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Abstract—This paper highlights vulnerabilities of deep
learning-driven semantic communications to backdoor (Trojan)
attacks. Semantic communications aims to convey a desired
meaning while transferring information from a transmitter to
its receiver. The encoder-decoder pair of an autoencoder that
is represented by deep neural networks (DNNs) is trained to
reconstruct signals such as images at the receiver by transmitting
latent features of small size over a limited number of channel
uses. In the meantime, the DNN of a semantic task classifier at
the receiver is jointly trained with the autoencoder to check
the meaning conveyed to the receiver. The complex decision
space of the DNNs makes semantic communications susceptible
to adversarial manipulations. In a backdoor (Trojan) attack, the
adversary adds triggers to a small portion of training samples
and changes the label to a target label. When the transfer of
images is considered, the triggers can be added to the images or
equivalently to the corresponding transmitted or received signals.
In test time, the adversary activates these triggers by providing
poisoned samples as input to the encoder (or decoder) of semantic
communications. The backdoor attack can effectively change
the semantic information transferred for the poisoned input
samples to a target meaning. As the performance of semantic
communications improves with the signal-to-noise ratio and the
number of channel uses, the success of the backdoor attack
increases as well. Also, increasing the Trojan ratio in training
data makes the attack more successful. On the other hand, the
attack is selective and its effect on the unpoisoned input samples
remains small. Overall, this paper shows that the backdoor attack
poses a serious threat to semantic communications and presents
novel design guidelines to preserve the meaning of transferred
information in the presence of backdoor attacks.

Index Terms—Semantic communications, deep learning, ad-
versarial machine learning, backdoor attacks, Trojan attacks.

I. INTRODUCTION

Traditional communications systems are optimized to trans-

fer information subject to channel impairments. For that

purpose, the transmitter and receiver operations are designed

either separately or jointly for reliable information transfer.

Then, the objective is to minimize a loss associated with the

reconstruction of information at the receiver. Machine learning

has been extensively applied to optimize the transmitter and

receiver operations such as in the joint design by autoencoder

communications [1].
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This approach for reliable recovery of information has been

extended with task-oriented or goal-oriented communications,

where the data resides at the transmitter and the receiver needs

to compute a task using this data. To that end, there is no

need to transfer all the data to the receiver. By leveraging

the semantics of information via its significance relative to

this task, deep learning can be used to design the transmitter,

receiver, and computing (e.g., classifier) functionalities while

transferring reduced amount of data over a channel [2]–[4].

Beyond the consideration of a task, the goal of information

transfer can be extended to preserve the semantic information,

namely the meaning of information that may not be neces-

sarily captured by minimizing a reconstruction loss. Consider

an inter-vehicular network, where autonomous vehicles take

images and exchange them with each other over the air. Each

image contains semantic information such as traffic signs,

weather and road conditions. Although the image can be

reconstructed at the receiver vehicle with a small loss, it is

possible that it cannot detect or classify the traffic sign in

the received image, so the semantic information is lost. To

preserve meaning during the information transfer such as in the

scenario above, semantic communications is ultimately needed

to minimize the semantic error beyond the reconstruction

loss and preserve the meaning of the recovered information

[5]. Semantic communications seeks to provision the right

and significant piece of information [6], [7] and this relevant

information transferred to the receiver can be determined by

completing a machine learning task at the receiver. Using deep

learning as the foundation to learn from not only channel

but also data characteristics, semantic communications has

found rich applications in transmitting different data modalities

including text [8], [9], speech/audio [10], [11], image [12],

[13] and video [14].

Information security has become increasingly critical with

increased use of machine learning in the next-generation

(NextG) communications systems such as those envisioned to

utilize semantic communications. In particular, deep learning

is known to be vulnerable to a variety of attacks and exploits

that have been studied under adversarial machine learning

(AML). The attacks built upon AML have been extensively

studied for wireless systems that rely on deep learning [15]

such as 5G and beyond communication systems [16]. These

attacks can be applied either in training or test time, including

inference (exploratory) attacks, adversarial (evasion) attacks,



poisoning (causative) attacks, and backdoor (Trojan) attacks.

