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Abstract— We study the version age of information in a multi-
hop multi-cast cache-enabled network, where updates at the
source are marked with incrementing version numbers, and the
inter-update times on the links are not necessarily exponentially
distributed. We focus on the set of non-arithmetic distributions,
which includes continuous probability distributions as a subset,
with finite first and second moments for inter-update times. We
first characterize the instantaneous version age of information
at each node for an arbitrary network. We then explicate the
recursive equations for instantaneous version age of information
in multi-hop networks and employ semi-martingale represen-
tation of renewal processes to derive closed form expressions
for the expected version age of information at an end user. We
show that the expected age in a multi-hop network exhibits an
additive structure. Further, we show that the expected age at
each user is proportional to the variance of inter-update times
at all links between a user and the source. Thus, end user nodes
should request packet updates at constant intervals.

I. INTRODUCTION

We consider a cache-enabled network consisting of a
source node, server nodes and user nodes in a tree topology,
with source as the root node and users as leaf nodes, as
shown in Fig. 1. This type of topology is exhibited in
multi-cast networks, where each server serves multiple base
stations, such as in a communication infrastructure linking
the cloud, macro base stations, small-cell base stations, and
end-users. The source gets updated according to an ordinary
renewal process and uses a logical clock to mark the updates
with an incrementing numeric value, which we refer to as
the version number of the update packet. The user nodes
attempt to retrieve the latest possible version update from the
source through a sequence of cache-aided server nodes, such
that updates on all links are forwarded according to ordinary
renewal processes that are not necessarily Poisson processes.
In this setting, version age of information is the natural
choice of metric to quantify the freshness of information
at the user nodes. At time t, if Wi(t) is the latest version
of a file available at node i and W0(t) is the current version
prevailing at the source, then the instantaneous version age
at node i at time t is defined as Xi(t) = W0(t)−Wi(t).

Since the exponential distribution (or geometric distribu-
tion) is the only continuous (or discrete) probability distri-
bution with memoryless property, most prior works studying
timely information dissemination in networks heavily rely
on these distributions [1]–[20]. In this work, we focus on
timely updating based on non-Poisson renewal processes in
multi-hop networks, and in this respect, the related works
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Fig. 1. Multi-hop multi-cast tree network with version updates at source.

are [21] and [22]. For multi-hop networks operating under
ordinary renewal processes, [21] derived analytical expres-
sion for traditional age of information while [22] derived the
distribution of traditional age of information for the case of
strictly stationary age processes; see [22, Section V].

There are significant differences in the analysis of version
age of information (in this paper) from traditional age of
information, by virtue of the additional renewal point process
at the source superimposed on other renewal processes. This
is because traditional age of information increases at unit
rate, does not account for update process at the source, and
consequently can be fully described at a node in terms of the
time since the last update from the immediate server node
and the age at the server node. On the other hand, version
age of information is a discrete metric that gets incremented
in steps of one whenever the source gets updated to a newer
version, and involves counting of renewals at the source
between update arrivals from the immediate server node.

Consider the single-hop network of Fig. 2, where a user
downloads packets from the source according to an ordinary
renewal point process with inter-update times as i.i.d. random
variables, denoted by typical random variable Y with non-
arithmetic distribution F . In this respect, a distribution F is
called arithmetic (or periodic) if it is piecewise constant and
its points of increase are contained in a set {0, d, 2d, . . .} with
the largest such d > 0 being the span of such distribution.
When F is not arithmetic, it is called non-arithmetic, e.g., a
distribution with a continuous part [23].

In Fig. 2, first consider the simpler case when the source
(node 0) gets updated according to a Poisson process with
rate λs. In this case, the instantaneous version age X(t) at
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Fig. 2. One-hop model, where the sources gets updates according to a
Poisson process with rate λs and updates arrive at node 1 according to a
renewal process with typical inter-renewal period Y .

time t at node 1 is determined by the number of renewals
at the source since node 1 last downloaded a packet from
the source. In Fig. 2, Y represents a typical inter-renewal
interval between two consecutive downloads at node 1, and
Zj correspond to the inter-renewal interval j between two
updates at the source in interval Y , with Z1 denoting the
time between a download at node 1 and the first update at the
source since the download. Due to the memoryless property
of Poisson process, Z1 is exponentially distributed, like other
Zjs. Hence, X(t) at any time t within the particular inter-
renewal interval Y will only depend on the location of t
in Y and random variables Zjs local to Y , consequently,
X(t) qualifies as a renewal reward process. We define A to
be the accumulated reward in the inter-renewal interval Y ,
which corresponds to the area of the shaded region in Fig. 2.
We assume in this work that inter-renewal distributions of
all renewal processes have finite first and second moments.
Therefore, E[Y ] < ∞ and E[Y 2] < ∞, and with probability
1, we have from [24]

lim
t→∞

E[X(t)] =
E[A]

