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Abstract—We consider a gossip network consisting of a source
forwarding updates and n nodes placed geometrically in a ring
formation. Each node gossips with f(n) nodes on either side, thus
communicating with 2f(n) nodes in total. f(n) is a sub-linear,
non-decreasing and positive function. The source keeps updates
of a process, that might be generated or observed, and shares
them with the nodes in the ring network. The nodes in the ring
network communicate with their neighbors and disseminate these
version updates using a push-style gossip strategy. We use the
version age metric to quantify the timeliness of information at
the nodes. Prior to this work, it was shown that the version age
scales as O(n

1
2 ) in a ring network, i.e., when f(n) = 1, and as

O(logn) in a fully-connected network, i.e., when 2f(n) = n− 1.
In this paper, we find an upper bound for the average version
age for a set of nodes in such a network in terms of the number
of nodes n and the number of gossiped neighbors 2f(n). We
show that if f(n) = Ω( n

log2 n
), then the version age still scales as

θ(logn). We also show that if f(n) is a rational function, then
the version age also scales as a rational function. In particular,
if f(n) = nα, then version age is O(n

1−α
2 ). Finally, through

numerical calculations we verify that, for all practical purposes,
if f(n) = Ω(n0.6), the version age scales as O(logn).

I. INTRODUCTION

Over the last decade, the number of inter-connected devices
has increased rapidly due to the incorporation of wireless ca-
pabilities into various devices, as technologies have advanced.
This has led to the onset of new applications such as deploy-
ment of UAVs and sensors for collecting measurements and
surveillance, self-driving car networks, and remote connectiv-
ity with home appliances to make life easier. Among such
applications, many are time-critical, and it is very important
that freshest data is available to carry out the required time-
critical tasks. Hence, freshness of information has emerged as
an important performance metric in wireless networks.

It is well-known that latency, an established metric in com-
munication systems, is not sufficient to characterize freshness
of information [1]. In order to better quantify freshness, new
metrics have been proposed, such as, age of information [2]–
[4], which has been studied under various settings [5], [6].
Several extended metrics have also been introduced based
on real-life inspired applications, including age of incorrect
information [7], age of synchronization [8], binary freshness
metric [9], and version age of information [10]–[12].

In this paper, we consider the version age of information
metric. The version age of a node in a gossiping network is
the number of versions behind the node is when compared to a
source node that is generating or observing a random process
and has the latest version of the update. [10] uses stochastic

hybrid systems (SHS) to come up with a set of recursive
equations to find the version age of a connected subset of
a network. [10] also finds that the average version age of a
fully-connected network scales as θ(log n) and numerically
observes that the version age of a ring network scales as
O(

√
n). This work is extended in [13] which shows that the

version age of a particular arrangement of a network can
be improved by having a community structure with smaller
networks of the same arrangement. This paper also proves the
numerical observation in [10] about the version age scaling in
a ring. The version age metric is also studied under various
different settings. [14] studies a network with a timestomping
adversary, which can change the timestamps of the updates
and fool the nodes into accepting an older version of the
update. [15] studies the metric in the case where there are
jamming adversaries. [16] studies the version age of informa-
tion in a non-Poisson update setting. [17] considers version
age in an age-sensing multiple access channel. [18] considers
opportunistic gossiping protocols that achieve O(1) scaling
for version age in distributed multiple access channels. [19]
studies the distributions of version age and its moments.

In this work, we consider a general network arranged in
the form of a ring, see Fig. 1. The number of neighbors each
node has is a positive non-decreasing sub-linear function f(n)
of n, the number of nodes in the network. Each node gossips
with f(n) neighbors on each side, thus, communicating with
2f(n) neighbors in total. We find a general upper bound on
the version age of a single node in such a network. We recover
the results obtained for the fully-connected network and the
ring network in [10] and [13], by choosing 2f(n) = n − 1
and f(n) = 1, respectively, in our result. We analyze how the
version age varies as the function f(n) grows from 1 to n, and
find the upper bound for some special cases, such as functions
of the form f(n) = nα for 0 < α < 1.

