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Abstract—We investigate the trade-off between rate, privacy
and storage in federated learning (FL) with top r sparsification,
where the users and the servers in the FL system only share
the most significant r and r′ fractions, respectively, of updates
and parameters in the FL process, to reduce the communication
cost. We present schemes that guarantee information theoretic
privacy of the values and indices of the sparse updates sent by
the users at the expense of a larger storage cost. To this end,
we generalize the scheme to reduce the storage cost by allowing
a certain amount of information leakage. Thus, we provide the
general trade-off between the communication cost, storage cost,
and information leakage in private FL with top r sparsification,
along the lines of two proposed schemes.

I. INTRODUCTION

In federated learning (FL) [1], [2], a set of users remotely
train an ML model using their own local data in their own
devices, and share only the gradient updates with the central
server. This reduces the privacy leakage of users while de-
centralizing the processing power requirements of the central
server. However, it has been shown that the gradients shared
by a user leak information about the user’s private data [3]–[8].

Apart from the privacy leakage, another drawback of FL is
the significantly large communication cost incurred by sharing
model parameters and updates with millions of users in mul-
tiple rounds. One solution to this problem is gradient sparsifi-
cation [9]–[11], where the users only communicate a selected
set of gradients and parameters as opposed to communicating
all gradient updates and parameters. Top r sparsification [11]
is a widely used sparsification technique, where only the most
significant r fraction of parameters/updates are shared between
the users and the central server, which significantly reduces the
communication cost, since r is typically around 10−2 to 10−3.

However, in sparsified FL, the values as well as the positions
of the sparse updates leak information about the user’s local
data. Note that the positions of the sparse updates convey infor-
mation about the most and least significant sets of parameters
for a given user leaking information about its private data.
Thus, in order to guarantee the privacy of users participating
in the sparse FL process, two components need to be kept
private, namely, 1) values of sparse updates, 2) positions of
sparse updates. Reference [12] presents a scheme that achieves
information theoretic privacy of the values and positions of the
sparse updates in the context of federated submodel learning

This work was supported by ARO Grant W911NF2010142.

database 1 database 2 database N

(∆, X)

values of sparse updates

coordinator assigns storage and
noisy permutation

random
permutations

read

write

P̃

R1 R2 RN

(∆, X) (∆, X)

(∆, X)

positions of sparse updates

model model model

reversing matrices

Fig. 1. System model.

(FSL) [13]–[17]. The scheme in [12] incurs a significant
storage cost. In this work, we extend the scheme in [12] to
FL, with an additional variable that allows the storage cost to
decrease at the expense of a certain amount of privacy leakage.

In this paper, we consider an FL setting with multiple non-
colluding databases storing the ML model, and a user that
communicates with the databases as shown in Fig. 1. The
schemes we propose are based on permutation techniques,
where a coordinator initializes a random permutation of sets
of parameters, and sends it to the users. The coordinator then
places noise added permutation reversing matrices at each
database in such a way that the databases learn nothing about
the underlying permutation. All communications between the
user and the databases take place in terms of the permuted
indices, which guarantee the privacy of the positions of the
sparse updates. Despite the added noise which ensures privacy,
the parameters in each database get placed in the correct place.

The main challenge of this method is the significant storage
cost incurred by the large permutation reversing matrices. We
propose schemes that reduce the storage cost by reducing the
size of the permutation reversing matrices, at the expense of
a given amount of information leakage. This is achieved by
dividing the ML model into multiple segments and carrying
out permutations within each segment; see Figs. 2 and 3. The
number of segments is chosen based on the allowed amount of
information leakage and the storage capacity of the databases.

In this work, we propose two schemes to perform private FL
with top r sparsification for uncoded storage. We present the



trade-off between the communication cost, storage complexity
and information leakage in private FL with sparsification.

II. PROBLEM FORMULATION

We consider an FL setting in which an ML model consisting
of L parameters belonging to P subpackets is stored in N non-
colluding databases. The parameters take values from a large
enough finite field Fq . A given user at a given time t trains the
model using the user’s local data. We consider sparsification in
both uplink and downlink, to reduce the communication cost.
In particular, the sparsification rates of the reading (downlink)
and writing (uplink) phases are given by r′ and r, respectively.
In the reading (download) phase, the users only download a
selected set of Pr′ subpackets determined by the databases.1

In the writing (upload) phase, each user only uploads the most
significant Pr subpackets to the databases.2

Note that the users send no information to the databases in
the reading phase. Therefore, no information about the user’s
local data is leaked to the databases in the reading phase.
However, the users send the sparse updates and their positions
(indices) to the databases in the writing phase to train the
model. Information about the user’s local data can be leaked
to the databases from these updates and their indices. In this
work, we consider the following privacy guarantees on the
values and the positions of the sparse updates.

