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Abstract—Decentralized and federated learning algorithms
face data heterogeneity as one of the biggest challenges, especially
when users want to learn a specific task. Even when personalized
headers are used concatenated to a shared network (PF-MTL),
aggregating all the networks with a decentralized algorithm can
result in performance degradation as a result of heterogeneity in
the data. Our algorithm uses exchanged gradients to calculate
the correlations among tasks automatically, and dynamically
adjusts the communication graph to connect mutually beneficial
tasks and isolate those that may negatively impact each other.
This algorithm improves the learning performance and leads
to faster convergence compared to the case where all clients
are connected to each other regardless of their correlations.
We conduct experiments on a synthetic Gaussian dataset and a
large-scale celebrity attributes (CelebA) dataset. The experiment
with the synthetic data illustrates that our proposed method
is capable of detecting tasks that are positively and negatively
correlated. Moreover, the results of the experiments with CelebA
demonstrate that the proposed method may produce significantly
faster training results than fully-connected networks.

I. INTRODUCTION

Decentralized learning (DL) algorithms are able to operate
over arbitrary network topologies, in which participants com-
municate only with their immediate neighbors without a need
for communication with a central server. A key challenge in
DL is to deal with data heterogeneity: as each agent has its own
data, local datasets typically exhibit different distributions.
This is especially true for multi-task learning (MTL), where
tasks are distributed across different users.

Data heterogeneity is addressed through personalization
in federated learning (FL), in which the parameter server
and clients train a common base model, and each client
additionally trains a small header for its own specific task;
shown in Fig. 1 for the DL setting. By using personalization,
users can obtain essentially different learning models that are
better fitted to their unique data while capturing the common
knowledge distilled from other devices’ data [1]–[3].

Prior to the consideration of heterogeneity as a factor in
DL convergence, communication topologies have been entirely
characterized by their spectral gaps [4]. The choice of topol-
ogy, however, has a large impact on heterogeneous settings
as observed in [5]–[7]. In the presence of data heterogeneity,
choosing a good topology for DL is important. On one hand,
clients (tasks) may have adverse effects on each other if the
topology of the graph is chosen inappropriately. On the other
hand, having a fully connected network can result in a high
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Fig. 1. Dynamic communication graph in personalized decentralized learning
framework with a common network (shown in blue) and small personalized
headers (shown in red, green, black, orange). Users with the same-color circles
have positive correlation, and different colors mean negative correlation.

communication cost. Using a time-varying and data-aware
design of the communication network, [8], [9] investigate
how decentralized SGD performance can be improved in the
presence of data heterogeneity. They propose an algorithm to
adapt the connectivity matrix (network topology) by minimiz-
ing the relative heterogeneity in each round. However, solving
an optimization problem that finds the optimal topology in
each round results in high computational complexity.

In order to increase user performance, the topology should
be configured to connect similar tasks and to isolate unrelated
ones. To identify related tasks, we use a technique called
transference [10]. In MTL [11], transference is a metric to
quantify the positive/negative effect of a task’s gradient update
to the parameters of a shared encoder on another task’s loss
during training. In other words, transference metric of i to
j, Zij , measures the loss of task j before and after applying
the gradient update of task i on the shared network. A positive
value of Zij indicates that the update on the shared parameters
(by task i) results in a smaller loss on task j than the original
parameter values. In contrast, a negative value of transference
indicates the negative impact of tasks on each other.

To efficiently design the communication graph, we calculate
an approximate transference metric using the gradient updates
exchanged among the neighbors. Based on the approximated
transference, we dynamically adjust the connectivity matrix W
so that the positively correlated tasks are connected together
and the negatively correlated tasks are disconnected from each
other, thereby, preventing performance degradation. We gener-



ate the connectivity matrix by applying the spectral clustering
technique [12] to the approximate transference matrix. Our
experiments demonstrate that our framework is capable of
achieving better performance faster than a fully-connected
network in which all users are connected to each other.