II. SYSTEM MODEL

We consider a system where we have a source node gen-
erating or observing updates as a rate λe Poisson process
independent of all other processes in the network. The source
node disseminates these updates to n nodes in a network. The
network of n nodes is denoted by N , and hereafter referred to
as the ring network. The n nodes are placed in a ring formation
as shown in Fig. 1. These nodes receive updates from the
source node as a combined rate λ Poisson process, which can
be thought of as a thinned process where each node is being
updated by the source node as a rate λ

n Poisson process.
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Fig. 1. The source node updates itself at rate λe, and disseminates information to nodes arranged in a ring at total rate λ. Each node communicates with
f(n) nodes on each of its sides, thus, communicating with 2f(n) nodes in total, where f(n) is a given function in the network size n.

Each node in the ring network gossips with its neighbors,
which are the nearest 2f(n) nodes, i.e., each node gossips
with f(n) nodes on each side. Each node sends its version of
the update to each neighboring node as a rate λ

2f(n) Poisson
process, resulting in a total gossiping rate of λ per node.

In order to quantify the freshness of version updates, we use
the version age metric. First, we define the counting processes
associated with the version updates. Let N0(t) be a counting
process associated with the version updates at the source node,
i.e., it increases by 1 each time the source gets a new version
update. In a similar way, we define the version update of
node i in the gossip network as the counting process Ni(t),
which maintains the latest version at node i. Next, we define
the version age of node i as Xi(t) = Ns(t) − Ni(t), which
quantifies the number of versions node i is behind compared
to the source node. We define the version age of the source
node to be 0, since it always has the latest update. Next, we
define the version age of a connected subset S of the network
as XS(t) = minj∈S Xj(t). Finally, we define the limiting
average version age of this set S as vS = limt→∞ XS(t).

The evolution of version age of a particular node in the ring
network is as follows: If node i in the ring network receives
an update directly from the source node, then its version age
drops to 0, since it now has the latest version of the update.
If the source node generates or observes a new version of the
update, then the version age of node i increases by 1. If a
neighboring node shares its version of the update, then node
i keeps the new version if it is fresher than the version it has,
otherwise it rejects the update and keeps its own version.

We define the rate of information flow from node i to
neighboring node j as λij . This is the rate of the Poisson
process associated with the updates that node i sends to node j.
We say that node i is a neighboring node of set S if λij > 0 for
some j ∈ S, and define the set of neighboring nodes of S as
N(S). Next, we define the rate of information flow from node

i into connected set S as λi(S) =
∑

j∈S λij and λi(S) = 0 if
i ∈ S. Similarly, we define the rate of information flow from
the source to set S as λ0(S). We call an edge emanating from
node i /∈ S to node j ∈ S an incoming edge into S if λij > 0.
We call the set of all incoming edges into set S as E(S).

III. VERSION AGE OF A SINGLE NODE

In this section, we calculate an upper bound for the version
age of a single node in the generalized ring network, denoted
by v1. We note that the average version age of each node in the
network will be the same due to the symmetry in the network.
In order to calculate the upper bound, we modify the recursive
equations of [10], following the method described in [20].

Lemma 1 For any connected subset S of the generalized ring
network, we have,

vS ≤
λe

λ + |E(S)|
2f(n) maxi∈N(S) vS∪{i}

|S|
n + |E(S)|

2f(n)

(1)

Proof: First, we write the recursive equations from [10],

vS =
λe +

∑
i∈N(S) λi(S)vS∪{i}

λ0(S) +
∑

i∈N(S) λi(S)
(2)

In order to find an upper bound, we rearrange (2) as,

λe = λ0(S)vS +
∑

i∈N(S)

λi(S)
(
vS − vS∪{i}

)
(3)

Now, we define a function ES(i) which represents the number
of incoming edges to set S that emanate at node i ∈ N :
ES(i) =

∑
k∈S I(λik > 0), where i ∈ N(S) and I(·) is the

indicator function. Then, we partition N(S) into 2f(n) sets
according to the number of incoming nodes into S from any
i ∈ N(S) as,

Aj = {i ∈ N(S) : ES(i) = j} (4)



Fig. 2. On the left, a contiguous set of 5 nodes, marked in red, as described
in Lemma 2. On the right, a set of 5 nodes that is not contiguous.

where 1 ≤ j ≤ 2f(n). Now, we rewrite (3) as,

λe = λ0(S)vS +

2f(n)∑
j=1

∑
i∈Aj

λi(S)
(
vS − vS∪{i}

)
(5)

≥ λ0(S)vS +

2f(n)∑
j=1

|Aj |min
i∈Aj

λi(S)
(
vS − vS∪{i}

)
(6)