Privacy of the values of sparse updates: No information on
the values of the sparse updates is allowed to leak to any of
the databases, i.e.,

I(∆
[t]
i ;G[t]

n ) = 0, n ∈ {1, . . . , N}, (1)

where ∆
[t]
i is the ith sparse (non-zero) update of a given user

at time t and G
[t]
n contains all the information sent by the user

to database n at time t.
Privacy of the indices of sparse updates: The amount of

information leaked on the positions of the sparse updates need
to be maintained under a given privacy leakage budget, i.e.,

I(X [t];G[t]
n ) < ϵ, n ∈ {1, . . . , N}, (2)

where X [t] is the set of indices of the sparse subpackets
updated by a given user at time t. The system model with the
privacy constraints is shown in Fig. 1. A coordinator is used
to initialize the scheme. In addition to the privacy constraints,
we require the following security and correctness conditions
for the reliability of the scheme.

Security of the model: No information about the model
parameters is allowed to leak to the databases, i.e.,

I(W [t];S[t]
n ) = 0, n ∈ {1, . . . , N}, (3)

where W [t] is the ML model and S
[t]
n is the data content in

database n at time t.

1These subpackets are determined based on the sparse updates received at
time t− 1, or by any other downlink sparsification protocol.

2We assume that all parameters in the sparse set of Pr subpackets in the
writing phase have non-zero updates.
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Correctness in the reading phase: The user should be able
to correctly decode the sparse set of subpackets of the model,
denoted by J , determined by the downlink sparsification
protocol, from the downloads in the reading phase, i.e.,

H(W
[t−1]
J |A[t]

1:N ) = 0, (4)

where W
[t−1]
J is the set of subpackets in set J of the model W

at time t− 1, i.e., before updating, and A
[t]
n is the information

downloaded from database n at time t.
Correctness in the writing phase: Let J ′ be the set of most

significant Pr subpackets of the model, updated by a given
user at time t. Then, the model must be correctly updated as,

W [t]
s =

{
W

[t−1]
s +∆

[t]
s , if s ∈ J ′

W
[t−1]
s , if s /∈ J ′ , (5)

where W
[t−1]
s is the subpacket s of the ML model at time

t− 1 and ∆
[t]
s is the update of subpacket s at time t.

Reading and writing costs: The reading and writing costs
are defined as CR = D

L and CW = U
L , respectively, where D is

the total number of symbols downloaded in the reading phase,
U is the total number of symbols uploaded in the writing
phase, and L is the size of the model. The total cost CT is
the sum of the reading and writing costs, CT = CR + CW .

Storage cost: The storage cost is quantified by the order of
the total number of symbols stored in each database.

In this work, we propose schemes to perform FL with top r
sparsification, that result in the minimum total communication
cost and storage complexity, while satisfying all privacy,
security and correctness conditions described above.



TABLE I
ACHIEVABLE SETS OF COMMUNICATION COSTS, STORAGE COSTS, AND AMOUNTS OF INFORMATION LEAKAGE.

case reading cost writing cost storage cost information leakage

Case 1 2r′(1+
logq P

N )

1− 2
N

2r(1+logq P )

1− 2
N

O(L
2

B ) H(X̂1, . . . , X̂B)

Case 2 2r′(1+
logq P

N )

1− 4
N

2r(1+logq P )

1− 4
N

max{O(L
2

B ), O(L
2B2

N2 )} H(X̃1, . . . , X̃B)

III. MAIN RESULT

Theorem 1 Consider an FL model stored in N non-colluding
databases, consisting of L symbols from a finite field Fq ,
which are included in P subpacekts. The model is divided
into B segments of equal size (1 ≤ B < P ), such that
each consecutive P

B subpackets are included in each segment.
Assume that the FL model is updated by users at each time
instance with uplink and downlink sparsification rates (top r
sparsification) of r and r′, respectively. Let X̂i be the random
variable representing the number of subpackets with non-zero
(sparse) updates of the ith segment generated by any given
user, and let (X̃1, . . . , X̃B) be the random vector representing
all distinct combinations of (X̂1, . . . , X̂B), irrespective of
the segment index. Then, the reading/writing costs, storage
complexities and amounts of information leaked on the indices
of sparse updates presented in Table I are achievable.