E[Y ]
=

λsE[Y 2]

2E[Y ]
(1)

where the shaded area A in Fig. 2 can be computed as in
[7]. However, when the source gets updated according to
a general renewal process, as in Fig. 3, in the absence of
memoryless property of inter-update times, the distribution of
Z1 depends on the last source update instant in the previous
inter-renewal interval, which prevents us from characterizing
version age in the interval Y independently of the past.

Further, if we added a second node to this model, this
results in the two-hop model of Fig. 4, where updates arrive
at node k from node k − 1 at times T

(k−1,k)
i according to

renewal process k. If we consider a typical inter-renewal
interval [T

(0,1)
i , T

(0,1)
i+1 ], then in the absence of memoryless

inter-update times, the distribution of packet arrival instant
at node 2 in this interval is dependent on when the last
packet arrived at node 2 in previous inter-renewal intervals,
which prevents us from characterizing the age process in this
interval independently of the past. Similarly, if we were to
consider an inter-renewal interval [T

(1,2)
j , T

(1,2)
j+1 ], then the

user age at the beginning of this interval depends on the last
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Fig. 3. Superposition of renewal processes, N(0,0)(t) and N(0,1)(t), in
the one-hop model.

packet arrival instant at node 1 in prior intervals. Therefore,
the age evolutions in different time intervals are correlated
throughout the timeline, and an interesting question to ask
here is, whether it is possible to somehow characterize the
ensemble average of age at the end user for a large t.

In this paper, we first attempt to characterize version age of
information in cache-updating systems for ordinary renewal
processes. Though getting expressions for the long-term
expected version age proves difficult for general networks,
we provide a closed form expression for the expected version
age in multi-cast networks which exhibit a tree topology as
shown in Fig. 1. To do so, we employ a pre-limit refine-
ment of Blackwell’s theorem [25] using a semi-martingale
representation of a renewal process N(t), because the classic
Blackwell’s result, limt→∞ E[N(t+a)−N(t)] = a

E[Y ] , only
provides expected number of renewals for process N(t) in a
constant time interval a, which proves insufficient for version
age analysis in this work.

We show that the expected version age in a multi-hop
network exhibits an additive structure. Further, we show that
the expected version age at each user is proportional to the
variance-to-mean ratio of the inter-update times at all links
between a user and the source, and is inversely proportional
to the mean of the inter-update times of renewal update
process at the source. This implies that for a given average
update rate, end users should request packet updates at con-
stant intervals from their immediate servers to minimize their
long-term expected version age of information, independent
of the dynamics of the network.

II. MODEL AND NOTATIONS

The source receives version updates according to a renewal
process N (0,0)(t) and packets from node i arrive at node j
on link (i, j) according to a renewal process N (i,j)(t) . The
corresponding finite random times 0 ≤ T

(i,j)
1 ≤ T

(i,j)
2 ≤ . . .

denote the renewal times, such that the inter-arrival times
Y

(i,j)
n = T

(i,j)
n − T

(i,j)
n−1 are positive i.i.d. random variables

with common distribution F i,j , which is assumed to be
non-arithmetic with finite first and second moments. Given
N (i,j)(t) = max{n : T

(i,j)
n ≤ t}, the regenerative process

A(i,j)(t) = t−T
(i,j)

N(i,j)(t)
denotes the corresponding backward

recurrence time (or age of renewal process) at time t, which
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Fig. 4. Superposition of source renewal process N(0,0)(t) on the two
renewal processes, N(0,1)(t) and N(0,1)(t) in the two-hop model.

is the time since the last renewal prior to t. Likewise, the
regenerative process B(i,j)(t) = T

(i,j)

N(i,j)(t)+1
− t denotes the

corresponding forward recurrence time (or residual renewal
time of renewal process) at time t, which is the time to the
next renewal after t. Note that 0 ≤ A(i,j)(t) ≤ t (to be
repeatedly used later). For more details, see [23], [24].

