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Abstract—A sensor observes a random phenomenon and
transmits updates about the observed phenomenon to a remote
monitor. The sensor may experience intermittent failures in
which case the monitor will not receive any updates until the
sensor has recovered. The monitor wants to keep a timely
view of the observed process, as well as to detect any sensor
failures, using the timings of the updates. We analyze this
system model from a goal-oriented and semantic communication
point of view, where the communication has multiple goals and
multiple meanings/semantics. For the first goal, the performance
is quantified by the age of information of the observed process at
the monitor. For the second goal, the performance is quantified
by the probability of error of the monitor’s estimation of the
sensor’s failure status. Each arriving update packet brings both
an information update and an indication about the sensor’s
status. The monitor estimates the failure status of the sensor
by using the timings of the received updates. This estimation is
subject to error, since a long period without any update receptions
may be due to a low update rate or a failure of the sensor. We
examine the trade-off between these two goals. We show that
the probability of error of estimating a sensor failure decreases
with increased update rate, however, the age of information is
minimized with an intermediate update rate (not too low or high).

I. INTRODUCTION

While initial studies on semantic or goal-oriented communi-
cations date back decades [1], it now presents itself as an idea
whose time has finally come, thanks to envisioned applications
in the next generation 6G wireless [2]–[8]. Different from tra-
ditional communications, semantic communications prioritizes
the semantic meaning, or the aim, of the message rather than
successfully transmitting each and every bit of the message.
Thus, the performance of communication is measured by how
much the message has served the goal/aim of the transmission
[7], [9]. Bilingual evaluation understudy (BLEU) [10], the age
of information (AoI) [11], and their variations [12] are the
most frequently used performance metrics for this purpose.

Further, the traditional approach assumes that each transmis-
sion conveys a single information and serves a single goal, and
the system performance is measured using different metrics
on this single goal, e.g., for the communication goal, typical
metrics are probability of error, throughput, and delay. Instead,
our approach in this paper is to serve multiple goals/purposes
with a single transmission. This approach was used previously,
e.g., in [13] where every transmission carries an update packet
and packet timings carry an independent information, and in
[14] where every transmission carries an update packet, packet

Fig. 1. The system model with an intermittently failing sensor and a monitor.
When the sensor is operational, it generates updates with rate λ, sends them
to the monitor through a queue with service rate µ. Transmission stops during
failures, and any packet queued up or being served is discarded. The monitor
has two goals: obtaining fresh information and detecting any sensor failures
from the incoming update packets and their timings.

timings carry an independent information, and transmissions
carry information about the battery state of the transmitter.

In this paper, we consider a multi-goal system where a
sensor observes a random phenomenon and sends update
packets about it to a monitor; see Fig. 1. The monitor has two
goals: to keep a timely view of the phenomenon observed by
the sensor and to keep an accurate view of whether the sensor
is operational or experiencing a failure. Every incoming update
packet serves both purposes in different ways: each packet
carries update information about the observed phenomenon,
and timings of the incoming packets carry information about
the failure status of the sensor, e.g., if the receiver has not
received an update for a long time, it may be an indication
that the sensor has experienced a failure.

For the second goal, the failure status of the sensor, we use
the timings of the incoming packets at the receiver to estimate
the status of the sensor using the maximum aposteriori proba-
bility (MAP) rule. We use the fact that if the sensor is sending
updates with a rate λ, and if the service rate of the queue µ is
larger than λ, then the packets should be exiting the queue at a
rate λ. Thus, the hypothesis testing problem at the receiver is
that packet timings are either exponential with rate λ (sensor
is working) or not. If the monitor estimates the sensor status
as working while it is not, or vice versa, we have an error
event. The error rate, which is the time averaged absolute
difference between the estimated and actual sensor status is
used to measure the performance of the estimate [12], [15].

For the first goal, the freshness of information, we use
the AoI as the metric [16]–[18] which is the time difference
between the system time and the generation time of the last



Fig. 2. An example of age of information changes in the first period.

received data at the monitor. While AoI has been studied
widely for different scenarios [19]–[22], ours is the first work
that includes the failure and recovery process of the observing
sensor in the AoI literature.

II. SYSTEM MODEL

We consider a sensor node which observes a random
phenomenon, generates status updates, and sends them to a
monitor by using a first-come first-served (FCFS) queue until
a failure happens. When a sensor failure happens, the sensor
stops generating and sending updates, and remains idle until
recovery. After the recovery, the sensor starts to generate
updates as usual. We denote the normal operational status by
s0 and the failure status by s1 during which recovery happens.