Inference attack seeks to learn how a victim machine learning

model works. Adversarial attack seeks to fool a model into

making errors by tampering with its input samples in test

time (adversarial attack has been considered for semantic

communications in [13]). Poisoning attack seeks to manipulate

the model training process. Backdoor attack seeks to insert

Trojans (i.e., backdoors or triggers) to some training samples

in training time and activate them in test time to fool the

poisoned model only for some (but not all) input samples.

In this paper, we study the vulnerabilities of deep learning-

enabled semantic communications to backdoor attacks. In the

computer vision domain, it was shown in [17] that an adver-

sary can create a maliciously trained model that achieves high

performance on the user’s training and validation samples,

but behaves poorly on specific attacker-chosen inputs. To that

end, an attack was implemented by taking a picture of a

stop sign with a standard yellow post-it note pasted on it

that effectively fooled the poisoned model into classifying the

stop sign as a speed-limit sign. Backdoor attacks have been

extended also to the wireless domain such that phase shifts

added to the transmitted signals have been used as triggers

to launch backdoor attacks on wireless signal classifiers [18]

and task-oriented communications [3], where the task at the

receiver is the classification of wireless signals collected at

the transmitter. Over time, backdoor attacks are expected to

gain more importance with the O-RAN compliant NextG com-

munications systems where the open software development

opens the door for the adversaries to inject Trojans to the

deep neural networks (DNNs) used for radio access network

(RAN) communications for which semantic communications

has strong potential to contribute.

In this paper, we consider an autoencoder-based semantic

communications system. The encoder-decoder pair of an au-

toencoder is trained to reconstruct the signals at the receiver

by transmitting a compressed set of features over a limited

number of channel uses. The autoencoder is followed by

a semantic task classifier DNN that takes the reconstructed

samples as input and performs a semantic task. We consider

transfer of image data that consists of handwritten images.

To that end, semantic task classifier classifies the digits as

labels that are considered the meaning of information to be

conveyed to the receiver. We consider a backdoor attack where

the adversary adds triggers to a small portion of the training

samples and changes the output label to a target label. Next,

the adversary activates these triggers in test time by providing

the poisoned samples as input to semantic communications.

The triggers can be added to the images by changing the values

of some pixels. Equivalently, the effect of image triggers on

signals can be isolated and used separately as triggers added

to the transmitted or received signals.

We show that the backdoor attack can effectively change

the semantics of transferred information for the poisoned input

samples to a target label. In the meantime, the effect on the

unpoisoned input samples remains limited showing that this

attack is stealthy and selective. We show that not only the

performance of semantic communications but also the success

of the backdoor attack improves with the signal-to-noise ratio

(SNR) and the number of channel uses since the reconstruction

loss decreases and the triggers effectively reach the semantic

task classifier. Therefore, semantic communications should

reduce the transmit power and the number of channel uses to

the level where the attack success can be significantly reduced

and the classifier accuracy remains high. In addition, adding

more Trojans to the training data improves the attack success

but high Trojan ratio should be avoided by the adversary to

prevent the adverse effect on the unpoisoned samples and

remain selective.

The rest of the paper is organized as follows. Section

II describes the end-to-end semantic communications system

based on deep learning. Section III presents the backdoor

attack on semantic communications. Section IV demonstrates

the success of the backdoor attacks launched on the semantic

communications system. Section V concludes the paper.

II. SEMANTIC COMMUNICATIONS WITH DEEP LEARNING

We consider semantic communications built upon deep

learning. As shown in Fig. 1, the transmitter and the receiver

operations are represented by an encoder and a decoder of an

autoencoder that are jointly trained. The data samples such

as images are the input to the encoder at the transmitter. The

encoder incorporates the operations of source coding, channel

coding, and modulation, and converts the input sample to

modulated signals. The size of the input sample is greater

than the size of the output of the encoder, i.e., the encoder

captures lower-dimensional latent features that are transmitted

over the channel with a small number of channel uses.
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Fig. 1: Semantic communications.

The signals received on the receiver side are given as

input to the decoder that converts these signals to the re-

constructed data samples with dimension equal to that of

input samples at the transmitter. In other words, the decoder

jointly performs demodulation, channel decoding, and source

decoding operations, and reconstructs the input samples. The

encoder and decoder are jointly trained while accounting for

channel effects. This setting is different from autoencoder

communications [1] that typically processes symbols (bits) as

input at the transmitter and reconstructs them at the receiver,

i.e., it does not include source coding and decoding operations.

