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Abstract—We consider the federated submodel learning (FSL)
problem and propose an approach where clients are able to
update the central model information theoretically privately. Our
approach is based on private set union (PSU), which is further
based on multi-message symmetric private information retrieval
(MM-SPIR). With our scheme, the server does not learn anything
further than the subset of submodels updated by the clients: the
server does not know which client updated which submodel(s),
or anything about the local client data. In comparison to the
state-of-the-art private FSL schemes of Jia-Jafar and Vithana-
Ulukus, our scheme does not require noisy storage of the model
at the databases; and in comparison to the secure aggregation
scheme of Zhao-Sun, our scheme incorporates the creation of the
required client-side common randomness via random symmetric
private information retrieval (RSPIR) and one-time pads. Our
system is initialized with a replicated storage of submodels and
a sufficient amount of common randomness in two databases at
the server-side. The protocol starts with a common randomness
generation (CRG) where the two databases establish common
randomness at the client-side (FSL-CRG phase). Next, the clients
utilize the established client-side common randomness to have the
server determine privately the union of indices of submodels to
be updated collectively by the clients (FSL-PSU phase). Then, the
two databases broadcast the current versions of the submodels
in the set union to clients. The clients update the submodels
based on their local data. Finally, the clients use a variation of
FSL-PSU to write the updates back to the databases privately
(FSL-write phase). Our proposed private FSL scheme achieves
low communication cost, and is also robust against client drop-
outs, client late-arrivals, and database drop-outs.

I. INTRODUCTION

In federated learning (FL), multiple isolated clients collab-
oratively perform a learning task while protecting the privacy
of their stored local data against the global server [1], [2].
An intuitive way for FL to achieve privacy is to use a secure
aggregation protocol such that no individual client’s update can
be inspected by the global server [3]. As a stand-alone topic,
secure aggregation has been a continuously active topic in the
computer science literature, see [3]–[6]. Recently, information
theoretically secure aggregation schemes towards achieving
optimal communication cost have been proposed for various
common randomness distribution settings among the clients,
see [7]–[9]. However, in these papers, the communication costs
of input and common randomness are considered separately,
without explicitly stating the common randomness generation
and allocation in the concrete realization.

This work was supported by ARO Grant W911NF2010142.
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Fig. 1: Distributed federated submodel learning system model.

Recently, a new framework called federated submodel learn-
ing (FSL) has been proposed to further reduce the communica-
tion and computation overhead at both server and client sides
[10]. In the FSL framework, the full learning model stored in
the server is divided into multiple submodels based on their
data characteristics; see the upper part of Fig. 1. Instead of
accessing and updating the full model as in conventional FL,
each selected client downloads only the needed submodel(s)
from the server and then uploads the corresponding submodel
updates based on the local data type in FSL. As pointed out
by [10], there are two fundamental problems in FSL: One is
how can each client download its desired submodels from the
curious server without revealing the indices of these submodels
to the server. The other is how can each client update these
desired submodels still without revealing the indices or the
content of the updated submodels to the curious server. The
first one is a private read problem, and the second one is a
private write problem.

In a computationally secure sense, reference [10] proposes
a weak-privacy approach where each client trains only part of
its desired submodels according to the inaccurate union result
of desired submodel indices from all the selected clients. This
idea follows from secure aggregation, but update efficiency of
the clients is sacrificed. In an information theoretically secure
sense, a strong-privacy FSL approach is introduced in [11]
based on cross subspace alignment [12]. In this approach, only
one client who is interested in a specific submodel participates
in one round of the FSL process and databases (with noisy
model storage) are completely unable to tell which submodel
has been updated and what the updated value is. Concurrently,
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Fig. 2: Techniques used, their relationships, and the roadmap of the
development of the private FSL in this paper.

an improved scheme in terms of communication cost efficiency
is given in [13], and extended to the case of sparsified updates
which further reduces the communication cost [14].

In this paper, we propose a new FSL scheme that retains the
main advantages of the above-mentioned two approaches with
a privacy protection level that is in between. First, the server
securely calculates the clients’ desired submodel index union.
This is well-known as the private set union (PSU) problem
and referred to as FSL-PSU phase. Then, the server securely
aggregates clients’ generated updates in the calculated set
union. This is well-known as the secure aggregation problem
and referred to as FSL-write phase. In both phases, the server
can only learn the ultimate result, without knowing which
client has made which contribution to the ultimate result.