Remark 1 When B = 1 (no segmentation), X̂1 = X̃1 = Pr
and the corresponding infromation leakage is zero since Pr
is fixed and H(X̂1) = H(X̃1) = 0. That is, the schemes
corresponding to the two cases achieve information theoretic
privacy of the values and positions of the sparse updates while
incurring the same communication costs stated in Table I.

Remark 2 For a given privacy budget on the positions of the
sparse updates given by ϵ, the optimum number of segments B
can be calculated by minimizing the storage complexity, such
that H(X̂1, . . . , X̂B) < ϵ or H(X̃1, . . . , X̃B) < ϵ is satisfied.

Remark 3 Since H(X̂1, . . . , X̂B) considers all possible val-
ues of X̂i, while H(X̃1, . . . , X̃B) only considers distinct sets
of {X̂i}Bi=1, H(X̂1, . . . , X̂B) > H(X̃1, . . . , X̃B).

Remark 4 Consider an example setting with P = 12 sub-
packets divided into B = 1, 2, 3, 4, 6 segments. Assume that
each subpacket is equally probable to be selected to the set
of most significant Pr = 3 subpackets. The behavior of the
information leakage for each value of B is shown in Fig. 4.

Remark 5 For the first case, one can achieve a lower storage
cost at the expense of a higher information leakage by increas-
ing B and vice versa. This is because the number of different
realizations of the placements of the Pr sparse subpackets at
the B segments increases with B when all permutations of the
placements are considered. However, when only the distinct
placements are considered in case 2 (without permutations),
after B = Pr, the probability of each realization increases,
which in turn decreases the entropy H(X̃1, . . . , X̃B), i.e., the
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Fig. 4. Information leakage of an example setting with P = 12 versus B.

information leakage. Therefore, the storage-privacy leakage
trade-off in case 2 also follows an inverse relation. The vari-
ation of the privacy leakage and the storage cost is controlled
by the parameter B. The communication cost however is
independent of B, which makes it independent of the storage
cost and the privacy leakage.

IV. PROPOSED SCHEME

We propose two schemes. Both schemes achieve privacy
of the indices of the sparse subpackets by utilizing a per-
mutation technique. In case 1, the model is divided into B
segments, and the scheme only considers permutations among
the subpackets within each segment while revealing the real
segment indices of the sparse subpackets. The scheme in case 2
considers permutations within and among segments to reduce
the information leakage further. The schemes are presented in
terms of examples due to space limitations here.

A. Case 1: Single Stage Permutations

Consider an example setting with P = 15 and B = 3.
1) Initialization: The storage of a single subpacket s in

case 1 is given by,

Sn =


1

f1−αn
W

[s]
1 +

∑x
j=0 α

j
nI1,j

...
1

fℓ−αn
W

[s]
ℓ +

∑x
j=0 α

j
nIℓ,j

 , (6)

where x = ℓ,3 W
[s]
i is the ith symbol of subpacket s, Ii,j

are random noise symbols and {fi}ℓi=1, {αn}Nn=1 are globally
known distinct constants from Fq . At the initialization stage
the coordinator sends B = 3 randomly and independently

3ℓ is the subpacketization, for which an expression is derived at the end of
Section IV-A2.
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chosen permutations of the P
B = 5 subpackets in each of the

B = 3 segments to all users, denoted by P̃1, P̃2, P̃3 as shown
in Fig. 5. The coordinator also sends the corresponding noise
added permutation reversing matrices given by,

R[i]
n = R̃[i]

n + Z̄i, i = 1, . . . , B, (7)

to database n, n ∈ {1, . . . , N}, as shown in Fig. 5, where
R̃

[i]
n is the scaled permutation reversing matrix corresponding

to the permutation P̃i and Z̃i is a random noise matrix of size
Pℓ
B × Pℓ

B . Based on this example, the permutation reversing
matrix for database n, n ∈ {1, . . . , N} corresponding to the
first segment with permutation: P̃1 = (2, 1, 4, 5, 3) is given by,

R[1]
n =


0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn

0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ

+ Z̄1, (8)

where Γn = diag{ 1
f1−αn

, . . . , 1
fℓ−αn

} and 0ℓ×ℓ is the all zeros
matrix of size ℓ× ℓ.

