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Abstract—This paper studies task-oriented, otherwise known
as goal-oriented, communications, in a setting where a trans-
mitter communicates with multiple receivers, each with its own
task to complete on a dataset, e.g., images, available at the
transmitter. A multi-task deep learning approach that involves
training a common encoder at the transmitter and individual
decoders at the receivers is presented for joint optimization
of completing multiple tasks and communicating with multiple
receivers. By providing efficient resource allocation at the edge
of next-generation networks, the proposed approach allows the
communications system to adapt to varying channel conditions
and achieves task-specific objectives while minimizing trans-
mission overhead. Joint training of the encoder and decoders
using multi-task learning captures shared information across
tasks and optimizes the communication process accordingly. By
leveraging the broadcast nature of wireless communications,
multi-receiver task-oriented communications (MTOC) reduces
the number of transmissions required to complete tasks at differ-
ent receivers. Performance evaluation with image classification
tasks conducted on the MNIST, Fashion MNIST, and CIFAR-
10 datasets demonstrates the effectiveness of MTOC in terms
of classification accuracy and resource utilization compared to
single-task-oriented communication systems.

Index Terms—Task-oriented communications, deep learning,
multi-task learning, image classification.

I. INTRODUCTION

In traditional communications systems, the primary goal

is to communicate messages reliably while considering im-

pairments in the channel. To reconstruct the transmitted in-

formation from the transmitter to the receiver and minimize

the loss of reconstruction, such as the symbol error rate, the

operations of the transmitter and receiver can be individually

or collaboratively designed. For this objective, deep neural net-

works (DNNs) can serve as autoencoders, effectively capturing

both transmitter and receiver operations including channel

coding and modulation at the transmitter, as well as channel

decoding and demodulation at the receiver [1]. The end-to-end

reconstruction loss can be then effectively minimized.

The concept of semantic communications [2]–[5] by con-

trast seeks to preserve the meaning of the information con-

veyed during communication to the receiver. To achieve this,

the training loss for the autoencoder can include both the

reconstruction loss from conventional communications and the

semantic loss, which refers to the loss of meaning during in-

formation transfer [6], [7]. Semantic communications has been

explored for various data types, such as text [8]–[10], image

[6], [11], video [12], speech/audio [13], [14], to maintain the

integrity of meaning across different types of information, as

envisioned for next-generation (NextG) networks.

Task-oriented communications (TOC) or goal-oriented com-

munications [15], [16] introduce a new approach by focusing

on the semantics of information and its significance in relation

to a specific task. Unlike traditional communication methods

that prioritize reliable information reconstruction, the objective

in TOC is to successfully accomplish a task, such as classifica-

tion, using the available data at the transmitter, rather than the

receiver. The transmitter’s operations, including source coding,

channel coding and modulation, are modeled as an encoder

that generates low-dimensional feature vectors to be transmit-

ted over the channel. In TOC, the receiver deviates from the

conventional receiver chain and directly employs a decoder to

perform the task, such as classifying received signals, without

the need for reconstructing the original input samples. TOC

reduces the number of transmissions and latency for NextG

applications. The encoder-decoder pair is jointly trained as an

end-to-end DNN, considering both channel and data charac-

teristics, to optimize task performance that can be measured

with the classification loss [17] and formulated jointly with

other measures such as age of information [18].

Efficient utilization of limited resources is of utmost im-

portance in wireless communication systems. As wireless

networks become more complex, the need arises for communi-

cation strategies that can efficiently handle multiple tasks with

multiple receivers. This paper investigates the TOC paradigm,

where a single transmitter has some data samples, e.g., images,

communicates with multiple receivers, each having its own

task to perform on these data samples. The goal of multi-

receiver task-oriented communications (MTOC) is to jointly

optimize multiple tasks and communications with multiple

receivers by employing a multi-task deep learning approach,

which involves training a common encoder at the transmit-

ter and decoders at the receivers. This approach allows for

efficient resource allocation in NextG networks, enabling the

adaptation to varying channel conditions, and achieves task-

specific objectives while minimizing transmission overhead.

One real-world application for MTOC is image classifica-

tion in surveillance applications such as in first responder ap-

plications. A collaborative network of camera-enabled devices

can capture and share images in real time. Each user for the



edge device may have a different task corresponding to the

classification of images to different sets of labels. These tasks

may include detection of different targets (e.g., the image

belongs to an animal, or not) related to different incident

response and analysis purposes.

