdrop on the answers from other parties, 2) the user is
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Fig. 2: PMA model: from elements to incidence vectors.

not allowed to learn any information about the elements other
than what is being checked, which is coined as symmetric
PMA (SPMA), 3) certain subsets of databases within each
party are allowed to collude (type I collusion), and 4) certain
subsets of parties are allowed to collude (type II collusion).
We formulate each problem in the context of PIR, and use
concepts from cross subspace alignment (CSA) [16] to solve
each problem. We modify the basic CSA scheme to achieve the
additional privacy requirement in SPMA by using a masking
technique to keep the user from obtaining any information
on the elements other than what is checked. We provide
schemes that perform each variant of PMA stated above with
a linear communication complexity, which is a significant
improvement compared to the complexity required by the
existing state-of-the-art K-PSI schemes, which is exponential.

II. PROBLEM FORMULATION

We consider M parties, each containing N servers. There
are E elements in total in the universal set each of which can
be mapped to a separate message Wk, k ∈ {1, . . . , E}; see
incidence vectors in Fig. 2. Each message Wk has a probability
pk to be in the message set of any given party, i.e.,

P(Wk ∈ Pi) = pk, i ∈ [M ], k ∈ [E], (1)

where Pi is the set of messages in the ith party. Each
message Wi is generated uniformly at random, independent
of other messages, and independent from the shared common
randomness between the parties, i.e.,

H(W[E],S) = EH(W1) +H(S), (2)

where S is the shared randomness among the parties.
Each party wishes to keep their message contents Pi and

the indices of the messages available at their datasets hidden

from other parties, i.e., for each i, j ∈ [M ], i ̸= j,

I(Pi; Eij |Pj , E1j , . . . , Ei−1,j , Ei+1,j , . . . , EMj) = 0, (3)
I(Ui; Eij |Pj , E1j , . . . , Ei−1,j , Ei+1,j , . . . , EM,j) = 0, (4)

where Ui =
⋃E

j=1{1(Wj ∈ Pi)} and Eij is all possible
communications between the ith and the jth parties.

The user chooses an index θ ∈ [E] uniformly at random and
wishes to compute how many parties store Wθ by sending a
query Qθ

ij to the jth database in the ith party, which satisfies,

I(θ;Qθ
ij |Pi) = 0, i ∈ [M ], j ∈ [N ]. (5)

After receiving the queries, each database replies truthfully
with an answer string Aθ

ij which is a deterministic function of
the received query Qθ

ij , the messages available at each party
Pi, and shared randomness between parties S, i.e.,

H(Aθ
ij |Qθ

ij ,Pi,S) = 0, i ∈ [M ], j ∈ [N ]. (6)

If the ith party is eavesdropping on Yiℓ links in the ℓth party,
then, party i should not be able to obtain any information on
the message index being checked, contents of the ℓth party, or
the required answer by the user, κθ =

∑
i∈[M ] 1(Wθ ∈ Pi),

i.e., for i, ℓ ∈ [M ], i ̸= ℓ, κθ ∈ {0, . . . ,M}, θ ∈ [E],

I(θ;Aθ
ℓYℓ

, Qθ
ℓYℓ

|S,Pi) = 0, (7)

I(Uℓ;A
θ
ℓYℓ

, Qθ
ℓYℓ

|S,Pi) = 0, (8)

I(κθ;Aθ
ℓYℓ

, Qθ
ℓYℓ

|S,Pi) = 0, (9)

where Yℓ is the set of databases in party ℓ whose com-
munication links are eavesdropped on by party i, such that
|Yℓ| ≤ maxi(Yiℓ). Given the answer strings from all parties,
the user can apply a decoding scheme that generates the
required answer with no error, i.e.,

κ̂θ = g(Aθ
ij , Q

θ
ij , i ∈ [M ], j ∈ [N ]), θ ∈ [E], (10)

where g is the decoding scheme, and

P(κ̂θ = κθ) = 1. (11)