In the field of cryptography, private information retrieval
(PIR) and symmetric PIR (SPIR) are both fundamental prob-
lems [15], [16]. Following the seminal paper that focuses on
the information theoretic capacity of multi-database PIR [17],
PIR and SPIR have attracted a tremendous amount of attention
in the field of information theory recently, e.g., [12], [18]–
[37]. As a non-trivial variation of SPIR, in multi-message SPIR
(MM-SPIR), the user wishes to retrieve multiple messages at
a time [37]. The paper [37] also establishes the equivalence
between MM-SPIR and private set intersection (PSI). Note that
the constraints in PSI and PSU are analogous. We also estab-
lish the equivalence between PSU and MM-SPIR, and extend
PSU to multi-party PSU; see the details in [38, Sections 2.1-
2.2]. Similar to typical PIR/SPIR formulations, we consider
the simplest setting where the FSL server has two databases.
Our scheme indeed works for any number of databases after
minor modifications. In Fig. 2, we show the techniques used,
their relationships, and the roadmap of the development in
this paper. The classical information theoretic SPIR serves as
a starting point to formulate our new FSL scheme.

In this paper, we propose a new scheme for private dis-
tributed FSL primarily through unifying FSL-PSU and FSL-
write in the same framework. Due to the long duration of FSL
process, it is possible for some clients to drop out. Thus, we
design our scheme in such a way that even if some clients
lose their connection to the server, our scheme continues to
work normally. It is also possible that some clients’ generated
answers arrive at their associated databases late and the corre-
sponding databases make the wrong judgement that the clients
have dropped out. Our scheme is designed such that these late

answers do not leak any additional information about these
late clients to the databases. Moreover, our scheme continues
to work normally even when some of the databases become
inactive, especially when the total number of databases is large
enough. Finally, our FSL scheme can be run iteratively in
multiple rounds until a predefined termination criterion is met.

II. PRIVATE DISTRIBUTED FSL: PROBLEM FORMULATION

We consider a distributed FSL problem with one server that
contains N = 2 non-colluding and replicated databases, and
C clients that are selected by the server to participate in one
round of the FSL process; see Fig. 1. Every client establishes
a direct secure and authenticated communication channel with
both databases and our scheme only relies on these client-
database channels. The full model for learning comprises K
submodels, each one of which consisting of L i.i.d. symbols
that are uniformly selected from a finite field Fq . So, each
database contains the full model M[K] = {Mk : k ∈ [K]}1.
The two databases also share some server-side common ran-
domness RS that is unknown to the clients. Each selected
client is interested in updating one or more submodels ac-
cording to its local data. Specifically, for i ∈ [C], the ith client
wishes to update the submodels whose index set is denoted by
the random variable Γ⟨i⟩, whose realization is denoted by γ⟨i⟩.
For i ∈ [C], the random variable Y ⟨i⟩ = {Y ⟨i⟩

1 , . . . , Y
⟨i⟩
K } is

used to denote the corresponding incidence vector of Γ⟨i⟩ after
mapping to the alphabet as in [37], [39].

We formulate our FSL process following the seminal FSL
work in [10]. In the FSL-PSU phase, each individual database
needs to calculate the union of the selected clients’ desired
submodel index sets Γ⟨1⟩ ∪ · · · ∪ Γ⟨C⟩ denoted by Γ. Due to
the constraint that the two databases cannot communicate with
each other directly, our solution is to use randomly selected
alive clients as intermediators to route the information received
by the two databases rather than to enforce each client to send
the same answer to both databases. The main objective of this
new approach is to reduce the total communication cost and
the needed communication time. Thus, we separate C clients
into two groups C1 and C2. A potential separation is to rely
on each client’s communication channel bandwidth (or quality)
with the two databases; see Figs. 1 and 3 for depictions.

After completing a round of the FSL training, the submodels
MΓ = {Mk : k ∈ Γ} are jointly updated by the participating
clients while the remaining submodels are not updated. For i ∈
[C], k ∈ Γ and l ∈ [L], the update ∆

⟨i⟩
k,l is used to denote the

corresponding increment generated in client i for the submodel
symbol Mk,l . In particular, the update ∆

⟨i⟩
k,l is 0 if k /∈ Γ⟨i⟩.