As illustrated with an example in Fig. 2, the pth period starts
with the first update generation after the (p− 1)th failure. In
the pth period, the departure (from the transmitter) time of the
kth update is denoted by dpk and the arrival time of the kth
update packet to the monitor is denoted by apk. At time fp
a failure happens and the sensor enters the state s1, thus, the
last update generated before the failure may never be received.
The recovery process ends when the sensor generates a new
update, and the next period starts at that time.

We consider an M/M/1 queueing system meaning that
the inter-generation time between two updates in period p is
Xpk = dpk−dp(k−1) and the service time of the corresponding
update Spk are independent and identically distributed (iid)
exponential random variables with E[X] = 1

λ and E[S] = 1
µ ,

respectively. Thus, the service utilization ratio is ρ = λ
µ .

Service duration of the kth packet is Ypk = apk − dpk, which

is the sum of the waiting time Wpk and the service time Spk.
Finally, Tp is the duration before a failure happens in the pth
period, and r is the recovery time which is a constant.

The monitor has two goals: to receive the freshest informa-
tion and to detect sensor failures. For the first goal, AoI is the
performance metric we use,

∆(t) = t−max{dpk | t ≥ apk}. (1)

For the second goal, the probability of error is the performance
metric we use, which can also be expressed as the expected
absolute difference between the estimated status ŝ(t) and the
actual status s(t),

E = E[|ŝ(t)− s(t)|]. (2)

In a full period, we have three regions, see Fig. 2:

• Rp1: This region starts with the generation of an update
at dp0, and lasts for the first service time in ap0. Thus,
its duration is Yp0. Even though no update is received
during this region, the failure status is s0.

• Rp2: This region starts after the completion of the service
of the packet generated after the recovery at ap0, and
lasts until a failure happens again. Thus, its duration is
fp − ap0, which is equal to Tp − Yp0. In this region, the
failure status is s0. We denote the number of updates
generated in this region as Np = max{k | dpk ≤ fp}.

• Rp3: This is the region that starts with a failure at fp, and
lasts until the recovery at d(p+1)0. The duration of this
region is deterministic, and is equal to r. In this region,
the failure status is s1, and AoI increases monotonically.



III. ANALYSIS

In this section, we derive analytical expressions for both
metrics for an intermittently failing sensor. During these
calculations, we use the following three assumptions:

• The occurrence of a failure event for an infinitesimal time
duration is a constant,

lim
u→0

P(t < T < t+ u | t > T )

u
= ν. (3)

Thus, the duration before failures T1, T2, . . . , Tp are iid
exponential random variables with E[T ] = 1

ν .
• The recovery process starts right after the failure, inde-

pendent of the detection of the failure by the sensor, and
it lasts r seconds, where r is deterministic.

• There is at least one successful service after the recovery,
in other words, Tp > Yp0. This assumption excludes con-
secutive failures and guarantees that each period includes
three regions (see green, blue, pink regions in Fig. 2).

In the following, we generally omit the subscript for the
period, i.e., p in the subscripts, while calculating the average
values over a single period. However, throughout the analysis,
we calculate the time average of metrics over multiple periods.

A. Sensor Failure Status Detection and the Error Rate

First, we derive the optimum detection method for the
failure status of the sensor using the incoming packet timings.
Then, we evaluate the performance of the proposed detection
method via probability of error of detection. During the calcu-
lations, we utilize Burke’s theorem [23], [24], which states that
for an M/M/1 queue, the departures form a Poisson process
with the same parameter as the arrivals (λ in this case), under
the stability condition for the queue, i.e., λ < µ, equivalently,
ρ < 1. That is, so long as the sensor is taking update samples
with exponential inter-sampling rate λ, and these updates are
transmitted via a queue of exponential service rate µ where
λ < µ, then the update packets arrive at the monitor as a
Poisson process with an exponential inter-arrival rate λ.

We denote the kth interval of received updates at the
monitor as Ik = ak+1−ak, which has exponential distribution
with E[I] = 1

λ . In addition, we denote the time elapsed since
the last received update with z(t), where

z(t) = t−max{ak | ak ≤ t}. (4)

Here, we exclude the region R1, and derive the optimum
detection rule in regions R2 and R3 based on observing z(t).