In addition, PMA requires that the user should not be
able to infer any information about the parties containing
the required message, except by random guessing, i.e., no
information about the locations of the required message Wθ

can be extracted from the answer strings, i.e., for θ ∈ [E], κ ∈
{0, . . . ,M}, i ∈ [M ],

P(Wθ ∈ Pi|Aθ, κθ = κ) =
κ

M
, (12)

where Aθ =
⋃

i,j{Aθ
ij}. Moreover, for any {i1, . . . , in} ⊂ [M ]

such that n ≤ κ,

P(Wθ ∈ {Pi1 , . . . ,Pin}|Aθ, κθ = κ) =

(
κ
n

)(
M
n

) . (13)

Finally, in SPMA, it is required that no information about
the messages other than the one being checked is allowed to
leak to the user, i.e., for θ ∈ [E],

I(WθC ;Aθ|Qθ, κθ) = 0, (14)



I(Γθ;Aθ|Qθ, κθ) = 0, (15)

where WθC = {Wi : i ∈ [E], i ̸= θ}, Qθ =
⋃

i,j{Qθ
ij}, and

Γθ =
⋃M

i=1

⋃E
j=1
j ̸=θ

{1(Wj ∈ Pi)}.
A scheme that satisfies (3)-(13) is called a PMA scheme,

and a PMA scheme that satisfies (14), (15) is called an SPMA
scheme. The download cost D of any of these schemes is

D = E
[∑

i

∑
j

H(Aθ
ij)

]
, (16)

where the expectation is taken over θ.
We further separate the problem into two types, namely, 1)

collusions within the databases in each party, i.e., the parties do
not collude but the databases within each party are allowed to
collude (type I collusion), and 2) collusions among the parties,
i.e., the databases within each party are colluding with other
databases from other parties (type II collusion).

III. MAIN RESULTS

Theorem 1 Consider a PMA system with type I collusions
consisting of M parties, each of which has N databases with
any T of them colluding. Each party is allowed to eavesdrop
on Y links of the other parties. The optimal download cost of
this case D∗

PMA-I must satisfy,

D∗
PMA-I ≤ M(max(T, Y ) + 1), (17)

with N ≥ max(T, Y ) + 1.

Theorem 2 For the same setting as in Theorem 1 with the ad-
ditional condition of symmetric privacy, the optimal download
cost of SPMA D∗

SPMA-I must satisfy,

D∗
SPMA-I ≤ M(max(T, Y ) + 1), (18)

with N ≥ max(T, Y ) + 1.

Theorem 3 Consider a PMA system with type II collusions
consisting of M parties, each of which has N databases. All
databases in any T out of the M parties can collude, and
the ith party is able to listen to Yi links of any other party.
The optimal download cost of non-symmetric and symmetric
variants of this case D∗

PMA-II and D∗
SPMA-II must satisfy,

D∗
PMA-II ≤ N +max(TN, Y1, . . . , YM ) + 1, (19)

D∗
SPMA-II ≤ N +max(TN, Y1, . . . , YM ) + 1, (20)

with MN ≥ N +max(TN, Y1, . . . , YM ) + 1.

Remark 1 The bounds on the download costs in Theorems 1-
3 do not depend on the number of messages in the system E.

Remark 2 The achievable schemes for Theorems 1 and 2
result in the same download cost for PMA type I and SPMA
type I. This is because the modified CSA scheme that achieves
symmetric privacy does not require any additional downloads.

Remark 3 The related work on K-PSI [9] achieves exponen-
tial communication complexity, which is significantly reduced

in this work, as the download costs in Theorems 1, 2, 3 are all
linear in the number of parties M , the number of databases
per party N , and the number of colluding parties T .