≥ λ0(S)vS +

2f(n)∑
j=1

|Aj |min
i∈Aj

λi(S) min
i∈Aj

(
vS − vS∪{i}

)
(7)

= λ0(S)vS +

2f(n)∑
j=1

|Aj |
jλ

2f(n)

(
vS −max

i∈Aj

vS∪{i}

)
(8)

≥ λ0(S)vS +

2f(n)∑
j=1

|Aj |
jλ

2f(n)

(
vS − max

i∈N(S)
vS∪{i}

)
(9)

= λ0(S)vS + |E(S)| λ

2f(n)

(
vS − max

i∈N(S)
vS∪{i}

)
(10)

where |E(S)| =
∑2f(n)

j=1 j|Aj | is the total number of incoming
edges into set S. Rearranging (10) together with the substitu-
tion λ0(S) =

λ|S|
n proves the lemma. ■

Next, we develop a further upper bound for (1) in Lemma 1
by further lower bounding (10). For that, we need to identify
a lower bound for |E(S)| in (10) for a fixed number of nodes
in S on a generalized ring. We have the following lemma.

Lemma 2 On a generalized ring, given all connected subsets
S such that |S| = j, the set which has the minimum number
of incoming edges is the contiguous set of j nodes.

Proof: We denote edges that start at a node in S and end
at a node in S as inner edges. We note that each edge can
only be an inner edge or an incoming edge. Hence, the sum
of the number of incoming edges and twice the number of
inner edges is constant and equal to 2jf(n). Thus, showing
that the set of contiguous nodes has the minimum number
of incoming edges is the same as showing that it has the
maximum number of inner edges. In this proof, we will show
that the number of inner edges is the highest. Fig. 2 shows
examples of contiguous and non-contiguous sets.

Let the set of j contiguous nodes be S1, and choose any
other connected set of j nodes and call it S2. Next, label each
node in both sets as 1S1

, 2S1
. . . , jS1

and 1S2
, 2S2

. . . , jS2
,

respectively. The labels start at the node at one end of the set
and end at the other end, covering each node in order of their

position. Now, we compare each iS1
and iS2

. We know that
both nodes have a total of 2f(n) neighbors.

First, we consider the case where j ≤ f(n). In this case,
iS1

has all the other nodes in S as a neighbor. Hence, it has
j − 1 inner edges associated with it, and this is the highest
achievable. iS2 may not have all nodes in S2 as neighbors, and
hence has at most the same number of inner edges as iS1 . This
is true for each consequent node. Hence, adding the number
of inner edges of each node in both sets, we see in this case
that S1 has more inner edges than S2.

Next, we consider the case where f(n) < j ≤ 2f(n).
Suppose the number of nodes in the set is f(n) + k, then for
i < k, iS1

shares an inner edge with f(n) nodes on one side
and i − 1 neighbors on the other side, which is the highest
possible for its position. If i > j − k, iS1

shares an inner
edge with f(n) nodes on one side and n − i neighbors on
the other side, which is the highest possible for its position.
If k ≤ i ≤ j−k, then all nodes in the set share an inner edge
with iS1

, which again is the highest possible number. Hence,
adding the number of inner edges of each node in both sets,
we see in this case that S1 has more inner edges than S2.

Next, we consider the case where 2f(n) < j < n− 2f(n).
If i ≤ f(n), then all f(n) neighbors on one side share an inner
edge with iS1

, and all i − 1 neighbors on the other side also
share an inner edge with iS1

, which leads to iS1
having the

highest possible number of inner edges as it shares an inner
edge with all possible nodes in its position. Hence, iS2 cannot
have more inner edges than iS1

. Due to symmetry, this is also
true for n − f(n) ≤ i. Also, if f(n) < i < n − f(n), then
all 2f(n) neighbors of iS1

share an inner edge with it. Once
again, iS2 has at most the same number of inner edges. Hence,
in this case, adding up the number of inner edges in order for
both sets, we conclude that S1 has more inner edges than S2.

Finally, if j ≥ n− 2f(n), then N\S has the same number
of inner edges as S. Hence, following the first and second
cases above, the contiguous set has the most inner edges.

From the above four cases, we conclude that the set of
contiguous nodes has the highest number of inner edges, and
hence, the lowest number of incoming edges. ■

Now, we state and prove our main theorem.