Consider a typical node j in an arbitrary network of nodes
and let Sj denote the set of nodes from which packets arrive
at node j. The most recent packet from node i ∈ Sj arrives at
node j before time t at time instant t−A(i,j)(t) = T

(i,j)

N(i,j)(t)
,

at which point, node j compares the version number of the
arriving packet with the packet present at its cache, and
discards the staler version in favor of the fresher version.

Let Xj(t) denote the instantaneous version age of infor-
mation at node j at time t. Then, Xj(t) can be written as

Xj(t) =
∑
i∈Sj

[ ∏
k∈Sj\{i}

χ{A(i,j)(t)<A(k,j)(t)}

]
×
[
min

{
Xi(t−A(i,j)(t)), Xj(t−A(i,j)(t)

}
+N (0,0)(t)−N (0,0)(t−A(i,j)(t))

]
(2)

where χA represents the indicator random variable for the
measurable set A and Xj(0) = 0. Since the source always
has the latest packet, X0(t) = 0 at all times.1

In (2),
∏

k∈Sj\{i} χ{A(i,j)(t)<A(k,j)(t)} corresponds to the
scenario when the last packet that arrived at node j before
time t came from node i, which would be the case when
the backward recurrence times of all other relevant renewal
processes at time t are larger than A(i,j)(t). The last term
N (0,0)(t)−N (0,0)(t−A(i,j)(t)) in (2) comes from the fact
that version age at node j increments by one every time the
source gets updated post the last packet arrival at t−A(i,j).

1(2) holds true for the case where the distributions of inter-update times
do not have atom points. When the distributions have atom points, packets
from different nodes might arrive at node j at the same time with non-zero
probability. This situation can be remedied by choosing a priority order for
different incoming links, which would change some of the “<” to “≤” in
the indicator variable in (2).

In the next step, min{Xi(t−A(i,j)(t)), Xj(t−A(i,j)(t)},
which is a minimum over two age processes, can be
further characterized in a manner similar to (2) by ac-
counting for arrivals at nodes {i, j} from the set Si ∪
Sj , and the corresponding expression will have terms of
the form that involve taking a minimum over three age
processes, for example min{Xi(t

′), Xj(t
′), Xk(t

′)} with
t′ = t − A(i,j)(t) − A(k,j)(t − A(i,j)(t)). By recursively
repeating this process we finally encounter the expression
min{X1(t

′′), X2(t
′′), . . . , Xn(t

′′)}, t′′ = t − ∆(t), where
∆(t) represents a stochastic process whose exact expression
depends on the network topology. Since the source node
is the only node external to the set of n nodes, the last
min expression can be completely defined in terms of the
backward recurrence times of the form A(0,ℓ)(t′′′) for all ℓ
with 0 ∈ Sℓ. This recursive approach will become more clear
for multi-cast networks in Section III.

On first glance, this might give an impression that since
all renewal processes and their associated recurrence times
are independent processes, by reducing Xj(t) to a function
composed purely of backward recurrence times, one could
conveniently compute the expectation of Xj(t). However,
note that, in the first and second steps of the recursion above,
we encountered the term A(k,j)(t) in the product of indicator
variables in (2), and the term A(k,j)(t − A(i,j)(t)) in the
definition of t′. Though both terms correspond to the same
renewal process N (k,j)(t), these backward recurrence times
could be correlated through time which complicates analysis.

However, this complication does not arise if we assume
that each node in the network has only one incoming link,
as shown in the tree network of Fig. 1. This is because,
|Sj | = 1, and the product term in (2) vanishes. Additionally,
since packets now arrive at node j from a single preceding
node i, Xi(t) ≤ Xj(t) for all t, this simplifies the min term
as follows

min
{
Xi(t−A(i,j)(t)), Xj(t−A(i,j)(t))

}
= Xi(t−A(i,j)(t))

(3)

In the next section, we derive a closed form expression
for the long-term expected version age limt→∞ E[Xj(t)] at
each node j in networks that have a tree topology.

III. AGE IN NETWORKS WITH TREE STRUCTURE

To facilitate the exposition of the derivation of version age
in general tree networks, we begin by examining the special
cases of a one-hop and two-hop networks, which serve to
motivate the necessity of certain lemmas proved later.