Beyond that, we assume that the reconstructed samples at the

receiver are used to complete a certain task which is called

a semantic task. To that end, we consider a semantic task

classifier that checks on whether the meaning is preserved

during the information transfer. For example, if we consider

the MNIST data of handwritten images as the input samples,



the semantic task classifier checks the accuracy of correctly

classifying the reconstructed images to their corresponding

labels (adigits). Thus, the meaning (i.e., classified digits) is

the output of the semantic task classifier that is trained to

minimize the categorical cross-entropy (CCE) loss.

To reconstruct input samples, we can train the encoder-

decoder pair by minimizing a distortion loss such as the

mean squared error (MSE). However, our goal is not only to

reconstruct data samples but also preserve the meaning of the

information. Therefore, the loss to minimize for training the

encoder-decoder pair combines the MSE loss for reconstructed

samples and the semantic task classifier’s CCE loss between

the input labels and the predicted labels of the reconstructed

samples. Note that the semantic task classifier cannot be

effectively trained with the input samples at the transmitter as

it resides at the receiver and takes the reconstructed samples

as the input. Therefore, it is better to train the semantic task

classifier with the reconstructed samples taken as the input. On

the other hand, the loss of this classifier is used as part of the

loss to train the encoder-decoder pair. Therefore, the training

process of the autoencoder (namely, the encoder-decoder pair)

and the training process of the semantic task classifier are

coupled and should not be separated. Instead, they should be

interactively trained as shown in Fig. 1.

The interactive training runs in multiple rounds. Let Et,

Dt and Ct denote the encoder, the decoder, and the semantic

task classifier, respectively, at round t. Let Xt and X̂t denote

the input samples and reconstructed samples, respectively, at

round t, where X̂t = Dt (Et(Xt) + nt) for noise nt in an

additive white Gaussian noise (AWGN) channel. Let Yt denote

the semantic information, namely the labels returned by Ct,

at round t. Rt is defined as the reconstruction loss at round

t, namely the MSE loss MSE(Xt, X̂t), for the (Et, Dt) pair,

and St is defined as the semantic loss at round t, namely

the CCE loss CCE(Ct−1(X̂t), Yt) using the classifier Ct−1

from previous round t − 1. Then, at round t, the encoder-

decoder pair (Et, Dt) is trained by minimizing the loss Lt =
f (Rt, St), whereas the semantic task classifier Ct is retrained

by minimizing the CCE(Ct(X̂t), Yt).
The function f is designed to penalize the CCE loss of se-

mantic loss classifier beyond a threshold τ , which corresponds

to the loss of semantic task classifier taking Xt as the input.

For that purpose, we set f (Rt, St) = Rt +wmax (St − τ, 0)
for weight w that balances the trade-off between the recon-

struction loss and the semantic loss (w is taken as 0.2 for

numerical results). This iterative training is run over multiple

runs to improve Lt for both objectives of recovering the

information and preserving the semantic meaning.

To evaluate the performance, we use the MNIST dataset

that consists of images of handwritten digits [19]. The corre-

sponding labels that constitute the meaning of the data samples

are the digits (from 0 to 9) so that we have 10 labels in total.

Each sample (image) is of 28×28 grayscale pixels with values

between 0 and 255 and represented by feature vector of size

784. The feature vector is normalized to [0, 1] and given as

input to the encoder at the transmitter. The encoder reduces

the dimension to nc, namely the number of channel uses to

transmit the modulated symbols at the output of the transmitter

assuming one symbol can be sent at a time. The output of the

encoder is transmitted over nc channel uses over an AWGN

channel. The received signals of dimension nc are given as

input to the decoder at the receiver. The decoder reconstructs

the signals as 784-dimensional feature vectors given to the

semantic task classifier that returns the corresponding digits

as one of 10 labels. The architectures of the encoder, decoder

and the task classifier are shown in Table I.

TABLE I: The architectures of the autoencoder and the semantic task classifier.