The main contributions of our paper are as follows: 1)
We propose a novel algorithm, which dynamically changes
the network topology of the users according to their posi-
tive/negative correlations. 2) We conduct several experiments
on a synthetic Gaussian dataset and a large-scale celebrity
attributes (CelebA) dataset [13]. By deliberately designing the
covariance matrix for the synthetic Gaussian datasets, we show
that the framework can detect and cluster correlated tasks
correctly. In addition, the experiments with CelebA dataset
exhibit faster convergence and improved performance in our
framework compared to the fully-connected network.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a personalized distributed learning (PDL) set-
ting [1], [3], with N clients which are connected via a directed
graph. The network of clients aim to solve the following
optimization problem associated with an ML problem,

min
{θs,i}N

i=1,{θi}N
i=1
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where X t
i is the ith user’s data at time t, and Li(X t

i , θ
t
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i)

is the task-specific loss obtained by using X t
i as an input over

the shared network and private head of task i. Each client
contains a shared network and a private network. The shared
network parameters are represented by θts,i and the private
head parameters are represented by θti , for user i at time t.

The matrix W represents the graph topology among the
nodes: Wij > 0 means that agent i can communicate with
agent j, while Wij = 0 means that agent i cannot communi-
cate with agent j. The matrix W is a mixing matrix, which is
composed of values between 0 and 1, and is doubly stochastic,
i.e., 1TW = 1 and W1 = 1, where 1 is a vector of all ones.
Mixing property of the topology matrix W is needed to ensure
convergence of an iterative algorithm to solve problem (1).

Similar to the centralized case, the problem in (1) can be
solved through an alternating minimization approach in the
decentralized case, using decentralized SGD. First, client i
performs K1 local gradient based updates to optimize θti , while
the global network parameters at client i, i.e., θts,i, are frozen,

θt+1
i = θti − η∇θiLi(X t

i , θ
t
s,i, θ

t
i) (2)

Then, by keeping the parameters corresponding to the client-
specific head frozen, each node sends the gradient update
corresponding to the shared network to its neighbors based
on the network topology at time t and aggregates the received
updates again based on the network topology specified by the

connectivity matrix W , K2 times as follows,
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Now, the objective is to automatically capture the correla-
tions among the users and to dynamically modify the mixing
matrix W so that the positively correlated tasks are connected
and uncorrelated tasks are disconnected to prevent negative
transference. To that end, let us define the quantity θt+1

s,j|i to
represent the updated jth shared parameters after a gradient
step with respect to loss of task i,

θt+1
s,j|i = θts,j − η∇θs,jLi(X t, θts,j , θ

t
i) (4)

where Xt is a shared data that each client has for calculating
the transference value. As a result, the transference of task i
on a single task j at time t can be calculated as,

Zt
i→j = 1−

Lj(X t, θt+1
s,j|i, θ

t+1
j )

Lj(X t, θts,j , θ
t
j)

(5)

A positive value for Zt
i→j indicates that using task i loss

values to update the shared parameters would result in a lower
loss for task j. Thus, a more positive value for Zt

i→j means
more correlation among these two tasks. Conversely, having a
negative value means that learning task i and j simultaneously
would deteriorate the performance of both of the tasks.

Instead of calculating θt+1
s,j|i for each user at each time

to obtain transference, we can use its first order Taylor
series expansion to obtain transference directly from the
exchanged gradients among the clients. Let us define the
gradient update for the shared network of user i at time t
as gts,i = ∇θs,iLi(X t, θts,i, θ

t
i). Then, the first order Taylor

series expansion for the transference can be written as,
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Therefore, instead of calculating θt+1
s,j|i in each round to

obtain Zt
i→j value, users can exchange their gradient updates

obtained via the shared data Xt to more efficiently compute
Zt
i→j . After calculating Zt ∈ RN×N matrix, we must convert

it to a doubly stochastic mixing matrix W t to ensure the
convergence of the algorithm. We convert Zt to a doubly
stochastic matrix by clustering the Zt matrix.

We use the spectral clustering technique [12] to perform
clustering over a communication graph expressed by matrix
Zt. In spectral clustering, we use the eigenvalues of the graph
Laplacian to find the appropriate clusters. To calculate the
graph Laplacian, let us define matrix D as the degree matrix,
which is a diagonal matrix where the (i, i)th entry indicates the
degree of node i (the number of edges connected to node i).



Then, the graph Laplacian can be calculated as L = D−Z. In
the graph Laplacian matrix, diagonal entries are the degrees
of the nodes, and off-diagonal entries are the negative edge
weights. Finally, we calculate the eigenvalues of the graph
Laplacian matrix L.