Thus for k ∈ Γ, the overall increment for the submodel symbol
Mk,l is

∑
i∈[C] ∆

⟨i⟩
k,l. The full increment sum is then defined as

∆Γ = {
∑

i∈[C] ∆
⟨i⟩
k,l : k ∈ Γ, l ∈ [L]}. Therefore, the updated

full learning model M ′
[K] for l ∈ [L] should be as follows,

M ′
k,l =

{
Mk,l, if k ∈ Γ

Mk,l +
∑

i∈[C] ∆
⟨i⟩
k,l, otherwise

(1)

1For a positive integer Z, we use the notation [Z] = {1, 2, . . . , Z}.



For j ∈ [2], if Mj is used to denote all the information that
can be obtained by database j, the FSL reliability constraint
in one-round FSL training is captured by,

[reliability] H(M ′
[K]|Mj) = 0, ∀j ∈ [2] (2)

As introduced in [3], the privacy constraint in FL requires
that the aggregator learns nothing beyond the update sum from
clients’ local data. In FSL, since the full model is divided into
multiple submodels, the privacy constraint needs to be tuned
accordingly. Each individual database cannot infer any addi-
tional information about clients’ local data beyond the desired
submodel index union Γ and full increment sum ∆Γ. Let Di

denote the local data in client i, given D[C] = {Di : i ∈ [C]},
the privacy constraint is precisely described by,

[privacy] I(Mj ;D[C]|Γ,∆Γ) = 0, ∀j ∈ [2] (3)

Using the multi-user PIR/SPIR problem formulated in [40],
[41] as reference, each participating client should not gain any
knowledge about the other clients’ local data. For i ∈ [C], let
Wi denote all the information that can be obtained by client i,
and let Dī denote the set {D1, . . . ,Di−1,Di+1, . . . ,DC}, the
inter-client privacy constraint is formed as follows,

[inter-client privacy] I(Wi;Dī) = 0, ∀i ∈ [C] (4)

A basic one-round FSL achievable scheme is one that
satisfies the reliability constraint (2), the privacy constraint (3)
and the inter-client privacy constraint (4). Moreover, we want
these three basic constraints to remain satisfied in the presence
of client drop-outs, client late-arrivals and database drop-
outs. Further, it is necessary that this one-round FSL scheme
can be executed in an iterative manner until a predefined
termination criterion is satisfied, e.g., the accuracy of the
updated full model exceeds the preset threshold or a preset
maximal number of iterations is reached. In this work, the
performance of an FSL scheme is measured by the total
communication cost. For given FSL system parameters, our
aim is to find a distributed and robust FSL scheme in which
the total communication cost is as small as possible.

III. MAIN RESULT

Our main result is a new private FSL algorithm as described
above. The following theorem gives its performance in terms
of the total communication cost in the entire process including
FSL-CRG, FSL-PSU, FSL-write phases. The proof of the
theorem is given in Section IV-D.

Theorem 1 The total communication cost of the proposed
private FSL scheme in one round is O(CK + C|Γ|L) in q-
ary bits, where C is the number of selected clients, K is the
total number of submodels, and |Γ| is the number of updated
submodels in the given round. Here, O(CK) is due to the FSL-
PSU phase, while O(C|Γ|L) is due to the FSL-write phase.

Our proposed FSL scheme achieves unconditional informa-
tion theoretic privacy and it is proved to be robust against
client drop-outs, client late-arrivals, and database drop-outs.

No constraint is imposed on the number of clients that may
drop out during the FSL process. The communication cost
O(CK+C|Γ|L) outperforms the best-known communication
cost in the literature [3]–[6], which is at least O(CKL).
In the seminal FSL work [10], the communication cost is
O(C|Γ|) for the PSU phase and O(C|Γ|L) for the whole
FSL process with a weaker privacy guarantee. Although this
communication cost is a little better than our communication
cost in terms of the PSU phase, the PSU [10] yields erroneous
results while our PSU yields completely accurate result. Fur-
thermore, the PSU and the subsequent secure aggregation are
considered separately in [10]. Noting that the total number
of submodels K is generally very large, we can further
optimize the communication cost by adjusting the size of
K. Specifically, as we decrease K, the product of |Γ| and
L will likely increase such that K and |Γ|L will have the
same order. Moreover, in the practical implementations, for
each client, the upload speeds are typically much slower than
download speeds during the client-database communications.
Unlike the classical secure aggregation scheme in [3], the total
communication time in our FSL process is further improved
as almost all of the alive clients send only one answer to one
database in each phase. In addition, while determining the two
client groups, we can further improve the total communication
time based on the actual bandwidth/quality of each client-
database communication channel.