A. One-Hop Network

We consider a single-hop network, where the source gets
updated according to a renewal process that is not necessarily
Poisson; see Fig. 3. At time t, the last packet arrival at
node 1 from node 0 happens at time t−A(0,1)(t), therefore,
the instantaneous version age at node 1 depends on the
number of version updates at the source in the interval



(t−A(0,1)(t), t], thus giving

X1(t) = N (0,0)(t)−N (0,0)(t−A(0,1)(t)) +X0(t−A(0,1)(t))
(4)

Lemma 1 Given independent stochastic processes S1(t)
and S2(t) with supt≥0 |E[S1(t)]| < ∞ and 0 ≤ S2(t) ≤ t,
such that, limt→∞ E[S1(t)] and limt→∞ E[S2(t)] exist, we
have

lim
t→∞

E[S1(t− S2(t))] = lim
t→∞

E[S1(t)] (5)

Lemma 1 is first presented and proved in [21].

Lemma 2 Let N(t) be a renewal process with i.i.d. inter-
renewal times, denoted by typical random variable Y , with
non-arithmetic distribution and finite first and second mo-
ments. Let S(t) be a stochastic process that is independent
of N(t), such that, 0 ≤ S(t) ≤ t and limt→∞ E[S(t)] exists.
Then,

lim
t→∞

E[N(t)−N(t− S(t))] =
limt→∞ E[S(t)]

E[Y ]
(6)

Proof: Taking µ = E[Y ], [25] provides the following semi-
martingale representation for a renewal process N(t),

N(t) =
t+B(t)

µ
+M(t) (7)

where B(t) is the forward recurrence time associated with
the renewal process N(t) and M(t) = N(t)+1− TN(t)+1

µ is
a martingale. Let m(t) = E[N(t)] and b(t) = E[B(t)], then
since E[Y ] < ∞ and E[Y 2] < ∞, renewal reward theorem
[24] gives limt→∞ b(t) = E[Y 2]

2E[Y ] = b1. This implies that there
exists T , such that, for all t ≥ T , b(t) < b1 + ϵ, for some
ϵ > 0. Further, for any t < T , B(t) ≤ (T − t) + B(T ) ≤
T + b1 + ϵ, in the worst case, no renewal occurs in the time
interval (t, T ) which leads to B(t) = (T−t)+B(T ). Hence,

sup
t≥0

|b(t)| ≤ T + b1 + ϵ < ∞ (8)

Using the fact that E[M(t)] = E[M(0)] = 0 for all t (see
Wald identity, [24]) since M(t) is a martingale, we get

E[N(t)−N(t− S(t))]

= E
[
t+B(t)

µ
− t− S(t) +B(t− S(t))

µ

]
(9)

= E
[
S(t) +B(t)−B(t− S(t))

µ

]
(10)

Taking limit t → ∞ on both sides and using Lemma 1 with
S1(t) = B(t) and S2(t) = S(t) gives the desired result. ■

Coming back to computing lim→∞ E[X1(t)] in Fig. 3,
using (4) and Lemma 2 along with X0(t − A(0,1)(t)) = 0,
we have

lim
t→∞

E[X1(t)] =
limt→∞ E[A(0,1)(t)]

E[Y (0,0)]
(11)

=
E[
(
Y (0,1)

)2
]

2E[Y (0,0)]E[Y (0,1)]
(12)

Note that if both the processes in Fig. 3 are Poisson, then
the expected version age at the user node is known to be λs

λ
[7], [12]. Therefore, it is interesting to note that λs here is
the proxy for 1

E[Y (0,0)]
, while λ is the proxy for 2E[Y (0,1)]

E[(Y (0,1))
2
]
.

B. Two-Hop Network

Consider the two-hop network in Fig. 4 where we wish to
determine the long-term expected age at node 2. Then, the
instantaneous version age X2(t) can be written as

X2(t) =N (0,0)(t)−N (0,0)(t−A(1,2)(t))

+X1(t−A(1,2)(t)) (13)

where X1(t−A(1,2)(t)) in turn can be expressed as

X1(t−A(1,2)(t))

=N (0,0)(t−A(1,2)(t))

−N (0,0)(t−A(1,2)(t)−A(0,1)(t−A(1,2)(t)))

+X0(t−A(1,2)(t)−A(0,1)(t−A(1,2)(t))) (14)

Let us define

∆1(t) = A(1,2)(t) (15)

∆2(t) = A(0,1)(t−A(1,2)(t)) (16)

Substituting (14), (15) and (16) in (13) and using X0(t −
∆1(t)−∆2(t)) = 0, we get