In region R2, z(t) linearly increases until a new update
comes or the region ends with a sensor failure. In order for
z(t) to reach a value ζ, neither of the two aforementioned
events should occur for ζ. We calculate this probability as,

P(z(t) > ζ | R2) =1− FZ(ζ | R2)

=(1− FT (ζ))(1− FI(ζ))

=e−(λ+ν)ζ , (5)

where FV (v) is the cumulative distribution function (cdf) of
the random variable V . Then, pdf of z(t) is

fZ(z(t) | R2) = (λ+ ν)e−(λ+ν)z(t). (6)

In region R3, the value of z(t) starts from z(f) and linearly
increases until z(f) + r. Thus, inside of the time interval of
[f, f+r], z(t) can take any value in [z(f), z(f)+r] with equal
likelihood. Because of this linear relation, the conditional
random variable z(t)|R3 can be expressed as a sum of z(f)
and u as,

z(t) | R3 = z(f) + u, (7)

where z(f) has the same distribution as z(t)|R2, and u is a
uniform random variable in [0, r]. As the pdf of sum of two
independent random variables is the convolution their pdfs, we
obtain the pdf of z(t) in region R3 as

fZ(z(t) | R3) = (λ+ ν)e−(λ+ν)z(t)

∫ min(r,z(t))

0

e(λ+ν)u

r
du

=

{
1−e−(λ+ν)z(t)

r , 0 ≤ z(t) < r
e−(λ+ν)z(t)(e(λ+ν)r−1)

r , z(t) ≥ r
(8)

By using these conditional pdfs and the ratio of apriori state
probabilities P(s1)

P(s0) = rν, we drive the decision rule as follows.
First, when 0 ≤ z(t) < r, we start with

fZ(z(t)|R2)P(s0)
s0

⋛
s1

fZ(z(t)|R3)P(s1) (9)

which is equivalent to

(λ+ ν)e−(λ+ν)z(t)
s0

⋛
s1

1− e−(λ+ν)z(t)

r
rν (10)

which gives

log
(
λ
ν + 2

)
λ+ ν

s0

⋛
s1

z(t). (11)

Let us define the threshold τ =
log(λ

ν +2)
λ+ν . The decision rule in

(11) indicates that, if the monitor has not received an update
packet within the last τ seconds since the last update packet, it
estimates the status of the sensor as it is in failure. Whereas if
the monitor receives an update within τ seconds since the last
update, it estimates the status of the sensor as it is operational.

Next, when z(t) > r, we start with

fZ(z(t) | R2)P(s0)
s0

⋛
s1

fZ(z(t) | R3)P(s1) (12)

which is equivalent to

(λ+ ν)e−(λ+ν)z(t)
s0

⋛
s1

e−(λ+ν)z(t)(e(λ+ν)r − 1)

r
rν (13)

which gives

log
(
λ
ν + 2

)
λ+ ν

s0

⋛
s1

r. (14)



Note that we obtained the same threshold τ on the left hand
side of the inequality in (14), and also that this decision rule
does not depend on the value of z(t).

Decision rules in (11) and (14) when put together say the
following: If the system parameters λ, ν and r are such that
τ > r, then the monitor should always estimate the sensor
status as operational. This happens, for example, when r is
small (sensor recovers quickly) and ν is small (failures happen
rarely). This constitutes a degenerate case. In practically
relevant cases, the threshold τ is smaller than r to yield a non-
degenerate decision rule for the monitor. Then, by combining
(11) and (14), we obtain the decision rule as

ŝ(t) =


s0, if τ ≥ r irrespective of z(t),
s0, if z(t) ≤ τ and τ < r,

s1, if z(t) > τ and τ < r.

(15)

Finally, we calculate the probability of error for the moni-
tor’s estimate of the sensor’s status when τ < r, as

E =E [|ŝ(t)− s(t)|]
=E

[
1{z(t)≥τ} | s0

]
P(s0) + E

[
1{z(t)<τ} | s1

]
P(s1)

=
1

1 + rν

∫ ∞

τ

(λ+ ν)e−(λ+ν)zdz

+
rν

1 + rν

∫ τ

0

1− e−(λ+ν)z

r
dz

=
1

1 + rν

ν

λ+ 2ν
+

ν

1 + rν

log
(
λ
ν + 2

)
+ ν

λ+2ν − 1

λ+ ν
. (16)

This result in (16) shows that both false positive rate and
false negative rate decrease with increased λ and ν. In other
words, receiving frequent updates or experiencing rare failures
decreases the error rate. In addition, even though we observe
from (11), (14) and (15) that the recovery duration r has no
effect on the threshold τ or the decision rule, it decreases the
error rate in (16) by increasing the total duration of a period.