IV. GENERAL FSL ACHIEVABLE SCHEME

Our proposed scheme consists of three phases: common ran-
domness generation phase (FSL-CRG), private determination
of the index union of submodels to be updated (FSL-PSU), and
private writing of the updated submodels in the union back
to the databases (FSL-write), which are illustrated in detail
in the following three subsections. In the last subsection, we
analyze the reliability, privacy, robustness and performance of
our proposed FSL scheme.

A. Common Randomness Generation (FSL-CRG) Phase

The two databases aim to establish two types of common
randomness across the clients: The first type is a global
common randomness symbol c that is uniformly selected from
Fq\{0}. The second type is a set of general common ran-
domness symbols {R0, R1, . . . , RC} with a flexible set length
C +1, where each symbol is uniformly selected from Fq and
the sum of the last C symbols equals 0, i.e.,

∑
i∈[C] Ri = 0.

As a result, R0 can be used as uk or wk,l while R[C] can be
used as u

⟨[C]⟩
k or w⟨[C]⟩

k,l in the next two phases.
We start with a scheme for the second type. First, each

database individually selects a random client from its client
group as routing clients. Their indices are denoted by θ1 and
θ2, respectively.2 Second, both databases randomly select a set
of symbols with size C from Fq under a uniform distribution,
and then broadcast this set to the routing clients and the last

2Since the clients θ1 and θ2 may also drop-out, a potential solution is that
each database randomly selects a small set of clients to route the information
in parallel while its cardinality is based on the observed client drop-out rate.
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Fig. 3: Data flow in the FSL-PSU phase of our system model.

client. Thus, these databases obtain a new set of symbols with
size C through element-wise summation, and then append one
more symbol RC to the existing set such that the sum of
the last C symbols equals zero. Moreover, each database also
sends its i+1th random symbol to client i for all i ∈ [C−1].
Thus, client i can obtain the symbol Ri through summation.
Each individual database has no knowledge about client-side
common randomness because of the one-time pad encryption.

We next consider the first type. Since c should be uniform in
Fq\{0}, we utilize a broadcast variation of the RSPIR scheme
provided in [42, Section V] with the parameters being N =
2,K = |q| − 1, L = 1 and the message set being W1 =
1,W2 = 2, . . . ,W|q|−1 = |q|−1. More details are provided in
[38, Section 5.1]. Due to the user privacy constraint in RSPIR
[42], c will be unknown to each individual database.

B. Private Set Union (FSL-PSU) Phase

After the FSL-CRG phase is completed, each selected client
will obtain all the required client-side common randomness
symbols as desired. Following our distributed FSL model in
Section II, C selected clients are divided into two groups C1
and C2. Then, the ith client in C1 constructs its answer as,3

A
⟨i⟩,(1)
U,1 = {c(Y ⟨i⟩

1 +u
⟨i⟩
1 ), . . . , c(Y

⟨i⟩
K +u

⟨i⟩
K )} (5)

Similarly, the ith client in C2 constructs its answer as,

A
⟨i⟩,(2)
U,1 = {c(Y ⟨i⟩

1 +u
⟨i⟩
1 ), . . . , c(Y

⟨i⟩
K +u

⟨i⟩
K )} (6)

Once database 1 receives all the answers from its associated
clients in C1, it produces a response to be downloaded as,

D
⟨θ1⟩,(1)
U,2 =

{
c
∑
i∈C1

(Y
⟨i⟩
k +u

⟨i⟩
k )+Sk : k ∈ [K]

}
(7)

3In this work, we use the value in ⟨⟩ to denote the index of client and the
value in () to denote the index of database for clarity. The first subscript of
D or A is used to show it is within the FSL-PSU phase or FSL-write phase
(the letter U stands for union and the letter W stands for write), whereas the
second subscript is used to denote the step number within this phase.
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Fig. 4: Data flow in the FSL-write phase of our system model.

where {Sk : k ∈ [K]} are server-side common randomness
symbols that are uniformly selected from Fq . This produced
response D

⟨θ1⟩,(1)
U,2 will then be downloaded by the routing

client θ1 in C1. Afterwards, client θ1 forwards the following
further processed answer to both databases,