By sorting the eigenvalues, we see that the number of 0
eigenvalues corresponds to the number of connected compo-
nents in the graph. Also, an eigenvalue with a small value,
e.g., eig(L) ≤ 1, indicates that there is almost a separation of
the two components. Therefore, we can determine the number
of clusters by calculating the number of graph Laplacian
eigenvalues which have values less than 1. The vectors as-
sociated with those eigenvalues contain information as to how
to segment the network. Finally, we perform k-means on those
vectors in order to obtain the labels for the nodes. The spectral
clustering algorithm is given in Algorithm 1.

Algorithm 1 Unnormalized spectral clustering [12]
1: Input: Similarity matrix Z, number k of clusters to

construct.
2: Compute the unnormalized Laplacian L.
3: Compute the first k eigenvectors u1, . . . , uk of L.
4: Let U ∈ Rn×k be the matrix containing the vectors

u1, . . . , uk as columns.
5: For i = 1, . . . , n, let yi ∈ Rk be the vector corresponding

to the ith row of U .
6: Cluster the points {yi}i=1,...,n in Rk with the k-means

algorithm into clusters C1, . . . , Ck.
7: Output: Clusters A1, . . . , Ak with Ai = {j|yj ∈ Ci}.

Let Dl be the number of nodes in cluster Al for l ∈ 1, . . . , k.
Then, W t can be calculated as,

W t(i, j) =

{
1
dl
, if i, j ∈ Al

0, otherwise
(9)

This method ensures that W t remains doubly-stochastic. To
prevent error due to the tolerance of calculating transference,
the Zt matrix is averaged over each H epochs and then W t

is calculated by using spectral clustering.
Finally, in each training step, we perform a decentralized

SGD step to exchange and update the shared network across
users connected via an edge in the derived topology at time t,
W t. The overall algorithm is summarized in Algorithm 2.

III. CONVERGENCE ANALYSIS

Our convergence analysis follows [14], [15]. We assume
that each worker’s objective function fi : Rd+di → R for all
i is L-smooth and µ-strongly convex and that the variance on
each worker is bounded. We also assume that the connectivity
matrix (mixing matrix) is doubly-stochastic. Therefore, the
convergence analysis follows from [14, Thm. 4]. Further, [15]
uses much weaker assumptions to prove convergence.

Algorithm 2 Training with our proposed algorithm
1: Input: step sizes η, initialization θs, {θi|i ∈ N}, H , K2.
2: for t = 1, . . . , T do
3: for each i ∈ N (in parallel) do
4: Compute task-loss Li(X t

i , θ
t
s,i, θ

t
i)

5: θt+1
i ← θti − η∇θiLi(X t

i , θ
t
s,i, θ

t
i)

6: end for
7: for each i, j ∈ N (in parallel) do
8: Calculating Zt

i→j using (6)
9: end for

10: Calculating mixing matrix V t from Zt using (9)
11: W t

temp = W t
temp + V t

12: if t = H then
13: W t = W t

temp/H
14: Wtemp = 0
15: end if
16: for k= 1, . . . , K2 do
17: for each i ∈ N (in parallel) do
18: θ

t+ 1
2

s,i ← θts,i − η∇θsLi(X t
i , θ

t
s,i, θ

t
i)

19: θt+1
s,i ←

∑N
j=1 W

t
ijθ

t+ 1
2

s,j

20: end for
21: end for
22: end for

IV. EXPERIMENTAL RESULTS

We compare the task losses achieved by naive fully con-
nected network and our proposed dynamic communication
graph algorithm.

A. Dataset Specifications

We use the following two datasets for our experiments:
Synthetic Gaussian vector dataset that contains 30,000

training data, 10,000 test data, and 10,000 shared data. Each
data point in this dataset is a Gaussian vector of size 10,
i.e., xi ∈ R10, with mean of µ ∈ R10 and covariance
of Σ ∈ R10×10. Same as Fig. 1, the covariance matrix is
purposefully designed in such a way that the first and fourth
coordinates are positively correlated, and they are negatively
correlated with the second and third coordinates. Conversely,
the second and third coordinates have a positive correlation,
while they both have negative correlations with the first and
forth tasks. We consider four attributes for each sample in
our experiments. The first four coordinates with purposefully
assigned correlations are selected as those four attributes.
For each sample, the attributes are 1 if the corresponding
coordinate is greater than the assigned mean and 0 otherwise.
This synthetic dataset is designed to test the effectiveness of
our proposed algorithm to connect the tasks who have positive
correlation among themselves and disconnect those who have
negative correlations. The training data points are distributed
among clients, but each client has access only to one of the
attributes (coordinates).