X2(t) =N (0,0)(t)−N (0,0)(t−∆1(t)) +N (0,0)(t−∆1(t))

−N (0,0)(t−∆1(t)−∆2(t)) (17)

=N (0,0)(t)−N (0,0)(t−∆1(t)−∆2(t)) (18)

To compute the expectation in (18), limt→∞ E[X2(t)], we
use Lemma 2, which requires computing the terms E[∆1(t)]
and E[∆2(t)] at t → ∞. The backward recurrence time
A(1,2)(t) has the following limiting expectation [24]

lim
t→∞

E[∆1(t)] = lim
t→∞

E[A(1,2)(t)] =
E
[(
Y (1,2)

)2]
2E

[
Y (1,2)

] (19)

Likewise, we have

lim
t→∞

E[A(0,1)(t)] =
E
[(
Y (0,1)

)2]
2E

[
Y (0,1)

] (20)

Since the limit limt→∞ E[A(0,1)(t)] exists, there exists T
such that for all t > T , E[A(0,1)(t)] < limt→∞ E[A(0,1)(t)]+
ϵ for some ϵ > 0. Further, since 0 ≤ A(0,1)(t) ≤ t by
definition, we have E[A(0,1)(t)] < T for t ≤ T . Hence,

sup
t≥0

∣∣∣E[A(0,1)(t)]
∣∣∣ ≤ max

{
lim
t→∞

E[A(0,1)(t)] + ϵ, T
}
< ∞

(21)

Hence, by Lemma 1,

lim
t→∞

E[∆2(t)] = lim
t→∞

E[A(0,1)(t)] =
E
[(
Y (0,1)

)2]
2E

[
Y (0,1)

] (22)

Since 0 ≤ ∆1(t)+∆2(t) ≤ t and limt→∞ E[∆1(t)+∆2(t)]



exists, by Lemma 2 the long-term expected age at node 2 is

lim
t→∞

E[X2(t)] =
limt→∞ E[∆1(t) + ∆2(t)]

E[Y (0,0)]
(23)

=
1

E[Y (0,0)]

E
[(
Y (1,2)

)2]
2E

[
Y (1,2)

] +
E
[(
Y (0,1)

)2]
2E

[
Y (0,1)

]
 (24)

Interestingly, the age at node 2 is determined by the sum
of independent contributions of links in the path from node 0
to node 2, divided by E[Y (0,0)]. In general, for tree networks,
only the links involved in the path between the source and
an end user are critical to the age dynamics of the end user
apart from the update process at the source, and therefore,
in the next subsection, we study n-hop linear networks.

C. Multi-Hop Network

Consider the n-hop network of Fig. 5 where we wish
to determine the long-term expected age at node n of the
network. We define time segments ∆i(t), i ≥ 1 through the
following recurrence equation

∆i(t) = A(n−i,n−i+1)(t−
i−1∑
j=0

∆j(t)) (25)

with ∆0(t) = 0, see Fig. 5. Note that ∆i(t) is smaller than
t−

∑i−1
j=0 ∆j(t) by definition of A(n−i,n−i+1)(t). Similar to

(13), the instantaneous age Xn(t) at node n can be written
as

Xn(t) =N (0,0)(t)−N (0,0)(t−A(n−1,n)(t))

+Xn−1(t−A(n−1,n)(t)) (26)

This can be alternately represented as

Xn(t−∆0(t)) =N (0,0)(t)−N (0,0)(t−∆0(t)−∆1(t))

+Xn−1(t−∆0(t)−∆1(t)) (27)

In the next step, Xn−1(t − A(n−1,n)(t)) of (26) will be
again characterized in a similar manner and the full set of
equations encountered in this recursive approach is of the
form

Xn−i(t−
i∑

j=0

∆j(t)) =N (0,0)(t−
i∑

j=0

∆j(t))

−N (0,0)(t−
i+1∑
j=0

∆j(t))

+Xn−i−1(t−
i+1∑
j=0

∆j(t)) (28)

for 0 ≤ i ≤ n− 1 with X0(t−
∑n

j=1 ∆j(t)) = 0 as node 0
represents the source node. Then, it follows from (28) that

Xn(t) = N (0,0)(t)−N (0,0)(t−
n∑

j=1

∆j(t)) (29)
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0 1
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. . .
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packet arrival at
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Fig. 5. Time segments ∆i(t) for i ∈ {1, . . . , n} in n-hop model. The
points marked by red represent version updates at the source.