The key idea behind the proposed approach is to leverage

the power of multi-task learning to capture shared information

across tasks and optimize the communication process accord-

ingly. By training the encoder and decoders jointly using multi-

task learning, the system can efficiently allocate resources

based on the specific requirements of each task. The inherent

broadcast property of wireless communications is leveraged,

enabling MTOC to reduce the number of transmissions re-

quired to complete tasks at different receivers.

We consider image classification to identify different tasks

by using MNIST, Fashion MNIST, and CIFAR-10 datasets. We

train different feedforward neural network (FNN) and convo-

lutional neural network (CNN) models for the encoder and a

set of decoders at different receivers. In multi-task learning,

where a single model is trained to perform multiple tasks

simultaneously, losses from different tasks are combined for

the training process. Each task’s loss is multiplied by a task-

specific weight, reflecting its relative importance. The overall

loss is obtained by taking the weighted sum of the individual

losses across all tasks. This way, a balance is obtained between

optimizing each task individually and shared information is

leveraged across tasks to improve overall performance.

We characterize the classification accuracy for different

tasks as a function of the signal-to-noise ratio (SNR) for the

communication channel, the transmitter output size (reflecting

the level of compression before transmitting over the channel),

the weights for different tasks, and the number of receivers

each with its own task to complete. The performance of MTOC

is compared to that of single-task-oriented communications

(STOC), where a non-zero weight is assigned only to a

single task). The results demonstrate the advantages of MTOC

in terms of improved classification accuracy and optimized

resource utilization, showcasing its potential to enhance the

performance of wireless networks in scenarios involving mul-

tiple receivers with diverse tasks.

The rest of the paper is organized as follows. Section II

outlines TOC, MTOC, and multi-task learning. Section III

describes the datasets and DNN architectures for MTOC.

Section IV evaluates the performance. Section V concludes

the paper.

II. MULTI-RECEIVER TASK-ORIENTED

COMMUNICATIONS

A. Task-oriented Communications

Task-oriented or goal-oriented communications is a novel

approach based on deep learning that presents an alternative to

conventional wireless communications. Rather than relying on

predefined protocols and algorithms, this paradigm leverages

DNNs to learn and optimize the communication process for

specific tasks. Deep learning models are trained to learn the

complex patterns and relationships within the communication

process. This data-driven approach allows the adaptation and

optimization of the end-to-end communications pipeline based

on the specific task or goal at hand. Instead of relying on

separate modules for different tasks like channel coding and

modulation, a deep learning model can learn to perform all

these tasks jointly, enabling seamless integration and improved

performance. In TOC, deep learning models can be trained

to optimize the communication system for specific tasks or

goals. For example, in a TOC system for computer vision

applications, the model can learn to maximize the image

classification accuracy under different channel conditions.

The system model for STOC is shown in Fig. 1 for the

case of a single receiver with a single task. An encoder

E and a decoder D are used to represent the transmitter

and the receiver operations, respectively, and they are jointly

trained by minimizing a loss L for the classification task

T . The encoder E performs source coding, channel coding,

and modulation operations, transforming the input sample into

modulated signals. The received signals at the receiver are

classified by the decoder D to the labels of input data samples

at the transmitter. Note that it is costly in terms of energy,

channel use and delay to transmit the entire number of input

samples separately. TOC uses the encoder E to reduce the

dimension for the transmitted signals, thereby allowing more

efficient allocation of resources.

SC CC M D CD SDChannel

SC: Source Coding

CC: Channel Coding

M: Modulation

D: Demodulation

C: Channel Decoding

SD: Source Decoding

Transmitter Receiver

(a) Conventional communications.
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Transmitter
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(b) Task-oriented communications.

Fig. 1: Conventional communications vs. TOC.

B. MTOC

We consider one transmitter communicating with multiple

(n) receivers as shown in Fig. 2. Each receiver i has its own

decoder Di to perform a different classification task Ti. The

data samples such as images are the input to the encoder.

The common encoder E at the transmitter modulates the input

data and broadcasts it in compressed form to decrease the

number of channel uses. In other words, the size of the output

of the encoder (nc) is smaller than the size of the input

sample such that the encoder E captures latent features of

low dimension that are transmitted with a reduced number of

channel uses. Each receiver i receives the same transmitted

data samples experiencing a different channel and uses them

as the input to its decoder Di. During training, the encoder

E at the transmitter and the decoders {Di}
n

i=1
at all receivers

are trained jointly as part of multi-task learning. In case of

STOC, the output of the encoder E needs to be transmitted to
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Fig. 2: System diagram of MTOC.

each receiver i separately such that the encoder E and the

decoder Di of each receiver i are trained together for the

corresponding task Ti. In case of MTOC, the output of the

encoder E is broadcast to all receivers at the same time, leading

to a more efficient use of transmission opportunities by cutting

transmission time n times.