Theorem 1 The version age of a single node in the general-
ized ring network scales as,

v1 = O

(
log f(n) +

√
n

f(n)
1
2

)
(11)

Proof: First, using Lemma 2, we write the exact lower bounds
for incoming edges by counting the number of incoming edges
of the sets of contiguous nodes. We have three formulae,
corresponding to three regions, as follows:

1) j≤f(n): |E(S)| ≥ 2jf(n)− j(j − 1)
2) f(n)<j<n−f(n): |E(S)| ≥ f(n)(f(n) + 1)
3) n−f(n)≤j: |E(S)| ≥ 2(n−j)f(n)−(n−j)(n−j−1)

We obtain the first bound by counting the number of inner
edges for each node, which is j − 1, and then subtracting it



from the total number of neighbors 2f(n). Then, the number
of incoming edges for each node is 2f(n)− j−1. Since there
are j nodes in total, the number of incoming edges into set S is
given by j(2f(n)−(j−1)). We carry out a similar calculation
to count the number of edges in the third case. In the second
case, we simply calculate the number of incoming edges. The
nearest neighbors on each side has f(n) incoming edges, the
second nearest neighbor has f(n)− 1 incoming edges, and so
on. Hence, the total number of incoming edges is given by
2× f(n)(f(n)+1)

2 = f(n)(f(n) + 1).
Next, we calculate the sum of recursive terms for each

range. Let the sums of the recursive terms for the ranges be
X , Y and Z, respectively.

A. Range 1

The upper bound for the recursion for X is,

X ≤ λe

λ

(
1

1 + 1
n

)1+f(n)∑
i=1

i∏
j=1

2jf(n)−j(j−1)
2f(n)

j+1
n + 2(j+1)f(n)−j(j+1)

2f(n)

(12)

≤ λe

λ

1 +

f(n)∑
i=1

i∏
j=1

2jf(n)−j(j−1)
2f(n)

2(j+1)f(n)−j(j+1)
2f(n)

 (13)

=
λe

λ

1 +

f(n)∑
i=1

i∏
j=1

(2f(n)− (j − 1))

2f(n)− j

j

j + 1

 (14)

≤ λe

λ

1 +

f(n)∑
i=1

1

i

2f(n)

2f(n)− i

 (15)

≤ λe

λ

2 +

2f(n)−1∑
ℓ=1

1

ℓ

 (16)

≤ λe

λ
(2 + log 2 + log f(n) + γ) (17)

where γ ≈ 0.577 is the Euler-Mascheroni constant.

B. Range 2

The upper bound for the recursion for Y is,

Y ≤K
λe

λ

(
1

f(n)+1
n + f(n)+1

2

)(
f(n) + 1

2

)

×

1 +

n−f(n)∑
i=f(n)+2

i∏
j=f(n)+2

1

1 + 2j
n(f(n)+1)

 (18)

where

K =

f(n)∏
j=1

2jf(n)−j(j−1)
2f(n)

j+1
n + 2(j+1)f(n)−j(j+1)

2f(n)

(19)

≤
f(n)∏
j=1

j

j + 1

2f(n)− (j − 1)

2f(n)− j
(20)

=
2

f(n) + 1
(21)

Substituting this in (18), we get,

Y ≤λe

λ

2

f(n) + 1

2

f(n) + 1

f(n) + 1

2

×

1 +

n−f(n)∑
i=f(n)+2

i∏
j=f(n)+2

1

1 + 2j
n(f(n)+1)

 (22)

=
λe

λ

2

f(n) + 1

1 +

f(n)+2∏
j=1

(
1 +

2j

n(f(n) + 1)

)

×
n−f(n)∑

i=f(n)+2

i∏
j=1

1

1 + 2j
n(f(n)+1)

 (23)

≤λe

λ

2

f(n) + 1

1 +

f(n)+2∏
j=1

(
1 +

2j

n(f(n) + 1)

)

×
n−f(n)∑

i=1

i∏
j=1

1

1 + 2j
n(f(n)+1)

 (24)

Next, we take a logarithm of the ith product term in the sum
of products term for small enough i and use log(1 + x) ≈ x,

− log

 i∏
j=1

1

1+ 2j
n(f(n)+1)

= i∑
j=1

log

(
1+

2j

n(f(n)+1)

)
(25)

=

i∑
j=1

2j

n(f(n) + 1)
(26)

=
i(i+ 1)

n(f(n) + 1)
(27)

