IV. The Wei 16~-State 4-D Code

The AT&T and Codex proposals for V.fast both suggest using a
version of the 16-state 4-D code invented by L.F. Wei (L.-F. Wel,
"Trellis-Coded Modulation with Multidimensional Constellations,"
IEEE Trans. Information Theory, vol. IT-33, July 1987, pp. 327~
338). This code has a fundamental coding gain of 4.52 dB and an
effective coding gain of 4.20 dB when nearest neighbors are taken
into account. (See G.D. Forney, "Coset Codes I: Introduction and
Geometrical Classification," IEEE Trans. on Information Theory,
Vol. IT-34, Sept. 1988, pp. 1123-1151.) Its effective coding gain
is about 0.7 dB more than that of the 8-state 2-D V.32bis code and

has about the same computational decoding complexity.

A. Forming the 4-D Constellation

The 4-D constellation is formed by partitioning the translated
4-D lattice 2% + (%,%,%,%) into 8 translated 4-D cosets. The 4-D
points are transmitted by seguentially sending a pair of 2-D
symbols using QAM modulation. The partitioning is performed in two
steps. First, the 2-D constellation 22 + (%,%) is partitioned into
the four subsets A, B, C, and D shown in Fig. IV-1. A - (%,%) is
the 2-D lattice 222 and B, C, and D correspond to 2-D cosets of 23272
in 2°. Notice that the minimum squared distance between points

within a 2-D subset is 4. Under 90° clockwise rotations A - C - B

- D - A. Wei uses the binary 1labels (21, 2Z0) shown in the
following table for these subsets.
SUBSET ] 21 Z0
A ’l 0 0
. | o | -
= | * | o
D " 1 1

Table IV-1. 2-D Subset Labels
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Fig. IV-1. Partitioning of the 2-D Constellation into 4 Cosets

Next, pairs of 2-D subsets are combined to form 4-D subsets.

There are 4x4 = 16 possible pairs of 2-D subsets: (A,A), (A,B),
..., (D,D). Wei calls each pair a 4-D type. The 4-D types corre-
spond to cosets of the 4-D lattice 224 = (A,2) - (%,%,%,%) in z4.

He then groups pairs of 4-D types to form the 4-D subsets shown in

Table IV-2. The column labels YO I1,, I2,’, and I3,/ in the table

n’
refer to signals in the 4-D convolutional encoder shown in Fig. IV-
3.

The minimum squared Euclidean distance between points within
a 4-D type 1is 4, the same as for the 2-D subsets. For example,
consider the type (A,A). Two minimum distance 4-D points within a
type can be formed by taking minimum distance A points for the

first baud and the same A point for the second baud or vice versa.
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4D Rotation Rotation
Sub- Group in Group 4D
set YO, 11, I2.° I3,’ TYPE 20, 21, 20,41 21,
0 0 0 0 0 (A,A) 0 0 0 0
0 0 0 1 (B, B) 0 1 0 1
1| o o] 1 o lweo 1 o 1 o
0 0 1 1 (D,D) 1 1 1 1
2 0 1 0 0 (A,B) 0 0 0 1
0 1 0 1 (B,A) 0 1 0 0
R o 1] 1 o |@m 1 o 1 1
0 1 1 1 (D, C) 1 1 1 0
4 1 0 0 0 (A,C) 0 0 1 0
1 0 0 1 (B, D) 0 1 1 1
s | 1 o | 1 o |@m 1 o o 1
1 0 1 1 (D,A) 1 1 0 0
6 1 1 0 0 (A,D) 0 0 1 1
1 1 0 1 (B, C) 0 1 1 0
N L 1 |1 o |em 1 o o o7
1 1 1 1 (D, B) 1 1 0 1

Table IV-2.

Partitioning of the 4-D Rectangular Lattice

The minimum squared Euclidean distance between points in a 4-D

subset is also 4.

the types (A,A) and (B,B).

For example, consider subset 0 which consists of

A minimum distance point can be formed

by selecting two closest A and B points for the 1st baud and two
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closest A and B points for the second baud.. The sguared distance
between closest A and B points is 2 so the minimum squared distance
between (A,A) and (B,B) is 2+2=4 which is the same as the minimum
squared distance in (A,A) and (B,B).