Let x denote the input samples (e.g., images). The encoder’s

output at the transmitter is E(x) that is broadcast to n

receivers. Receiver i receives signal yi = hiE(x)+ni, where

hi is the channel gain for receiver i according to Rayleigh

fading and ni is the Gaussian noise at receiver i. This received

signal is processed by decoder Di such that the output label

at receiver i is Ĉi(x) = Di (hiE(x) + ni). Loss Li measures

the difference between the predicted label Ĉi(x) and the true

label C(x) for input sample x.

C. Multi-Task Learning

We employ multi-task learning to jointly train the encoder

at the transmitter and the decoders at multiple receivers, each

with its own task to complete. In multi-task learning, a model

is trained to perform multiple (related) tasks simultaneously,

instead of training separate models for each individual task.

The idea of multi-task learning is that by jointly learning

multiple tasks, the model can leverage the shared information

across tasks for a more effective performance. Traditionally, in

single-task learning, a model is trained to optimize a specific

objective function for a particular task. On the other hand,

multi-task learning allows the model to learn from multiple

tasks simultaneously.

In multi-task learning, the model architecture is typically

designed to have shared layers that capture common features

across tasks, as well as task-specific layers that capture task-

specific information. During training, the model is presented

with examples from each task and learns to jointly optimize

the objective functions of all the tasks. The objective functions

can be weighted differently to reflect the relative importance

of each task. Let wi ∈ [0, 1] denote the weight for loss Li for

task Ti at receiver i. The combined loss for jointly training E
and {Di}

n

i=1
is Ljoint =

∑n

i=1
wiLi.

The benefits of multi-task learning include: (i) Improved

generalization: By learning from multiple tasks, the model

can capture common patterns and generalize better to unseen

data. (ii) Regularization: Training on multiple tasks can act as

a form of regularization, preventing overfitting and improving

the model’s ability to handle noise and outliers. (iii) Data

efficiency: Multi-task learning can be particularly useful when

there is limited data available for each individual task. By

sharing information across tasks, the model can leverage the

combined data to improve performance. (iv) Transfer learning:

Multi-task learning allows knowledge transfer between tasks,

meaning that the model can benefit from the insights gained

while solving one task to improve its performance on other

related tasks. See examples of multi-task learning in [19], [20].

III. DATASETS AND DEEP NEURAL NETWORK

ARCHITECTURES

We consider three types of image datasets:

• MNIST: The MNIST dataset is composed of grayscale

images of handwritten digits [21]. The label of each

data sample (image) is its digit (from 0 to 9). There are

total of 10 classes and the set of classes is CMNIST =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Each sample is of 28 × 28
grayscale pixels and the value of each pixel is between 0
and 255. The dataset consists of 60,000 training samples

and 10,000 test samples.

• Fashion MNIST: The Fashion-MNIST is composed of

grayscale clothing images. There are total of 10 classes

and the set of classes is CFashion MNIST = {‘T-shirt/top’,

‘Trouser’, ‘Pullover’, ‘Dress’, ‘Coat’, ‘Sandal’, ‘Shirt’,

‘Sneaker’, ‘Bag’, ‘Ankle boot’}. Each sample is of 28×28
grayscale pixels and the value of each pixel is between 0
and 255. The dataset consists of 60,000 training samples

and 10,000 test samples.

• CIFAR-10: The CIFAR-10 dataset consists of color im-

ages from 10 classes. The set of classes is CCIFAR-10 = {
‘Airplane’, ‘Automobile’, ‘Bird’, ‘Cat’, ‘Deer’, ‘Dog’,

‘Frog’, ‘Horse’, ‘Ship’, ‘Truck’} [22]. Each data sample

(image) is of 32×32×3 color (RGB) pixels and the value

of a given pixel in each red, green and blue component

is between 0 and 255. The dataset consists of 50,000

training samples and 10,000 test samples.

Both MNIST and Fashion MNIST datasets can be effec-

tively trained by either the FNN or CNN model. For the

MNIST dataset, we consider the FNN, where each data sample

is represented by a feature vector of size 28× 28 = 784. For

the Fashion MNIST dataset, we consider the CNN where each

data sample is of size 28× 28× 1. For the CIFAR-10 dataset,

we consider the CNN as the model to train (the FNN is known

to have poor performance for the CIFAR-10 dataset).