IV. PROPOSED SCHEMES

The schemes proposed for both PMA and SPMA are based
on CSA coding [16], with further modifications to achieve
symmetric privacy and security. In both problems, each party
generates a private incidence vector Pi, i ∈ [M ]. For the
example shown in Fig. 1 and Fig. 2, where E = 5 and the al-
phabet is {a, b, c, d, e}, equivalently, {W1,W2,W3,W4,W5}.
Since P1 = {W1,W2,W3,W4,W5}, the incidence vector of
party 1 is P1 = [1, 1, 1, 1, 1]t, since P2 = {W2,W3,W4}, the
incidence vector of party 2 is P2 = [0, 1, 1, 1, 0]t, and so on.

Remark 4 Using the incidence vector to reply to the user’s
queries instead of the messages explicitly satisfies (3).

A. Proposed Scheme for PMA Type I

In PMA type I, there are M parties, with N databases each,
out of which any T can be colluding. Each party is allowed to
eavesdrop on Y communication links of any other party. Let
the number of databases per party be N = max(T, Y ) + 1.
The vectors Pi, i ∈ [M ] are replicated in all the databases of
each party. The user, who wishes to know how many times
Wθ is repeated among the M parties sends queries Qθ

ij ,

Qθ
ij = eθ +

µ∑
ℓ=1

(1 + αj)
ℓZiℓ, (21)

where µ = max(T, Y ), eθ is a vector of length E with 1 at
the θth index and zeros otherwise, Zi1s are independent noise
vectors, with the same length, chosen uniformly at random,
and αjs are globally known distinct constants. After receiving
the queries, each database responds with an answer Aθ

ij ,

Aθ
ij = P t

iQ
θ
ij + Sij , (22)

where Si = [Si1, . . . , SiN ]t is the masking vector correspond-
ing to the ith party, unknown to the user. The masking vectors,
S1, . . . , SM , are chosen, independent of the incidence vectors,
such that

∑M
i=1 Si = 0N , where 0N is the zero vector of size

N × 1. The answers from the ith party are given by,

Aθ
i =

[
Ai1, Ai2, . . . , AiN

]t
= ΥNΛi + Si, (23)

where

ΥN =


1 1 + α1 (1 + α1)

2 . . . (1 + α1)
N−1

1 1 + α2 (1 + α2)
2 . . . (1 + α2)

N−1

...
...

...
...

1 1 + αN (1 + αN )2 . . . (1 + αN )N−1

 , (24)

and Λi =
[
1(Wθ ∈ Pi), I1, I2, . . . , IN−1

]t
with I1,

I2, . . . , IN−1 being interference symbols. To find the required



answer, the user adds all the received answers, i.e.,

M∑
i=1

Aθ
i = ΥN

M∑
i=1

Λi = Υ



∑M
i=1 1(Wθ ∈ Pi)

Ĩ1
Ĩ2
...

ĨN−1

 , (25)

and use the invertibility of Υ to obtain
∑M

i=1 1(Wθ ∈ Pi).

Remark 5 The number of databases per party required for
the proposed scheme is N ≥ max(Y, T ) + 1 and the optimal
number of databases per party that satisfies the minimum
download cost, with a fixed T and Y , for this scheme is
N = max(T, Y ) + 1.

Remark 6 In the proposed scheme given in this section, there
is no exchange of information between parties except for the
masking, which is independent of the messages and indices.
Thus, (3), (4) are both satisfied.

Remark 7 This scheme does not satisfy the symmetric privacy
constraint in (15) since the interference symbols may carry
information about

∑
i 1(WθC ∈ Pi). A modified version

presented in Section IV-B satisfies symmetric privacy.

Remark 8 The total communication complexity of the system,
considering the sum of the user’s upload cost, download cost,
and the cost of sharing randomness between parties is given
as (M − 1)N + EMN +MN , where it is assumed that the
masking vectors are generated by a single party, which are
then sent to the rest of the parties.