In a similar way, we have,

log

f(n)+2∏
j=1

(
1 +

2j

n(f(n) + 1)

) =
f(n)

n
(28)

Substituting (27) and (28) into (24), we obtain,

Y ≤ λe

λ

2

f(n) + 1

1 + e
f(n)
n

n−f(n)∑
i=1

e−
i(i+1)

n(f(n)+1)

 (29)

≤ λe

λ

2

f(n) + 1

(
1 + e

f(n)
n

n∑
i=1

e−
i2

n(f(n)+1)

)
(30)

Now, if f(n) = o(n), then e
f(n)
n → 1, and if f(n) = θ(n),

then e
f(n)
n = C, where C is a constant. Next, we convert the

Riemann sum associated with the summation term in (30) into
a definite integral, and find its exact value. In order to do so,
we use step size 1√

n(f(n)+1)
,

1√
n(f(n) + 1)

n∑
i=1

e−
i2

n(f(n)+1) =

∫ ∞

0

e−t2dt =

√
π

2
(31)

as n → ∞ and f(n) = o(n), and the step size tending to 0.
On the other hand, if f(n) = θ(n), then the above integral



has lower limit 0 and upper limit a constant, thus giving,

1√
n(f(n) + 1)

n∑
i=1

e−
i2

n(f(n)+1) = L (32)

where L is a constant. Using this, we obtain,
n∑

i=1

e−
i2

n(f(n)+1) = L
√
n(f(n) + 1) (33)

≤
√
π

2

√
n(f(n) + 1) (34)

when f(n) = θ(n), and,
n∑

i=1

e−
i2

n(f(n)+1) =

√
π

2

√
n(f(n) + 1) (35)

when f(n) = o(n). Substituting it back in (30), we get,

Y ≤ λe

λ

2

f(n) + 1

(
1 +

√
π

2

√
n(f(n) + 1)

)
(36)

≈
√
π
λe

λ

√
n

f(n)
1
2

(37)

C. Range 3

Following a similar calculation to the calculation of X ,

Z ≤2
λe

λ
+

λe

λ

f(n) + 1

2

f(n)∏
j=1

2jf(n)−j(j−1)
f(n)

j+1
n + 2(j+1)f(n)−j(j+1)

f(n)

×
n−f(n)∏

j=f(n)+2

1

1 + j
n(f(n)+1)

1

1 + n−f(n)
n

×

(
1+

n−2∑
i=n−f(n)

i∏
j=n−f(n)

(n−j)f(n)−(n−j)(n−j−1)
f(n)

j+1
n + (n−j−1)f(n)−(n−j−1)(n−j−2)

f(n)

)
(38)

≤3
λe

λ
+

λe

λ

×
n−2∑

i=n−f(n)

i∏
j=n−f(n)

n− j

n− j − 1

f(n)− (n− j − 1)

f(n)− (n− j − 2)
(39)

≤3
λe

λ
+

λe

λ

n−2∑
i=n−f(n)

1

i
(40)

≤λe

λ
(3 + log f(n)) (41)

where we go from (38) to (39) by approximating the product in
the first line of (38) following the calculation of K in Range 2.
We drop the product in the second line since it is smaller than
1, and do the regular upper bound in the third line.

Finally, summing the final terms in the three ranges, i.e., in
(17), (37), (41), we obtain the upper bound for the age as,

v1 ≤X + Y + Z (42)

≤λe

λ
(5 + log 2 + 2 log f(n) + γ) +

√
π
λe

λ

√
n

f(n)
1
2

(43)

giving the desired result. ■

IV. SPECIAL CASES

A. Fully-Connected Network

In this case, f(n) = n−1
2 , hence we have,

v1 ≤ λe

λ
(2 + log (n− 1)) ≈ λe

λ
log n (44)

which is in accordance with [10].

B. Ring With a Fixed Number of Neighbors

Suppose each node in the ring network has 2d neighbors,
where d is a constant, i.e., f(n) = d. Then, we have,

v1 ≤
√
π
λe

λ

√
n

d
1
2

(45)

Hence, in this case, v1 = O(
√
n). The bi-directional ring falls

under this category with f(n) = d = 1, and we recover [13].

C. Ring With a Rational Number of Neighbors, f(n) = nα

Here, f(n) = nα, with 0 < α < 1. This case covers func-
tions over a vast range between f(n) = 1 and f(n) = θ(n).
The version age in this case scales as a rational function,

v1 ≤
√
π
λe

λ
n

1−α
2 (46)

Hence, in this case, v1 = O(n
1−α
2 ).