Similar to (19), we have

lim
t→∞

E[∆1(t)] = lim
t→∞

E[A(n−1,n)(t)] =
E
[(
Y (n−1,n)

)2]
2E

[
Y (n−1,n)

]
(30)

Further, using the approach of (21), we get
supt≥0

∣∣E[A(n−i,n−i+1)(t)]
∣∣ < ∞. Since∑i−1

j=0 ∆j(t) ≤ t, we can prove limt→∞ E[∆i(t)] =

limt→∞ E[A(n−i,n−i+1)(t)] recursively for i = 2, 3, . . . , n
from (25) using Lemma 1.

Hence, from (29), we obtain

lim
t→∞

E[Xn(t)] =

∑n
j=1 limt→∞ E[∆j(t)]

E[Y (0,0)]
(31)

=
1

E[Y (0,0)]

n∑
j=1

E
[(
Y (n−j,n−j+1)

)2]
2E

[
Y (n−j,n−j+1)

] (32)

Interestingly, the age at node n depends on independent
contributions of the intermediate links (i, i + 1), 0 ≤ i ≤
n− 1 and is invariant to the ordering of these links. Hence,
each node can minimize its age by optimizing its individual
packet request renewal process, irrespective of the statistical
properties of other nodes and links in the network. Since
the constant random variable has zero variance, for a fixed
mean E[Y (n−j,n−j+1)], (32) hints that all nodes should
request packets at near constant time intervals to reduce
variance. Further, the age at node n is inversely proportional
to E[Y (0,0)], implying the version age at nodes would be
larger for a fast updating source on average.

Further, if all renewal processes in Fig. 5 were Poisson,
with λs as the source update rate and λj as the link (n −
j, n− j+1) update rate, respectively, then (32) simplifies to

lim
t→∞

E[Xn(t)] = λs

n∑
j=1

1

λj
(33)

which also results from [12, Thm. 1] or [8, Eqn. (11)] and
has an interesting parallelism with [1, Thm. 2].

IV. NUMERICAL RESULTS

We first simulate the model in Fig. 5 for n = 3, i.e.,
a 3-hop model with links (0, 1), (1, 2) and (2, 3) following
the inter-renewal distributions: Rayleigh with scale σ = 1,
Chi-Square with degree of freedom k = 1, and Beta with
shape parameters α = 2, β = 3, respectively. We update
the source according to Pareto (Type I) distribution which
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Fig. 6. E[Xn(T )] in 3-hop network with Y (0,0) ∼ Pareto(3,m),
Y (0,1) ∼ Rayleigh(1), Y (1,2) ∼ χ2(1) and Y (2,3) ∼ Beta(2, 3),
as plotted against different values of E[Y (0,0)] obtained by varying m.
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Fig. 7. E[Xn(T )] in n-hop network with Y (i,i+1) ∼ U[0,2] and Y (0,0) ∼
Pareto(3, 1

3
).

has mean E[Y (0,0)] = am
a−1 for shape parameter a and scale

parameter m. We simulate the network for a large duration,
T = 103 and take average of Xn(T ) over 2×105 iterations to
approximate E[Xn(T )] by the law of large numbers, which
is used as a proxy for limt→∞ E[Xn(t)]. Fig. 6 shows the
plot of E[Xn(T )] as a function of E[Y (0,0)], obtained by
varying scale parameter m while keeping a = 3 in Pareto
distribution. The plot supports the theoretical prediction of
2.5479

E[Y (0,0)]
from (32).

Next, we simulate an n-hop network where update in-
tervals of all links (i, i + 1) follow uniform distribution
on the interval [0, 2], i.e., Y (i,i+1) ∼ Y ∼ U[0,2], such

that
E[Y 2]
2E[Y ] = 2

3 , and the source gets updated according to
Pareto (Type I) distribution with a = 3 and m = 1

3 , giving
E[Y (0,0)] = 0.5. We plot E[Xn(T )] as a function of n in
Fig. 7. The linearity of the graph with the number of hops
n in Fig. 7 demonstrates the additive structure of the age
at the end user as found in (32). Since all links have the
same distribution for inter-update times, the graph in Fig. 7
follows a linear equation in n as limt→∞ E[Xn(t)] =

4
3n,

as predicted by (32).
Finally, we simulate a 4-hop network, where inter-update

times on all links (i, i + 1) follow the uniform distribution
Y (i,i+1) ∼ Y ∼ U[1−

√
3v,1+

√
3v], such that E [Y ] = 1 and

V ar [Y ] = v, with Y (0,0) ∼ Pareto(3, 1
3 ), E[Y (0,0)] =

0.5. Note that for fixed mean 1, the maximum value of
v is 1

3 to ensure that the probability distribution has non-
negative support. Fig. 8 shows that for fixed mean, E[Xn(T )]
increases linearly with variance v, with limt→∞ E[Xn(t)] =
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Fig. 8. E[Xn(T )] in 4-hop network with Y (i,i+1) ∼ U[1−
√
3v,1+

√
3v]

and Y (0,0) ∼ Pareto(3, 1
3
).