B. Proposed Scheme for SPMA Type I
In this section, we assume that the number of databases in

each party is N = max(T, Y ) + 1, similar to the previous
section, as the modification proposed for CSA to achieve
symmetric privacy does not require additional databases. In
contrast to PMA type I, SPMA type I hides any information
about the availability of messages other than the one being
checked from the user. Intuitively, if the parties can utilize
random noise in the scheme such that the noise hides the con-
tents of the interference symbols in (25), the scheme becomes
private in both directions. The core difference between this
scheme and the scheme in Section IV-A is that the databases
within each party in this scheme share common randomness
Z ′ which is generated independently from the messages, the
incidence vector, and the masking variables. As in the previous
section, the ith party stores its incidence vector Pi in a
replicated manner in all N databases, i.e.,

Pij = Pi, i ∈ [M ], j ∈ [N ]. (26)

The user sends the same queries as in (21), to which the
databases send the corresponding answers given by,

Aθ
ij = P t

ijQ
θ
ij +

N−1∑
ℓ=1

(1 + αj)
ℓZ ′

iℓ + Sij , (27)

where Z ′
iℓs are random noise variables initialized and shared

by the N databases in each party i. Thus, the user obtains,

Aθ
i = ΥNΛi + Si, (28)

where Υ is the same as in (24), Si is the masking vector, and
Λi is given by,

Λi =


1(Wθ ∈ Pi)
I1 + Z ′

i1

I2 + Z ′
i2

...
IN−1 + Z ′

i,N−1

 , (29)

where I1, I2, . . . IN−1 are interference symbols. By applying
the same decoding scheme as in the previous section, the user
retrieves the required answer.

Remark 9 The total communication complexity of this
scheme is given by (M−1)N+EMN+N−1+MN , where
we assume that one party generates the masking vectors and
sends them to the rest of the parties.

Remark 10 If, in addition, we assume that T2 parties are
communicating, i.e., sharing their datasets to figure out the
datasets of the remaining M − T2 parties, the schemes
presented in the previous sections still maintain the same
download cost since the schemes do not require the parties
to share their datasets, nor the incidence vectors.

C. Proposed Scheme for SPMA Type II

In this case, there are M parties, each with N databases,
and all databases in T < M parties are allowed to collude.
The main issue here is that the efficient PIR schemes cannot
be applied separately to each party, as all the databases in each
party collude with each other. This requires any information
exchange among the parties to be secure against any N
communicating databases, which motivates the mapping of
this problem to an XSTPIR problem [16] with the number
of colluding databases, i.e., databases that share information
of the users, T ′ = NT , and the number of communicating
databases, i.e., databases that share their contents, X = N .
We adopt a variant of the CSA scheme to solve this problem
as in the previous sections. For this scheme, N is chosen such
that MN = N+max(TN, Y1, . . . , YM )+1, and the proposed
approach is defined in the following steps:

Step 1: Initialization and Distribution: Each party with its
message set, Pi, has its corresponding incidence vector Pi that
needs to be secure against any N communicating databases.
Thus, it is encoded as,

P̃ij = Pi +

N∑
ℓ=1

(1 + αj)
ℓXiℓ, i ∈ [M ], j ∈ [MN ], (30)

where Xiℓs are independent random noise vectors. The ith
party sends P̃ij to the jth database. After receiving P̃ij , i ∈



[M ], the jth database adds all the received vectors as,

P̃j =

M∑
i=1

Pi + (1 + αj)X̃1 + . . .+ (1 + αj)
N X̃N , (31)

for j ∈ [MN ], where X̃n =
∑M

i=1 Xin, n ∈ [N ].
Step 2: Queries and Answers Structure: The user who wants

to know how many times Wθ is repeated in the M parties,
sends the following query to the nth database,

Qθ
n = eθ +

µ∑
ℓ=1

(1 + αn)
ℓZℓ, n ∈ [MN ], (32)

where Zk, k ∈ [µ] are uniform independent noise vectors,
and µ = max(NT, Y1, . . . , YM ). The parties agree on uniform
random noise variables Z ′

1, Z
′
2, . . . , Z

′
MN−1, and generate the

answers to achieve symmetric privacy as,

Aθ
n = P̃ t

nQ
θ
n +

MN−1∑
i=1

(1 + αn)
iZ ′

i, n ∈ [MN ]. (33)

Decoding Structure: After retrieving all the answers, the
user has the following answer vector

Aθ =


Aθ

1

Aθ
2

...
Aθ

MN

 = ΥMN


∑M

i=1 1(Wθ ∈ Pi)
I1 + Z ′

1
...