In each scenario, the corresponding feature is first normal-

ized to a range of [0, 1]. Next, the normalized feature is used

as input for the transmitter’s encoder. The encoder reduces the

dimension of each input sample to nc, representing the number

of channel uses required to transmit the modulated symbols

from the transmitter’s output (assuming one symbol can be

transmitted per channel use). The encoded signal is then trans-

mitted with nc channel uses over a Rayleigh fading channel

with Gaussian noise added at the receiver. At each receiver, the

received signal, also of dimension nc, is passed as input to its

decoder. The decoder’s output provides the classification label.

Notably, the input sample is not reconstructed at the receiver,

which sets it apart from conventional communications.



We consider three data-DNN configurations: (a) the data

is MNIST and the DNNs are FNN, (b) the data is Fashion

MNIST and the DNNs are CNN, and (c) the data is CIFAR-10

and the DNNs are CNN. For these configurations, the encoder

and decoder architectures are outlined in Table I. The training

process employs categorical cross-entropy as the loss function

and utilizes the Adam optimizer. Rayleigh fading channel and

Gaussian noise layers with the appropriate SNR are added

between the encoder and each decoder. Numerical results are

obtained using Python, and the models are trained in Keras

with the TensorFlow backend.

IV. PERFORMANCE EVALUATION

We start with two receivers and consider two different tasks

for each data type. For the MNIST data, task 1 is to classify

images to two subsets, even digits and odd digits, and task 2

is to classify images to two subsets, digits smaller than 5 and

larger than or equal to 5. For the Fashion MNIST data, task 1

is to classify images to two subsets, dress items (‘T-shirt/top’,

‘Trouser’, ‘Pullover’, ‘Dress’, ‘Coat’, ‘Shirt’) and others, and

task 2 is to classify images to two subsets, formal clothing

(‘Trouser’, ‘Dress’, ’Sandal, Shirt, ‘Bag’) and others. For the

CIFAR-10 data, task 1 is to classify images to animals (‘bird’,

‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’) and others, and task 2 is to

classify images to small ground entities (‘automobile’, ‘cat’,

‘deer’, ‘dog’, ‘horse’) and others.

Default values for SNR and nc are 3dB and 20, respectively,

assuming common values for each receiver. Figs. 3, 4, and

5 show the accuracy for both tasks as a function of the

SNR for the three data-DNN configurations (a), (b), and (c),

respectively. Figs. 6, 7, and 8 show the accuracy for both

tasks as a function of the transmitter’s output size, nc, for the

three data-DNN configurations (a), (b), and (c), respectively.

Different weights, wi, i = 1, 2 are applied to the loss

values during training that include cases (w1 = 1, w2 = 0),
(w1 = 0, w2 = 1), and (w1 = w2 = 0.5). For receiver i when

the weight wi is set to 1 during training (this corresponds to

the case of STOC for task Ti only), it is trained well, and the

accuracy of task Ti increases with increasing SNR and nc. On

the other hand, training is not successful and decoder Di makes

random decisions when the weight for task Ti is set to 0. Both

tasks T1 and T2 at two receivers achieve high accuracy when

wi = 0.5, i = 1, 2. Hence, partitioning weights among tasks

as needed in MTOC can achieve high accuracy for both tasks

compared to STOC. Note that serving both tasks separately

with STOC would require doubling the transmitter’s output

size. Therefore, MTOC can achieve high accuracy with fewer

transmissions. These results continue to hold when we have

asymmetric channel conditions for both receivers, as shown in

Fig. 9 and Fig. 10, where we change the SNR for one receiver

while keeping the SNR for the other receiver fixed.

We have a closer look at the effects of weights in Fig. 11.

Even a small non-zero weight assigned to a task leads to high

accuracy for that task, thereby motivating the use of MTOC.

Next, we increase the number of receivers n. Fig. 12 shows

the task accuracy as a function of n, when each receiver

TABLE I: Encoder-decoder architectures for task-oriented communications.