1
0.5 × (4× v+1

2 ) = 4v + 4, as predicted by (32).

REFERENCES

[1] R. D. Yates. Age of information in a network of preemptive servers.
In IEEE Infocom, April 2018.

[2] C. Kam, J. P. Molnar, and S. Kompella. Age of information for queues
in tandem. In IEEE MILCOM, October 2018.

[3] R. D. Yates. Status updates through networks of parallel servers. In
IEEE ISIT, June 2018.

[4] R. Talak, S. Karaman, and E. Modiano. Minimizing age-of-
information in multi-hop wireless networks. In Allerton Conference,
October 2017.

[5] J. Selen, Y. Nazarathy, L. L. H. Andrew, and H. L. Vu. The age of
information in gossip networks. In Analytical and Stochastic Modeling
Techniques and Applications, pages 364–379. Springer Berlin, 2013.

[6] R. D. Yates, P. Ciblat, A. Yener, and M. Wigger. Age-optimal
constrained cache updating. In IEEE ISIT, June 2017.

[7] M. Bastopcu and S. Ulukus. Who should Google Scholar update more
often? In IEEE Infocom, July 2020.

[8] B. Buyukates, M. Bastopcu, and S. Ulukus. Version age of information
in clustered gossip networks. IEEE Journal on Selected Areas in
Information Theory, 3(1):85–97, March 2022.

[9] M. Bastopcu and S. Ulukus. Information freshness in cache up-
dating systems. IEEE Transactions on Wireless Communications,
20(3):1861–1874, March 2021.

[10] P. Kaswan, M. Bastopcu, and S. Ulukus. Freshness based cache
updating in parallel relay networks. In IEEE ISIT, July 2021.

[11] R. D. Yates. Timely gossip. In IEEE SPAWC, September 2021.
[12] R. D. Yates. The age of gossip in networks. In IEEE ISIT, July 2021.
[13] A. Maatouk, M. Assaad, and A. Ephremides. Analysis of an age-

dependent stochastic hybrid system. In IEEE ISIT, June 2022.
[14] P. Kaswan and S. Ulukus. Age of gossip in ring networks in the

presence of jamming attacks. In Asilomar Conference, October 2022.
[15] P. Kaswan and S. Ulukus. Susceptibility of age of gossip to timestomp-

ing. In IEEE ITW, November 2022.
[16] P. Mitra and S. Ulukus. ASUMAN: Age sense updating multiple

access in networks. In Allerton Conference, September 2022.
[17] P. Kaswan and S. Ulukus. Reliable and unreliable sources in age-based

gossiping. In IEEE ISIT, June 2023.
[18] E. Delfani and N. Pappas. Version age-optimal cached status updates

in a gossiping network with energy harvesting sensor. In IEEE WiOpt,
August 2023.

[19] M. Abd-Elmagid and H. Dhillon. Distribution of the age of gossip in
networks. Entropy, 25(2):520–535, February 2023.

[20] P. Mitra and S. Ulukus. Timely opportunistic gossiping in dense
networks. In IEEE Infocom, May 2023.

[21] P. Kaswan and S. Ulukus. Age of information with non-Poisson
updates in cache-updating networks. In IEEE ISIT, June 2023.

[22] R. D. Yates. The age of information in networks: Moments, distri-
butions, and sampling. IEEE Transactions on Information Theory,
66(9):5712–5728, September 2020.

[23] R. Serfozo. Basics of Applied Stochastic Processes. Springer, 2009.
[24] R. Gallager. Discrete Stochastic Processes. MIT OpenCourseWare,

2011.
[25] D. J. Daley and M. Miyazawa. A martingale view of Blackwell’s

renewal theorem and its extensions to a general counting process.
Journal of Applied Probability, 56(2):602–623, July 2019.