CelebA dataset [13] that contains 200,000 images, where
each image contains 40 attributes. In our experiment, we



Fig. 2. An expected communication graph (correlation) among the chosen
attributes from CelebA dataset.

only use 6 of the attributes, namely, male, mustache, high-
cheekbones, smiling, heavy-makeup, and wearing lipsticks.
Therefore, the dataset is divided into 6 parts, and each user
has access to a single attribute of the given images. The
chosen attributes and the expected correlation among attributes
is shown in Fig. 2.

B. Hyperparameters and Model Specifications

We use Adam optimizer with learning rate η = 2×10−5 to
train the shared and personalized networks for both datasets.
In the synthetic Gaussian dataset, we use a shared encoder
as explained in Table I, and each client also has a simple
linear layer as a personalized network that maps the shared
network’s output to the corresponding prediction value. We
use cross-entropy as a loss function for the classification task.

SHARED NETWORK

FC(10, 64)
FC(64, 128)

FC(128, 256)
FC(256, 512)
FC(512, 256)
FC(256, 128)

TABLE I
SHARED NETWORK MODEL.

In CelebA dataset, we use resnet-18 as a shared network
for all the users, and a simple 2-layer network for each user
to map the output of the shared network to the corresponding
classification task. In both experiments, we perform K2 = 2
decentralized-SGD protocols in each epoch. Also, we average
the transference metric through 5 epochs before modifying the
connectivity matrix, i.e., H = 5.

C. Results and Analysis

We begin with the synthetic dataset. As shown in Fig. 3,
by capturing the true correlation among users with the trans-
ference method at epoch 15, the connectivity matrix clusters
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Fig. 3. Comparison of task losses achieved via dynamic communication graph
using transference and naive fully-connected case for synthetic dataset.

users properly based on their correlation, which results in
improved performance as compared to the case where all users
are connected regardless of their correlation to the other tasks.
For tasks 2-4, our proposed method converges approximately
at epoch 30, while the naive fully-connected method converges
at epoch 60. A faster convergence is more evident in task 1
where our method converges after 45 epochs, while a naive
fully-connected network does not converge satisfactorily even
after 80 epochs.

The heatmap of the dynamic topology is shown in Fig. 4.
According to our proposed method, the connectivity matrix
initially starts with a fully-connected network, and the topol-
ogy changes every five epochs based on the calculated trans-
ference. In epoch 15, the topology finally captures the correct
transference as purposefully designed as in Fig. 1. Ultimately,
the weights are uniformly distributed among tasks 1, 4 and
tasks 2, 3 that have positive correlations between them.

Next we examine the proposed method on a larger and
more realistic dataset, CelebA. As shown in Fig. 5, the results
demonstrate the superiority of our method compared to a
naive fully-connected network. As part of this experiment,
we stopped changing the connectivity matrix at epoch 21 to
observe the effect of changing the topology on the initial
training phase compared with the whole training process.
Our results indicate that the training speed increases when
the topology is not modified after sufficiently capturing the
correlation of tasks during the initial training phase. Therefore,
changing the topology until the end of the training may
result in drifting from the optimal performance and slower
convergence. However, in the majority of our experiments,
our proposed method converged faster in both early stopping
and permanent topology change cases.
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Fig. 4. Heatmap of the connectivity matrix achieved by the transference
method over different epochs, (a) epoch 1, (b) epoch 6, (c) epoch 11, (d)
epoch 16.

As shown in Fig. 5, as a result of our proposed method, the
loss of task 1 drops with a higher slope after epoch 20, while
further topology change can reduce the slope of dropping
losses due to the sudden changes that may occur in the
topology of the graph. Hence, our method with early stop-
ping topology change converges at approximately epoch 40,
while the transference method with a permanent topology
change converges at epoch 50, and the naive fully-connected
network does not converge satisfactorily even at epoch 50.
The second task (learning mustache) converges quickly even
from the very first epochs since it is a simple task to learn.
Nevertheless, after around epoch 40, when the other correlated
task converges appropriately, the loss decreases due to the
changed communication topology. As a result of our proposed
method, we have observed that task 3-6 have converged faster
at around epoch 10, while the losses for the fully-connected
tasks have started to decline much more slowly. The permanent
modification of the topology matrix, however, may result in
sudden divergence from the convergence and may delay the
pace of convergence.
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