IMN−1 + Z ′
MN−1

 , (34)

where I1, . . . , IMN−1 are the interference symbols. The user
multiplies the answer vector by Υ−1

MN to obtain the required
information. The download cost in the proposed scheme is
MN with MN ≥ N + TN + 1, which concludes the proof
of the upper bound in Theorem 3.

Remark 11 The total communication cost in this scheme is
equal to (E + 1)(N + TN + 1) +N +NT .

Remark 12 If MN > N + max(TN, Y1, . . . , YM ) + 1, we
can drop the extra databases. Interestingly, this shows that
cooperation between parties, even though their datasets are
secure from each other, can save some databases.

Remark 13 In this scheme, if there are T2 communicating
parties, then the optimal download cost is upper bounded by
T2N +max(TN, Y1, . . . , YM ) + 1.

V. CONCLUSIONS

In this paper, we introduced PMA which is a generalization
and refinement of K-PSI. In PMA, the user wishes to know
how many times a certain message appears in all parties.
We consider different cases of the problem, based on the
privacy requirements (user-privacy and symmetric privacy)
and database collusions. We proposed achievable schemes
for all cases considered, focusing on the behavior of the
communication complexity as a function of system parameters.
Compared to the previous work in K-PSI that achieves expo-
nential complexity, the schemes proposed here achieve linear
complexity with enhanced privacy and security guarantees.

VI. APPENDIX: PROOFS

In this section, we prove important lemmas that collectively
prove the security and privacy requirements for the devel-
oped schemes. More precisely, Lemmas 2, 4, and 5 prove
Theorem 1; Lemmas 1, 2, 4, and 5 prove Theorem 2; and
Lemmas 1, 3, 4, and 6 prove Theorem 3, in terms of the
claims made on the levels of privacy and security achieved.

Lemma 1 The schemes proposed for SPMA type I and SPMA
type II provide symmetric privacy.

Proof: For the scheme proposed for the SPMA type I problem,
since every party has its own independent random variables,
Z ′
1(i), . . . , Z

′
N−1(i), i ∈ [M ], it suffices to consider each

party independently. Let ΓθC (i) =
⋃E

k=1
k ̸=θ

{1(Wk ∈ Pi)}, thus

we need to show that I(ΓθC (i);Aθ
i[N ](i)|Q

θ
i[N ](i), κ

θ) = 0.
The answers received by the user from the ith party are
contaminated with noise terms independent of the messages
along the interference terms, which is simply a random noise
symbol Z ′ unknown to the user. Thus,

I(ΓθC (i);Aθ
i[N ]|κ

θ, Qθ
[MN ], θ)

= H(ΓθC (i)|κθ, Qθ
[MN ], θ)

−H(ΓθC (i)|A[θ]
i[N ], κ

θ, Qθ
[MN ], θ) (35)

≤ H(ΓθC (i))−H(ΓθC (i)|κθ, Z ′
[N−1], Q

θ
[MN ], θ) (36)

= 0. (37)

For the scheme presented for the SPMA type II, the same
approach is used, however, the interference terms in the
answers are contaminated with independent random noise
symbols collectively, thus we use Z ′

1, . . . , Z
′
MN−1 in the proof

and consider the answers collectively. ■

Lemma 2 The masking used in PMA type I and SPMA type I
schemes guarantees blind estimation requirements (12)-(13).

Proof: Assume that the random vector Ω(Wθ) represents the
information that the user requires about Wθ and any possible
side information about the presence of the same message in a
subset of parties M such that |M| ≤ M − 1. Let Aθ

M be the
set of answers received from those parties and Z be the noise
terms used to ensure user privacy, then

I(Ω(Wθ);A
θ
M|θ, Z)=I(Ω(Wθ);A

θ
i1 , . . . , A

θ
iM−1

) (38)

=I(Ω(Wθ);Si1 , . . . , SiM−1
) = 0 (39)

where the last equality is due to the independence between the
incidence vectors and the masking vectors.