B. Age of Information Calculation

One of our assumptions is that each period includes three
regions. Thus, to calculate the average age, we analyze the
average AoI in each region.

a) Average AoI in Region R2: This region is similar to
FCFS model in [19] except that it has finite duration. Using
the definition of time-average, we have the average AoI as

∆R2
=

1

T − Y0

∫ f

a0

∆(t)dt, (17)

which, geometrically interpreted from Fig. 2, is given as

∆R2 =
Qr − Q̃1 − Q̃N +

∑N
n=1 Qn

T − Y0
, (18)

where Qn is the area of the trapezoid between dn−1 and dn,

Qn =
X2

n

2
+XnYn. (19)

Furthermore, as shown in Fig. 2, areas exceeding from R2

are denoted by Q̃1 and Q̃N , and there is a residual area Qr

between regions R2 and R3. Inserting (18) into (19), we
obtain the average AoI in region R2 as

∆R2
=

Qr−Q̃1−Q̃N

T−Y0
+

N

T−Y0

1

N

N∑
n=1

(
XnYn+

X2
n

2

)
. (20)

Note that (20) will be equivalent to [19, Eqn. (5)] as N →
∞. However, because the time interval (T − Y0) is finite, we
cannot use the further steps in [19]. Specifically, we cannot
say that the first term in (20) goes to zero, and also, it is not
guaranteed that the system reaches a steady state. Recall that
the service duration is the sum of the service duration Yn and
the waiting time in the queue Wn. Additionally, the waiting
time in the queue is Wn = max{0, Yn−1 − Xn}. Thus, Yn

depends on the previous arrival and service times. Note that
while each waiting time has different statistical characteristics,
when the system reaches its steady state, the distribution of
W approaches the exponential distribution with the expected
value ρ

µ(1−ρ) [19]. However, in our system model, it is not
guaranteed that the system will reach a steady state, because a
failure may happen before the system reaches its steady state.

To obtain an analytical expression, we note that as E[T ]
increases (i.e., as the expected time in the non-failure state
increases, equivalently as the probability of failure decreases),
N increases making the aforementioned assumptions valid.
Then, we have the following approximation

E[∆R2 ] =
1

µ

(
1 +

1

ρ
+

ρ2

1− ρ

)
= ∆M/M/1. (21)

b) Average AoI in Region R3: As seen from the Fig. 2,
the instantaneous age starts with the value ∆(f) and increases
to ∆(f) + r in the duration of r, which gives average AoI as

∆R2 = ∆(f) +
r

2
. (22)

Furthermore, because the time before failure T is independent
of Xn and Yn, we have E[∆(f)] = E[∆R2

]. Then, we have

E[∆R3
] = ∆M/M/1 +

r

2
. (23)

c) Average AoI in Region R1: Similar to R3, the average
age in this region can also be expressed as

∆R1 = ∆(d0) +
Y0

2
, (24)

with the equality E[∆(d0)] = E[∆R2
] + r. Then, we have

E[∆R1 ] =E[∆R2 ] + r +
E[Y ]

2
= ∆M/M/1 + r +

1

2µ
. (25)

d) Overall Average AoI: Now, we calculate the time
average of AoI by taking an average over P periods. Because
of our assumption Tp ≥ Yp0, each period consists of the above
three regions, and we express the time average over P periods
when P goes to the infinity as

E[∆] = lim
P→∞

∑P
p=1

(
∆Rp1

ℓp1 +∆Rp2
ℓp2 +∆Rp3

ℓp3
)∑P

p=1(Tp + r)



Fig. 3. Analytical and simulation results for the AoI for different service
utilization ratios ρ.