A
⟨θ1⟩,([2])
U,2 =

{
c
∑
i∈C1

(Y
⟨i⟩
k +u

⟨i⟩
k )+uk+Sk : k ∈ [K]

}
(8)

Likewise, the second database produces a response as follows,

D
⟨θ2⟩,(2)
U,2 =

{
c
∑
i∈C2

(Y
⟨i⟩
k +u

⟨i⟩
k )−Sk : k ∈ [K]

}
(9)

This produced response will then be downloaded by the
routing client θ2 in C2. Afterwards, this client forwards the
following answer to both databases,

A
⟨θ2⟩,([2])
U,2 =

{
c
∑
i∈C2

(Y
⟨i⟩
k +u

⟨i⟩
k )−uk−Sk : k ∈ [K]

}
(10)

After collecting these two answer sets in the second commu-
nication step, each individual database is ready to derive the
union Γ by performing the following element-wise summation,

A
⟨θ1⟩,(j)
U,2 +A

⟨θ2⟩,(j)
U,2 =

{
c
∑
i∈[C]

Y
⟨i⟩
1 , . . . , c

∑
i∈[C]

Y
⟨i⟩
K

}
(11)

Each individual database utilizes the value of its calculated
expression c

∑
i∈[C] Y

⟨i⟩
k (whether it is zero or not) to judge

whether the index k is in the union Γ or not, and thereby, to
determine Γ.

C. Private Write (FSL-Write) Phase

When the FSL-PSU phase is complete, each database in-
dividually sends the set of submodels MΓ to its associated
clients. Then, the ith client in C1 will generate the increments
for each desired submodel whose index belongs to Γ⟨i⟩ ac-
cording to its local data and construct a well-processed answer



accordingly. Specifically, for all k ∈ Γ⟨i⟩, the answer symbols
are generated in the following form,

A
⟨i⟩,(1)
W,1 (k) = {∆⟨i⟩

k,1+w
⟨i⟩
k,1, . . . ,∆

⟨i⟩
k,L+w

⟨i⟩
k,L} (12)

For all k ∈ Γ\Γ⟨i⟩, the answer symbols are generated as
follows without any updates concerning the current submodel,

A
⟨i⟩,(1)
W,1 (k) = {w⟨i⟩

k,1, . . . , w
⟨i⟩
k,L} (13)

Thus, the ultimate answer generated by this client in the first
step is A

⟨i⟩,(1)
W,1 = {A⟨i⟩,(1)

W,1 (k) : k ∈ Γ}. The ith client in
C2 will generate an ultimate answer A

⟨i⟩,(2)
W,1 = {A⟨i⟩,(2)

W,1 (k) :
k ∈ Γ} in the same way. Subsequently, each client sends its
answer to its associated database. These two databases also
share another set of server-side common randomness symbols
{Sk,l : k ∈ [K], l ∈ [L]} from Fq . Let C(1)

k be the index set of
clients in C1 whose desired submodel index set includes the
index k, i.e., C(1)

k = {i ∈ C1|k ∈ Γ⟨i⟩}. Similarly, C(2)
k and

Ck are defined as {i ∈ C2|k ∈ Γ⟨i⟩} and {i ∈ [C]|k ∈ Γ⟨i⟩},
respectively. After collecting all the answers A

⟨C1⟩,(1)
W,1 from

C1, database 1 calculates the following aggregation increment
for the lth symbol of the kth submodel where k belongs to Γ,∑
i∈C

(1)
k

(
∆

⟨i⟩
k,l+w

⟨i⟩
k,l

)
+

∑
i∈C1\C(1)

k

w
⟨i⟩
k,l =

∑
i∈C

(1)
k

∆
⟨i⟩
k,l+

∑
i∈C1

w
⟨i⟩
k,l (14)

As in the last FSL-PSU phase, the corresponding response is
produced as follows and will be downloaded by the client θ1,

D
⟨θ1⟩,(1)
W,2 =

{ ∑
i∈C

(1)
k

∆
⟨i⟩
k,l+

∑
i∈C1

w
⟨i⟩
k,l+Sk,l : k∈Γ, l∈ [L]

}
(15)

Once this response is received by the client θ1, this client
forwards the following answer to both databases,

A
⟨θ1⟩,([2])
W,2 =

{ ∑
i∈C

(1)
k

∆
⟨i⟩
k,l +

∑
i∈C1

w
⟨i⟩
k,l+wk,l+Sk,l : k∈Γ, l∈ [L]