Network Layer Properties

Encoder Input size: 784
Dense size: 196, activation: ReLU
Dense size: nc, activation: Linear

Decoder Dense size: nc, activation: ReLU
Dense size: 196, activation: ReLU
Output size: 784, activation: Linear

Classifier Input size: 784
Dense size: 64, activation: ReLU
Dense size: 32, activation: ReLU
Output size: 10, activation: Softmax

III. BACKDOOR (TROJAN) ATTACK ON SEMANTIC

COMMUNICATIONS

The goal of the adversary is to change the meaning of

information transferred from the transmitter to the receiver,

namely change the label of the semantic task classifier from

the non-target label (also called the victim label) to the target

label. Backdoors (Trojans) are hidden triggers embedded in the

DNNs in training time that manipulate the decision making in

the test time.
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Fig. 2: Backdoor attack on semantic communications.

The backdoor attack proceeds in two stages shown in Fig. 2.

1) In training time, the adversary adds a trigger to some

of the input samples with the non-target label such as a

“plus sign” added to a corner of the input image. These

samples are called poisoned samples. The adversary

changes the labels associated with the poisoned samples

from non-target label to target label. The ratio of the

training data samples poisoned is called the Trojan ratio.

2) In test time, the adversary adds the trigger to some of the

test input samples with the non-target label. The goal is



to fool the semantic task classifier into classifying the re-

constructed samples corresponding to these poisoned test

inputs (with triggers) as the target label. The semantic

task classifier should reliably classify the reconstructed

samples corresponding to these unpoisoned test inputs

(without triggers) as their correct labels.

We define four performance measures.

1) pA: the attack success probability, namely the probability

that the poisoned classifier (that is trained on poisoned

samples) classifies the reconstructed samples with the

non-target label as the target label.

2) pUN: the probability that the poisoned classifier classifies

the unpoisoned test samples with the non-target label

correctly as the non-target label.

3) pU: the probability that the poisoned classifier classifies

the unpoisoned test samples (with any label) correctly.

4) pNA: the classifier accuracy in the no-attack case, namely

the probability that the unpoisoned classifier (that is

trained on unpoisoned samples) classifies the unpoisoned

test samples correctly (averaged over all labels).

The goal of the backdoor attack is to yield high pA while

keeping pUN and pU high. A high value of pA indicates that the

attack can successfully change the semantic information under

attack from its original meaning to another target meaning.

High values of pUN and pU indicate that the attack is selective

and stealthy, and does not change much the meaning of other

information (namely, the corresponding label) that is not the

target of the attack. pNA is a benchmark measure from the no-

attack case (no trigger is added in training time or test time).

We consider the backdoor attack launched against the se-

mantic communications of images from the MNIST data. Let

di,j denote the value of image pixel (i, j) after normalization

(i.e., di,j ∈ [0, 1]), where 0 ≤ i, j ≤ 26. The Trojan added to

the poisoned samples is a “plus sign” by setting di,5 = 1 for

1 ≤ i ≤ 5 and d3,j = 1 for 3 ≤ j ≤ 7 such that 9 out of

784 pixels are poisoned per sample. Fig. 3a shows a poisoned

sample as the input to the encoder at the transmitter and

Fig. 3b shows the reconstruction of this sample at the output

of the decoder at the receiver. Note that another approach is

to compute the difference of the corresponding transmitted or

received signals in the presence and absence of triggers added

to the images. Then, this difference can be used as a trigger

added to the transmitted or received signals without directly

adding any trigger to the input images. To that end, multi-

domain backdoor attacks can be launched against semantic

communications.
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Fig. 3: Trigger for backdoor attack.

IV. PERFORMANCE EVALUATION

In this section, we show the impact of the Trojan attack on

the performance of semantic communications. We consider

different parameters, namely the SNR, the number of channel

uses, the Trojan ratio, and the non-target and target label pairs.

The default values of these parameters and their range when

we vary them are shown in Table II. In performance evaluation,

we vary each parameter one at at time by fixing the other

parameters to the default values given in Table II.

TABLE II: Parameters, default values, and ranges of values.

Parameter Default value Range of values

SNR in dB 5 0, 3, 5, 8, 10

Number of
channel uses (nc) 75 25, 50, 75, 100

Trojan ratio 0.25 0, 0.125, 0.25, 0.365, 0.5

Non-target label 4 0,1,2,3,4,5,6,7,8,9

Target label 9 0,1,2,3,4,5,6,7,8,9

Fig. 4 shows the effect of the SNR (corresponding to the

AWGN channel) on the backdoor attack performance. The

success probability pA of the backdoor attack increases with

the SNR. In other words, it is more advantageous for the

adversary to attack the information transfer over a better

channel. Similarly, the classifier accuracy for the unpoisoned

samples measured by pUN and pU also increases with the SNR.