= lim
P→∞

1
P

∑P
p=1

(
∆Rp1ℓp1 + ∆Rp2ℓp2 +∆Rp3ℓp3

)
1
P

∑P
p=1(Tp + r)

=
E [∆R1

ℓ1 +∆R2
ℓ2 +∆R3

ℓ3]

E [T + r]
, (26)

where ℓp1 = Yp0, ℓp2 = Tp−Yp0 and ℓp3 = r are the durations
of the three regions. By using our previous calculations and
the fact that T and Y are independent random variables, we
evaluate (26) as

E[∆] =
E
[
∆M/M/1 (T + r) + r2

2 + Y r + Y 2

2

]
E[T + r]

=∆M/M/1 +
E
[
r2

2 + Y r + Y 2

2

]
E[T + r]

=
1

µ

(
1 +

1

ρ
+

ρ2

1− ρ

)
+

(
r2

2
+

r

µ
+

1

µ2

)
ν

1 + rν
. (27)

Note that the only first term in (27) depends on the service
utilization rate ρ, thus the same ρ in [19] minimizes it. The
remaining term shows that the average age increases with the
recovery duration r and the failure frequency ν.

IV. NUMERICAL RESULTS

In this section, we simulate the studied system model, and
compare simulation results with the analytical results obtained
in this paper. In these simulations, the averages of performance
metrics are obtained over P = 105 periods. Unless otherwise
mentioned explicitly, the simulation parameters are selected as
E[T ] = 1

ν = 200, µ = 1, λ = 1
2 (thus, ρ = 1

2 ), r = 20, and
the state estimation is done by the decision rule in (15).

In Fig. 3, analytical and simulation results are shown for
different E[T ] and ρ values. We observe a general agreement
between the analytical and simulation results, and the agree-
ment gets better for the larger E[T ] value. The reason for this
is that our calculations are based on the assumption that the
system reaches a steady state in R2, and as the number of

Fig. 4. Analytical and simulation results for the error rate for different service
utilization ratios ρ.
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Fig. 5. The error rate in the estimation of the sensor failure status when
different threshold values are used. Here, τ shows the threshold value in (11),
(14) and used in (15).

received updates increases before a failure, the system gets
closer to the steady state. Further, in low E[T ], the probability
that the system enters R3 without entering R2 increases.

Fig. 4 shows the analytical and simulation results for
the error rate. We observe a close agreement between the
analytical and simulation results. Fig. 5 shows the error rate
when different threshold values are used for the estimation of
the sensor failure status. For the parameters of this simulation
setting, the threshold found in (11), (14) and used in (15) is

τ =
log(λ

ν +2)
λ+ν ≈ 9.16, which is shown with a star in Fig. 5,

and it minimizes the error rate.
Fig. 6 shows the two metrics used for the two goals

considered in this paper: error rate of estimating the sensor
failure status and the AoI of the random phenomenon observed
by the sensor at the monitor side. We plot these two metrics by
spanning ρ through all possible values. First, we observe that



the analytical and simulation results are in close agreement.
Second, we observe that while the same ρ value that minimizes
the AoI of the generic M/M/1 model in [19] minimizes the
AoI here where we have failures and recoveries of the sensor,
the error rate of the estimation of the sensor failure status
decreases with ρ. Therefore, if there is a constraint on the
error rate, the optimal ρ may be different than 0.53. Similarly,
if there is an AoI constraint, ρ should be chosen close to 0.53,
even if that makes the error rate higher.

V. CONCLUSION AND DISCUSSION

We analyzed a system model consisting of a sensor that
intermittently experiences failures and recoveries while send-
ing time-sensitive updates to a monitor. In this system model,
each transmitted update serves two goals: AoI of the updates at
the monitor and the error rate of the estimation of the failure
status of the sensor. For the error rate, we first derived the
optimal decision rule for the estimation of the failure status of
the sensor and derived a closed-form expression for its per-
formance. For the AoI, we derived an approximate analytical
expression, which becomes more accurate as the number of
arrived updates in each period increases. We observed that
while the AoI is minimized when the service utilization ratio
is close to 0.53 as in the classical M/M/1 system, the error
rate monotonically decreases with the service utilization ratio.

Several extensions of this work could be studied: First,
one can consider the case where the recovery time is not
a deterministic constant r as assumed in this work but is a
random variable. Second, one can consider the case where the
sensor does not recover on its own (after a deterministic or a
random time), but a repair mechanism should be dispatched
once the failure status of the sensor is detected. In this case,
there will be more interesting trade-offs between the AoI and
the error rate, as undetected failures will increase the age. This
suggests that increasing false positives may decrease the AoI
even though it increases the error rate. On the other hand, if
there is a cost for dispatching a repair team, then false positives
will increase the system cost while decreasing the AoI.
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