2) Reading Phase: The databases decide the permuted
indices of the Pr′ sparse subpackets to be sent to the users at
time t in the reading phase, by selecting the permuted indices
of the most commonly updated Pr′ subpackets by all users
at time t− 1. Note that the databases are unaware of the real
indices of the sparse subpackets updated by the users in the
writing phase at each time instance and only work with the
permuted indices in both phases. For example, let the sparse
set of permuted subpacket indices chosen by the databases
to be sent to the users corresponding to the first segment be
Ṽ1 = {1, 3}. One designated database sends these permuted
indices of each segment to the users. The users then find the
real indices, using the known permutations, i.e., for segment
1, the real set of indices is given by V1 = {2, 4}.

In order to send the ith sparse subpacket of segment j
(permuted) denoted by Ṽj(i), each database n, n ∈ {1, . . . , N}
generates the following queries.

Q[Ṽj(i)]
n =

ℓ∑
k=1

R[j]
n (:, (i− 1)ℓ+ k). (9)

For example, the query corresponding to the first sparse
subpacket of the first segment is given by,

Q[Ṽ1(1)]
n = Q[1]

n =

ℓ∑
k=1

R[1]
n (:, k) =



0ℓ
1

f1−αn

...
1

fℓ−αn

0ℓ
0ℓ
0ℓ


+ Z1, (10)

where Z1 is a random noise vector resulted by the noise
component of R[1]

n . Then, database n ∈ {1, . . . , N} sends the
corresponding answer by calculating the dot product between
the query and the scaled storage of the respective segment as,

A[Ṽ1(1)]
n =(Dn × Sn)

TQ[Ṽ1(1)]
n (11)

=
1

f1 − αn
W

[2]
1 + . . .+

1

fℓ − αn
W

[2]
ℓ + Pαn

(ℓ+ 1),

(12)

where Dn is the diagonal matrix of size Pℓ
B × Pℓ

B given by
Dn = diag{Γ−1

n , . . . ,Γ−1
n } and Pαn

(ℓ + 1) is a polynomial
in αn of degree ℓ + 1. Then, the users obtain the parameters
of real subpacket 2, by solving the N equations, i.e., answers
from N databases, of the form (12), given that N = 2ℓ +
2, which determines the subpacketization as ℓ = N−2

2 . The
same procedure is carried out for all sparse subpackets in all
segments. The resulting reading cost is given by,

CR=
Pr′(logq

P
B+logq B) + Pr′N

L
=

2r′(1+
logq P

N )

1− 2
N

. (13)

3) Writing Phase: In the writing phase, each user generates
non-zero updates for Pr most significant subpackets, and
sends the noise added combined updates, i.e., single symbol
per subpacket, along with their permuted subpacket indices
and the segment indices to each of the databases. The com-
bined update of some (real) subpacket i of segment j, sent to
database n, n ∈ {1, . . . , N} is given by,

U [i,j]
n =

ℓ∑
k=1

ℓ∏
r=1,r ̸=k

(fr − αn)∆̃
[i,j]
k +

ℓ∏
r=1

(fr − αn)Z
[i,j], (14)

where ∆̃
[i,j]
k =

∆
[i,j]
k∏ℓ

r=1,r ̸=k(fr−fk)
with ∆

[i,j]
k being the update

of the kth symbol of subpacket i of segment j and Z [i,j] is a
random noise symbol. Note that the addition of Z [i,j] to the
updates in (14) guarantees information theoretic privacy of
the values of updates from Shannon’s one time pad theorem.
For example, assume that a given user wants to update the
real subpackets 2 and 4 from segment 1, subpacket 2 from
segment 2, and subpacket 5 from segment 3. Based on the per-
mutations considered in this example, i.e., P̃1 = {2, 1, 4, 5, 3},
P̃2 = {3, 5, 2, 4, 1} and P̃3 = {5, 2, 3, 1, 4}, the user generates
the permuted (update, subpacket, segment) tuples given by
(U

[2,1]
n , 1, 1), (U

[4,1]
n , 3, 1) for segment 1, (U

[2,2]
n , 3, 2) for

segment 2, and (U
[5,3]
n , 1, 3) for segment 3. Note that there is



no permutation in the segment index, and only the subpacket
indices within each segment are being permuted. Database
n, n ∈ {1, . . . , N} creates permuted update vectors for each
segment upon receiving the Pr permuted (update, subpacket,
segment) tuples. For segment 1, the permuted update vector
is given by,