As a result, the attack performance improves with the SNR in

terms of all attack measures. On the other hand, the classifier

accuracy in the no-attack case, pNA, also improves with the

SNR as expected and remains close to pUN and pU, i.e., the

attack remains highly effective in changing the meaning only

from the non-target label to the target label but not for other

label pairs. Overall, there is an interesting trade-off that while

it is better for semantic communications to operate on high

SNR channels in the absence of an attack, it becomes more

vulnerable to backdoor attacks as the SNR increases.

The reason for the attack improvement with the SNR is that

the reconstruction loss decreases with the SNR (regardless of

there is an attack or not), as shown in Fig. 5, such that the

trigger (the plus sign in our case) is better recovered in the re-

constructed samples and reaches the classifier more effectively

as the SNR increases. Overall, adding Trojans in the backdoor

attack increases the reconstruction loss compared to processing

only unpoisoned samples in test time, as shown in Fig. 5.

Therefore, to remain effective, the adversary benefits from the

high SNR that reduces the reconstruction loss. From the design

perspective, the transmitter of semantic communication can

reduce its transmit power (relative to the noise) to the level

that still achieves high accuracy for unpoisoned samples while

significantly reducing the effect of the backdoor attack.

Fig. 6 shows the effect of the number of channel uses, nC ,

on the backdoor attack performance. As more channel uses are

allowed, then pA, pUN and pU all increase rapidly (also because

the reconstruction loss drops with nc as shown in Fig. 7)

such that the attack becomes highly effective. The classifier

performance in the no-attack case only slightly improves with

nc compared to the benefit to the adversary. Therefore, as a

proactive defense mechanism, it is better to keep nc small



0 1 2 3 4 5 6 7 8 9 10
SNR (dB)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Pr

ob
ab

ilit
y

Attack Success
Unpoisoned Accuracy (Non-target Labels)
Unpoisoned Accuracy (All Labels)
Accuracy (No Attack)

Fig. 4: Effect of the SNR on backdoor attack performance.

0 1 2 3 4 5 6 7 8 9 10
SNR (dB)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Re
co

ns
tru

ct
io

n 
Lo

ss

Poisoned Test Samples (Non-target Labels)
Unpoisoned Test Samples (Non-target Labels)
Unpoisoned Test Samples (All Labels)
No Attack

Fig. 5: Reconstruction loss vs. the SNR.

for semantic communications since it is more transmission-

efficient (the information is more compressed), the classifier

accuracy is still high, and the attack success is less likely.

Fig. 8 shows the effect of the Trojan ratio on the backdoor

attack performance. The attack becomes more effective and

pA increases rapidly as the Trojan ratio increases. Without

any Trojan added in training time, the attack is ineffective

even when Trojans are added in test time. As the Trojan

ratio increases, the classifier accuracy for unpoisoned samples

(especially with non-target labels) starts dropping. Therefore, it

is better for the adversary to keep a moderate Trojan ratio like

0.25 so that pA, pUN, and pU remain all high. Fig. 9 shows the

reconstruction loss as a function of Trojan ratio. Adding more

Trojans to the training data does not change the reconstruction

loss for the unpoisoned samples (which helps maintain the

classifier accuracy), but reduces the reconstruction loss for

the poisoned samples. The reason is that the test data is

fully poisoned in this case and the reconstruction loss drops

when we start poisoning also the training data. When the

reconstruction loss drops (as the Trojan ratio increases), it is

beneficial for the adversary as the trigger is better recovered at

the transmitter and the semantic task classifier is better fooled

as shown in Fig. 8.

Next, we vary the non-target label and target labels, and

evaluate the attack performance for each label pair. The attack

success probability pA is shown in Fig. 10a for all non-

target and target label pairs. The histogram of pA is shown
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Fig. 6: Effect of the number of channel uses on backdoor attack performance.
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in Fig.10b. Overall, pA varies with the label pair in the

range of [0.7992, 0.9921], and its average value is 0.9042.