D. Ring With n
log2 n

≤ f(n) < n Neighbors

From [10], we know that for a fully-connected network,
the version age scales as θ(log n). Since the networks with
f(n) considered in this subsection have smaller number of
connections, the version age of a single node in these networks
is larger. Hence, a lower bound for the version age is log n.
From (11), the upper bound is also log n. Hence, in this case,
the version age of a single node scales as θ(log n).

V. OBSERVATIONS AND REMARKS

Remark 1 Extremal animals have been a topic of study in
graph theory for a long time [21]. These are connected
subgraphs with minimum or maximum number of neighboring
nodes, edges or faces in a graph. In this context, Lemma 2
finds the minimal edge animal for the general ring network.

Remark 2 In [20], it was shown that a two dimensional grid
has version age scaling of O(n

1
3 ). Each node in the grid

network has 4 neighbors. However, in order to achieve a
version age scaling of O(n

1
3 ) in the generalized ring network,

we need f(n) = n
1
3 , i.e., we need 2n

1
3 neighbors. One way

to explain this difference in the requirement for connectivity
to achieve the same version age scaling is the following:
According to [20, Remark 5], we can view the grid as a ring
network with n connections which are not local in nature.
Hence, although the number of connections in a grid network
is far less compared to the generalized ring network, the
version age scaling is the same. This shows us that the
geometry of a network can affect the version age significantly,
and having few connections between nodes far away is better
than having relatively dense connections which are local.



α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
age scaling n0.45 n0.4 n0.35 n0.3 n0.25 n0.2 n0.15 n0.1 n0.05

n 0 942 24180 955318 1.22× 108 1.64× 1011 3.33× 1016 3.9× 1027 2.74× 1063

TABLE I
THE MINIMUM NUMBER OF NODES REQUIRED FOR THE RATIONAL FUNCTIONS TO DOMINATE THE LOGARITHM IN THE UPPER BOUND IN (43).

Remark 3 We say that function g(n) dominates h(n) for a
specific value of n if g(n) ≥ 10h(n). We consider rational
functions f(n) = nα. We want to see the values of n for which
the

√
n/f(n)

1
2 term dominates the log f(n) term in the upper

bound in (43). In (43), we saw that there are two terms in the
upper bound: log f(n) and

√
n/f(n)

1
2 . In Section IV-C, we

consider the version age scaling for f(n) = nα, and find that
the scaling is O(n

1−α
2 ) as n → ∞. However, as α increases,

the rational function grows increasingly slowly and dominates
the log term only at very high values of n. We summarize these
numbers in Table I. We note that up to these values of n, the
version age is upper bounded by 22 log n, and hence we can
consider any f(n) = Ω(n0.6) to have logarithmic scaling in
version age for all practical purposes.

VI. NUMERICAL RESULTS

We have seen in Section III, that the upper bound for version
age of the generalized ring network depends on the number of
nodes n, number of connections 2f(n), and the information
flow rates λe and λ. We choose λe = λ = 1 in this section.

We plot the variation of the version age for f(n) = nα

for α = 0.4 to 0.9. The number of nodes varies from 1000
to 5000. Fig. 3 shows that the version age decreases as α
increases, which is consistent with our theoretical upper bound
result. We also observe that the version age plots in Fig. 3 are
straight lines, showing that they have approximate log scaling
for low values of n, consistent with Remark 3.

We have not simulated α between 0 and 0.3, because the
function f(n) grows slowly. Hence, for small values of n,
which we are able to run simulations on a PC, the value of
f(n) might be constant, even if the number of nodes increases.
For α = 0 to 0.3, instead of running actual system simulations,
we have calculated the upper bound that we obtain from the
recursive equations in (12), (18) and (38), and compared it to
the upper bound obtained in (43) for n = 104, 105, 106, 107,
108, and observed that the bound gets tight as α increases.

VII. CONCLUSION

We considered a gossiping network arranged in a ring. Each
node in the network communicates with f(n) nodes on each
side, sending and receiving updates. We studied the effect of
f(n) on the version age of a node in the network. We found a
general upper bound for the version age of a node that depends
only on the number of nodes in the network n and f(n). We
evaluated the upper bound for several different f(n) regimes.
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