(a) Data: MNIST, Model: FNN.
Network Layer Properties

Encoder Input size: 28×28×1
Dense size: 256, activation: ReLU
Dense size: 128, activation: ReLU
Dense size: nc, activation: Linear

Decoder Input size: nc

for Task 1 Dense size: nc, activation: ReLU
Dense size: nc

2
, activation: ReLU

Dense size: 2, activation: Softmax

Decoder Input size: nc

for Task 2 Dense size: nc, activation: ReLU
Dense size: nc

2
, activation: ReLU

Dense size: 2, activation: Softmax

(b) Data: Fashion MNIST, Model: CNN.
Network Layer Properties

Encoder Input size: 28×28×1
Conv2D filter size: 32, kernel size: (3,3)

activation: ReLU
MaxPooling2D pool size: (2,2)
Conv2D filter size: 32, kernel size: (3,3)

activation: ReLU
MaxPooling2D pool size: (2,2)
Flatten –
Dropout dropout rate: 0.5
Dense size: 128, activation: ReLU
Dense size: nc, activation: Linear

Decoder Input size: nc

for Task 1 Dense size: nc, activation: ReLU
Dense size: nc

2
, activation: ReLU

Dense size: 2, activation: Softmax

Decoder Input size: nc

for Task 2 Dense size: nc, activation: ReLU
Dense size: nc

2
, activation: ReLU

Dense size: 2, activation: Softmax

(c) Data: CIFAR-10, Model: CNN.
Network Layer Properties

Encoder Input size: 32×32×3
Conv2D filter size: 8, kernel size: (3,3)

activation: ReLU
Conv2D filter size: 4, kernel size: (3,3)

activation: ReLU
MaxPooling2D pool size: (2,2)
Dropout dropout rate: 0.1
Conv2D filter size: 4, kernel size: (3,3)

activation: ReLU
MaxPooling2D pool size: (2,2)
Dropout dropout rate: 0.1
Flatten –
Dense size: 128, activation: ReLU
Dense size: nc, activation: Linear

Decoder Input size: nc

for Task 1 Dense size: nc, activation: ReLU
Dense size: nc

2
, activation: ReLU

Dense size: 2, activation: Softmax

Decoder Input size: nc

for Task 2 Dense size: nc, activation: ReLU
Dense size: nc

2
, activation: ReLU

Dense size: 2, activation: Softmax

completes its individual task. In this scenario, the task for

receiver i, where 1 ≤ i ≤ n, is to classify images to the subset

of classes Cj , j = i, ..., (i+4) mod 10 and the rest of classes,

where Cj is the jth class in the class set (CMNIST for the

MNIST dataset, CFashion MNIST for the Fashion MNIST dataset,
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Fig. 3: Task accuracy vs. SNR for MNIST+FNN.
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Fig. 4: Task accuracy vs. SNR for Fashion MNIST+CNN.
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Fig. 5: Task accuracy vs. SNR for CIFAR-10+CNN.

and CCIFAR-10 for the CIFAR-10 dataset). As n increases, the

accuracy averaged over all receivers drops when we consider

STOC targeting the task at one receiver only, whereas MTOC

maintains the high task accuracy for all receivers.

V. CONCLUSION

We have studied TOC, where a transmitter establishes com-

munications with multiple receivers, each assigned a distinct

task involving a shared dataset, such as images sourced from

the transmitter. We have presented an innovative multi-task

deep learning approach that entails training a common encoder

at the transmitter, while equipping individual decoders at

each receiver. The overarching goal is to jointly optimize
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Fig. 6: Task accuracy vs. transmitter output size for MNIST+FNN.
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Fig. 7: Task accuracy vs. transmitter output size for Fashion MNIST+CNN.
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Fig. 8: Task accuracy vs. transmitter output size for CIFAR-10+CNN.

multiple tasks and communication, all while ensuring resource

allocation efficiency at the edge of NextG networks. The

aim is to enable the system to adapt seamlessly to varying

channel conditions and task characteristics, while effectively

accomplishing task-specific objectives and minimizing trans-

mission overhead. Central to this approach is the joint training

of the encoder and decoders through multi-task learning,

facilitating the assimilation of shared information across tasks

and optimizing the communication process accordingly. Lever-

aging the broadcast property of wireless communications,

the MTOC approach significantly diminishes the number of

transmissions required to complete tasks at different receivers.

We have conducted a comprehensive performance evaluation
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Fig. 9: Task accuracy vs. SNR for receiver 1 (SNR for receiver 2 is 3dB).
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Fig. 10: Task accuracy vs. SNR for receiver 2 (SNR for receiver 1 is 3dB).
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Fig. 11: Task accuracy vs. weight w1 for task 1 (where w2 = 1− w1).

on MNIST, Fashion MNIST, and CIFAR-10 datasets, focusing

on various image classification tasks. The findings demonstrate

the substantial efficacy of MTOC, outperforming STOC in

terms of classification accuracy and resource utilization.
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