Û [1]
n =[U [2,1]

n · 1Tℓ , 0 · 1Tℓ , U [4,1]
n · 1Tℓ , 0 · 1Tℓ , 0 · 1Tℓ ]T (15)

where 1ℓ is the all ones vector of size ℓ×1. Next, the databases
privately rearrange the updates in the real order and calculate
the incremental updates of each segment. The incremental
update calculation of segment 1 in database n is given by,

Ū [1]
n =R[1]

n Û [1]
n (16)

=



0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn

0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ

+Z̄1



U

[2,1]
n ·1ℓ
0 · 1ℓ

U
[4,1]
n ·1ℓ
0 · 1ℓ
0 · 1ℓ


(17)

=



0ℓ
U [2,1]

n

f1−αn

...
U [2,1]

n

fℓ−αn

0ℓ
U [4,1]

n

f1−αn

...
U [4,1]

n

fℓ−αn

0ℓ



+ Pαn(ℓ) =



0ℓ
∆

[2,1]
1

f1−αn

...
∆

[2,1]
ℓ

fℓ−αn

0ℓ
∆

[4,1]
1

f1−αn

...
∆

[4,1]
ℓ

fℓ−αn

0ℓ



+ Pαn(ℓ), (18)

where Pαn(ℓ) here is a vector of size L
B consisting of poly-

nomial in αn of degree ℓ, and the last equality is obtained by
applying [13, Lemma 1]. The same process is carried out for
the other two segments as well. Since the incremental update is
in the same form as the storage in (6), the storage of segment
j, j ∈ {1, 2, 3} at time t can be updated as,

S[j]
n (t) = S[j]

n (t− 1) + Ū [j]
n , n ∈ {1, . . . , N}. (19)

Note from (18) that for segment 1, the two real sparse subpack-
ets 2 and 4 have been correctly updated, while ensuring that
the rest of the subpackets remain the same, without revealing
the real subpacket indices 2 and 4 to any of the databases. The
resulting writing cost is given by,

CW =
PrN(1 + logq B + logq

P
B )

L
=

2r(1 + logq P )

1− 2
N

. (20)

The total storage cost is given by, L+ L2

B2 ×B ≈ O(L
2

B ).

B. Case 2: Two-Stage Permutations

In case 1, only the subpacket indices within each segment
were permuted, and the real segment indices were uploaded to
the databases by the users. In this case, we permute subpacket

segment 1 segment 2 segment 3
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Fig. 6. Initialization of the scheme for case 2.

indices within segments as well as the segment indices to
reduce the information leakage. However, this increases the
storage cost since the permutation of segment indices requires
an additional noise added permutation reversing matrix to be
stored in the databases. For case 2, consider an example setting
with P = 12 subpackets (with subpacketization ℓ) which are
divided into and B = 3 equal segments.

1) Initialization: The storage of a single subpacket in this
case is the same as (6) with x = ℓ+1. The coordinator places
the B = 3 permutations and the corresponding noisy permuta-
tion reversing matrices similar to case 1. In addition, the coor-
dinator randomly and independently selects a permutation of
the B = 3 segments P̂ and sends it to the users, while placing
the corresponding noise-added permutation reversing matrix
R̂n at database n, n ∈ {1, . . . , N}. Consider the example
setting given in Fig. 6. The noise added permutation reversing
matrix corresponding to the first segment with permutation
P̃1 = {2, 4, 3, 1} is given by,

R[1]
n =


0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ Γn

Γn 0ℓ×ℓ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ Γn 0ℓ×ℓ

0ℓ×ℓ Γn 0ℓ×ℓ 0ℓ×ℓ

+ Z̄1, (21)

with the same notation as in case 1. The noise added per-
mutation reversing matrix at database n corresponding to the
segmentwise permutation P̂ = {2, 3, 1} is given by,

R̂n =

0ℓ×ℓ 0ℓ×ℓ Φ
Φ 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ Φ 0ℓ×ℓ

+

Γ−1
n 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ Γ−1
n 0ℓ×ℓ

0ℓ×ℓ 0ℓ×ℓ Γ−1
n

 Ẑ (22)

=

b
[n]
1,1 b

[n]
1,2 b

[n]
1,3

b
[n]
2,1 b

[n]
2,2 b

[n]
2,3

b
[n]
3,1 b

[n]
3,2 b

[n]
3,3

 , (23)

where Φ = diag(1ℓ) and Ẑ is a random noise matrix of size
Bℓ×Bℓ. Each matrix R̂n is represented in blocks of size ℓ×ℓ,
as shown in (23).