}
(16)

Meanwhile, database 2 produces the following response and
this response will be downloaded by the client θ2,

D
⟨θ2⟩,(2)
W,2 =

{ ∑
i∈C

(2)
k

∆
⟨i⟩
k,l+

∑
i∈C2

w
⟨i⟩
k,l−Sk,l : k∈Γ, l∈ [L]

}
(17)

The answer forwarded by the client θ2 to both databases is,

A
⟨θ2⟩,([2])
W,2 =

{ ∑
i∈C

(2)
k

∆
⟨i⟩
k,l +

∑
i∈C2

w
⟨i⟩
k,l−wk,l−Sk,l : k∈Γ, l∈ [L]

}
(18)

At this point, each individual database is ready to aggregate
the updates as desired from all the selected clients by summing
up A

⟨θ1⟩,([2])
W,2 and A

⟨θ2⟩,([2])
W,2 in an element-wise manner. The

updated lth symbol of the kth submodel stored in the server
after performing this round of FSL-write is finally Mk,l +∑

i∈Ck
∆

⟨i⟩
k,l, which is exactly the expected M ′

k,l.

D. Analysis of the Proposed Scheme

Note that the FSL-write phase is essentially a simplified
application of the FSL-PSU phase without using the symbol c.
Thus, we only need to analyze the FSL-PSU phase in terms of
reliability, privacy and robustness, and these will be inherited
directly by the FSL-write phase. By combining the facts that
reliability, privacy and robustness constraints are satisfied by
both phases, we readily obtain the reliability, privacy and
robustness for the entirety of our FSL scheme.

a) Reliability constraint: Reliability is shown at the end
of FSL-PSU phase and FSL-write phase.

b) Privacy constraint: For i ∈ [C] and k ∈ Γ, u⟨i⟩
k is

used to protect the privacy of Y
⟨i⟩
k such that each database

knows nothing about the value of Y
⟨i⟩
k due to the one-time

pad encryption. Further, for k ∈ Γ, c is used to protect the
privacy of

∑
i∈[C] Y

⟨i⟩
k such that each database knows nothing

about the value of
∑

i∈[C] Y
⟨i⟩
k beyond that this sum is zero

or not due to the finite cyclic group under multiplication in
Fq\{0}. The concrete proof follows from the proof of client’s
privacy in [39, Subsection V.B] as the received answer in
each database contains less information than the answer set
{A⟨C1⟩,(1)

U,1 , A
⟨C2⟩,(2)
U,1 } with respect to the incidence vectors

Y ⟨[C]⟩. Thus, each database can only learn Γ from the clients.
c) Inter-client privacy constraint: Only the routing

clients θ1 and θ2 receive information from outside. Due to the
unknown server-side common randomness in the downloads,
neither the θ1th client nor the θ2th client can learn any
knowledge about the local data within the other clients.

d) Client drop-out robustness: The basic idea is that the
routing clients θ1 and θ2 can adjust the answer in the second
step by additionally appending the sum of missing client-side
common randomness symbols incurred by those clients that
drop-out. The detailed analysis is available in [38, Section 5.2].

e) Client late-arrival robustness: Assume that an answer
generated by an arbitrary client i ∈ Cj in the first step
arrives at database j late. Even though database j receives
the information A

⟨i⟩,(j)
U,1 separately, it is still unable to extract

any information about the incidence vector Y ⟨i⟩ because of
the unknown extra common randomness {uk : k ∈ [K]}. This
conclusion can be extended to an arbitrary set of late clients.

f) Database drop-out robustness: If database 1 drops-
out and cannot function temporarily, database 2 needs to
communicate with client θ2 one more time for the values of
{c

∑
i∈C1

u
⟨i⟩
k : k ∈ [K]} to derive the union of the client group

C2. This solution also applies to the drop-out of database 2.
g) Communication cost: In the FSL-PSU phase, without

considering the cost generated in the FSL-CRG phase, the
communication cost is (C + 6)K. The extra communication
cost is about 8CK for the required client-side common
randomness, while the communication cost of the symbol c
is negligible. Therefore, the total communication cost in this
phase is about (9C + 6)K. Following the same calculation
in the FSL-PSU phase, the total communication cost in the
FSL-write phase is about (10C + 6)|Γ|L in which C|Γ|L is
for the clients to download the submodels from the server.
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