Now, since the answer vectors from each party,
A1, . . . , AM , are aligned, the answers of all M parties
cannot give any information about any subset of parties with
cardinality less than M . ■

Lemma 3 The scheme proposed for SPMA type II is secure
against any N communicating databases.



Proof: Let P := P̃j given in (30) for any j, and P (ℓ) is the
ℓth element of P . Define the vector of any N observations for
the ℓth element of P as Uℓ. Then, Uℓ can be written as

Uℓ = [Uℓ(1), . . . , Uℓ(N)]t (40)

= P (ℓ)

1...
1

+


1 + αi1 . . . (1 + αi1)

N

1 + αi2 . . . (1 + αi2)
N

...
...

1 + αiN . . . (1 + αiN )N


X1(ℓ)

...
XN (ℓ)


(41)

= P (ℓ)1+ diag(1+ α[i1:iN ]) ΥN [X1(ℓ), . . . , XN (ℓ)]t.
(42)

In (42), the matrices diag(1 + α[i1:iN ]) and ΥN are invert-
ible, which makes their product invertible as well. Then, the
following inequalities hold

I(P (ℓ);Uℓ)

= I(P (ℓ);P (ℓ)1+ diag(1 + α[i1:iN ]) ΥNX(ℓ)) (43)

= I(P (ℓ);P (ℓ)(diag(1 + α[i1:iN ]) ΥN )−11+X(ℓ)) (44)
= I(P (ℓ);X(ℓ)) = 0, (45)

where X(ℓ) = [X1(ℓ), . . . , XN (ℓ)]t. ■

Lemma 4 The query structure defined in the schemes for
PMA type I, SPMA type I and SPMA type II are secure against
any T colluding databases.

Proof: Let θ be the required user index, then for any set
of colluding servers T such that |T | ≤ T , the collective
observations QT can be written as

QT = [Qt
i1 , . . . , Q

t
iT ] = Eθ +B

[
Zt
1, . . . , Z

t
T

]t
, (46)

where Eθ = [etθ, . . . , e
t
θ]

t. Note that H(θ|Eθ) = 0, and the
matrix B = diag(1 + α[i1:iT ])ΥT is invertible as proven in
Lemma 3. Now, to ensure privacy given the queries QT , we
proceed as,

I(θ;QT ) = I(θ;Eθ +BZ) (47)

= I(θ;B−1Eθ + Z) = I(θ;Z) = 0, (48)

which concludes the proof. ■

Lemma 5 The schemes proposed for PMA type I and SPMA
type I are secure against an eavesdropper who has access to
any Y , where |Y| ≤ Y answers from the other parties.

Proof: We note that the incidence vectors for each party are
independent from each others, i.e., I(Pi;Pℓ) = 0, i ̸= ℓ. Thus,
I(AiY ;Pi|Pℓ) = I(AiY ;Pi). Now, using the same proof as in
Lemma 4 with Y instead of T and Pi instead of θ, the proof
follows. ■

Lemma 6 The scheme proposed for SPMA type II protects
the contents of the answers from any party that eavesdrops on
Yi links of other parties.

Proof: First, note that I(Sn;Pi) = 0, where Sn is the storage
in the jth database. This means that the dataset is secure
against any party. Let Y = max(Yi). Thus,

I(

M∑
i=1

Pi;AY |QY)=I(

M∑
i=1

Pi;AY) (49)

=I(etθ

M∑
i=1

Pi;AY) + I(Γθ;AY) = 0 (50)

where AY are the answers from any Y databases. The first term
on the right hand side of (50) is equal to zero by the same
method as in the proof of Lemma 4, where we replace the
queries with the answers and θ with etθ

∑M
i=1 Pi. The second

term is equal to zero as a direct consequence of Lemma 1. ■
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