2) Reading Phase: In the reading phase, the databases
determine the permuted indices of the Pr′ most significant
subpackets to be sent to the users as described in case 1.



Assume that the permuted (subpacket, segment) pair of a
chosen subpacket is (ηp, ϕp) = (1, 3). A designated database
sends this information to the user and the user finds the
corresponding real segment ϕr and subpacket ηr as ϕr =
P̂ (ϕp) = 1 and ηr = P̃ϕr

(ηp) = 2. To send the corresponding
real subpacket, the databases first generate the combined noisy
permutation reversing matrix given by,

Rn=

R
[1]
n

R
[2]
n

R
[3]
n

×




b
[n]
1,1

. . .
b
[n]
1,1



b
[n]
1,2

. . .
b
[n]
1,2



b
[n]
1,3

. . .
b
[n]
1,3


b
[n]
2,1

. . .
b
[n]
2,1



b
[n]
2,2

. . .
b
[n]
2,2



b
[n]
2,3

. . .
b
[n]
2,3


b
[n]
3,1

. . .
b
[n]
3,1



b
[n]
3,2

. . .
b
[n]
3,2



b
[n]
3,3

. . .
b
[n]
3,3





.

(24)

In order to send the permuted subpacket indicated by
(ηp, ϕp) = (i, j), each database generates the query given by,

Q[i,j]
n =

Γ
−1
n

. . .
Γ−1
n


L×L

×
ℓ∑

k=1

Rn(:, (j−1)
Pℓ

B
+(i−1)ℓ+k).

(25)

Then, the answer is generated by the dot product between the
query and the storage as explained in case 1. In order for
the user to be able to download the required subpacket using
the N answers, the system should satisfy N = 2ℓ+ 4, fixing
the subpacketization of case 2 at ℓ = N−4

2 , which results in
the reading cost given in Table I for case 2, using a similar
calculation as in (13).

3) Writing Phase: In the writing phase, the user sends the
combined updates, permuted subpacket indices and permuted
segment indices of the Pr most significant subpackets to all
databases. Assume that a given user wants to update the Pr
sparse subpackets identified by the real (subpacket, segment)
pairs given by, (ηr, ϕr) = {(2, 1), (1, 2), (3, 3)}. Based on
within segment permutations given by P̃1 = (2, 4, 3, 1), P̃2 =
(1, 3, 2, 4), P̃3 = (3, 1, 4, 2), and the segmentwise permutation
given by P̂ = (2, 3, 1), the user sends the following (permuted)
information to database n, n ∈ {1, . . . , N},

(U [ηr,ϕr]
n , ηp, ϕp) = {(U [2,1]

n , 1, 3), (U [1,2]
n , 1, 1), (U [3,3]

n , 1, 2)}
(26)

where the combined updates U
[ηr,ϕr]
n are of the form (14).

Once the databases receive all permuted (update, subpacket,
segment) tuples, they construct the permuted update vector as,

Ũn = [U [1,2]
n , 0, 0, 0, U [3,3]

n , 0, 0, 0, U [2,1]
n , 0, 0, 0]T (27)

This vector is then scaled by an all ones vector of size ℓ× 1
to aid the rest of the calculations. The scaled permuted update

vector is given by Ûn = [Ũn(1) ·1Tℓ , . . . , Ũn(12) ·1Tℓ ]T . Then,
database n, n ∈ {1, . . . , N} calculates the incremental update
using the combined noisy permutation reversing matrix in (24)
as Ūn = Rn × Ûn, which is of the same form as the storage
in (6) with x = ℓ+ 1. Therefore, the storage at time t, Sn(t)
can be updated as Sn(t) = Sn(t− 1) + Ūn.

The numbers of symbols stored as data, noise added intra
and inter segment permutation reversing matrices are given by,
L, L2

B and ℓ2B2 = L2B2

N2 , respectively. Therefore, the storage
complexity is max{O(L

2

B ), O(L
2B2

N2 )}.
In the two proposed schemes, there exists a positive infor-

mation leakage on the indices of sparse updates when B > 1,
since the numbers of subpackets with non-zero updates in
each segment is revealed to the databases in permuted or
non-permuted order, i.e., the databases learn the distribution
of the Pr sparse subpackets among the B segments. This is
the intuition behind the information leakage characterized in
Table I for the two cases. The proofs are omitted in this paper
due to space limitations.
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