In conclusion, the backdoor attack remains highly effective

across different non-target and target labels selected.

V. CONCLUSION

We have presented the vulnerabilities of deep learning-

driven semantic communications to backdoor (Trojan) attacks.

The considered system consists of an encoder at the transmitter

and a decoder at the receiver, followed by semantic task

classifier that evaluates the meaning of information conveyed

to the receiver. The encoder-decoder pair of the autoencoder

is jointly trained for source (de)coding, channel (de)coding

and (de)modulation operations by accounting for the channel

effects. Their training process is performed interactively with

the training of the semantic task classifier to minimize the

combination of reconstruction and semantic losses. We have

found that deep learning for semantic communications is

highly vulnerable to backdoor attacks. Considering image

transmission of handwritten digits, the adversary can add trig-

gers to the images in the training data (or equivalently to the

transmitted or received signals) and change the corresponding

labels to a target label such that the autoencoder and the

semantic task classifier are trained with the poisoned samples.

Then, the adversary activates these triggers in test time such

that the semantic information captured by the digit labels is

manipulated to the target meaning by providing the poisoned
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test samples as the input. We have observed that the attack

success probability is high and increases with the SNR and the

number of channel uses, as the reconstruction loss decreases

and the triggers effectively reach the semantic task classifier.

Also, the attack is more successful when the Trojan ratio in-

creases. In the meantime, the effect on unpoisoned test samples

remains limited such that the attack is selective. Overall, we

have shown that backdoor attacks emerge as a serious threat

to semantic communications and presented design guidelines

to ensure reliable delivery of semantic information (meaning)

in case of backdoors.

REFERENCES

[1] T. J. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Transactions on Cognitive Communications and

Networking, vol. 3, no. 4, pp. 563–575, 2017.

[2] J. Shao, Y. Mao, and J. Zhang, “Learning task-oriented communication
for edge inference: An information bottleneck approach,” IEEE Journal

on Selected Areas in Communications, vol. 40, no. 1, pp. 197–211, 2021.

[3] Y. E. Sagduyu, S. Ulukus, and A. Yener, “Task-oriented communications
for nextG: End-to-end deep learning and AI security aspects,” 2022,
arXiv preprint, arXiv:2212.09668.

[4] ——, “Age of information in deep learning-driven task-oriented com-
munications,” 2023, arXiv preprint, arXiv:2301.04298.

[5] B. Guler and A. Yener, “Semantic index assignment,” in IEEE In-

ternational Conference on Pervasive Computing and Communication

(PERCOM) WORKSHOPS), 2014.

[6] E. Uysal, O. Kaya, A. Ephremides, J. Gross, M. Codreanu, P. Popovski,
M. Assaad, G. Liva, A. Munari, T. Soleymani, B. S. Soret, and
H. Johansson, “Semantic communications in networked systems,” IEEE

Network, vol. 36, no. 4, pp. 233–240, 2022.

0 1 2 3 4 5 6 7 8 9
Target Label

0
1

2
3

4
5

6
7

8
9

No
n-

ta
rg

et
 L

ab
el

0.00 0.91 0.86 0.90 0.87 0.88 0.93 0.91 0.95 0.87

0.96 0.00 0.97 0.97 0.97 0.98 0.98 0.94 0.99 0.96

0.87 0.89 0.00 0.88 0.88 0.82 0.80 0.87 0.91 0.85

0.89 0.85 0.91 0.00 0.92 0.88 0.89 0.93 0.93 0.90

0.91 0.95 0.90 0.89 0.00 0.91 0.94 0.91 0.93 0.91

0.84 0.92 0.90 0.90 0.95 0.00 0.85 0.88 0.88 0.88

0.87 0.87 0.85 0.92 0.94 0.89 0.00 0.86 0.81 0.94

0.93 0.88 0.93 0.94 0.88 0.89 0.96 0.00 0.90 0.97

0.83 0.90 0.86 0.88 0.93 0.93 0.85 0.86 0.00 0.84

0.96 0.89 0.89 0.93 0.94 0.91 0.92 0.93 0.97 0.00
0.0

0.2

0.4

0.6

0.8

1.0

(a) Heatmap.

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
Attack Success Probability

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Co
un

t
(b) Histogram.

Fig. 10: Attack success across non-target and target label pairs.
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