The 4-D points have been partitioned into four rotation groups
which are specified by the bit pair (v0,,I1,). 90° rotations leave
4-D points in the same rotation group. For example, in rotation
group (0,0), (A,A)-(C,C)~(B,B)~(D,D)=(A,A) under 90° clockwise
rotations. The elements of each rotation group are listed in the
same rotational order in Table IV-2. The rotation relative to the
first element listed in each rotation group is specified by the bit
pair (I3,’,I2,’) and is given in Table IV-3. These rotational
properties are part of the reason the 4-D code is transparent to

90° rotations.

(I3,7,12,") Clockwise Rotation
(0,0) 0°
(0,1) 90°
(1,0) 180°
(1,1) 270°

Table IV-3. Clockwise Rotation Relative to First Element
of Rotation Group

The partitioning of the 4-D constellation can be displayed as
an Ungerboeck type cf partition tree. This tree is shown in Fig.
IV-2. Notice that the minimum squared Euclidean distance within
the subsets at the different levels either stays the same or
increases from the top to the bottom of the tree. Wei’s partition-
ing is not quite a linear lattice theoretic one. The 4-D types
that make up the translated lattice A, = 2% + (%,%) can be

represented by the formula
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Ay = (A,A) + I3,7(1111) + I2,7(0101) + I1,(0011)
+ Y0,(0001) + YO0, -I2.’(0011) (IV-1)
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Fig. IV-2. Wei’s Partition Tree for the 4-D Lattice

The lattice at level 0 is a translate of the 4-D integer
lattice z%. The lattice at level 1 is designated by D, and is
called the Schlidfli lattice. It is the densest 4-D lattice. This
lattice consists of the set of integer 4—tuples with even squared
norm. (The squared norm is the sum of the squares of the compo-
nents.) Since the square of an odd number is odd, an equivalent
definition of D, is the set of integer 4-tuples with an even number
of odd components, that is, 0, 2, or 4 odd components. The minimum
squared Euclidean distance in D, is d12 = 2.

The subset of D, with 0 odd components or, equivalently, all

even components is just the lattice 22% which is a translate of
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the 4-D type (A,A) and its coset representative in the partition
z%/22% is (0000).

There are (;)=6 subsets of D, with two odd components and one

subset with 4 odd components. They are all cosets of 22% and have

the coset representatives shown in Table IV-4 along with the

corresponding 4-D types.

Coset Representative 4-D Type
0000 (A,R)
1100 (B,A)
1010 (D,D)
1001 (D,C)
0110 (¢,D)
0101 (c,C)
0011 (A,B)
1111 (B,B)

Table IV-4. Coset Representatives for D4/222

The coset representatives in Table IV-4 are the 8 even weight
binary 4-tuples. The sum of even weight N-tuples 1s also an even
weight N-tuple. Therefore, the union of the 8 cosets of 22% formed
from these represertatives must form a lattice which we have
designated by D,. The remaining eight cosets of 2z% in 2% formed
from the representatives which are the 8 odd weight 4-tuples
correspond to the 8 4-D types not listed in Table IV-4 and their
union is the coset D, + (0001) of D,.

The number of nearest neighbors to any point in D, is 24.

This is because nearest neigbors to a point are formed by adding
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the 6 coset representatives with two 1’s in Table IV-4 and their

sign permutations to the point.
Since D, u [Dy + (0001)] includes the 16 cosets of 22% in 24,

Z4/D4 is a lattice partition of order 2. Thus the fundamental
volume of D, is V(D,) = 2 V(z%) = 2. The points in the lattice
RZ% = [Rzz,Rzz] all have even squared norm, SO Rz% is a sublattice
of D, and we have the lattice partition chain Z4/D4/RZ4. Since
|z%/R2%| = 4 and |2%/D,| = 2, it follows that [D,/Rz*| = 2.
Applying the R operator to the three lattice chain two lines above
gives the further partition chain

z%/D,/R2%/RD, /22"
with minimum squared Euclidean distances

1/2/2/4/4
which is exactly the chain shown in Fig. IV-2.

Remember that the fundamental coding gain for an N-dimensional

lattice was defined as

dZ
(A) = ——— (IV-2)
Y VZ/N(A)
Therefore
y(D)=—2_=/2=1.52 dB (IV-3)

B. The 4-D Trellis Encoder

A block diagram for Wei’s 16-state 4-D trellis encoder is
shown in Fig. IV-3. Every 2 bauds, the encoder accepts L = 3 + n,
data bits where n, is the number of uncoded data bits. Two of the
coded bits I2 and I3, are differentially encoded resulting in the

pair I2_’ and I3,’ according to the rule
(13}, 12}) =(13}.,.12).,)+(I3,,1I2,) mod 4 (IV-4)

where the bit pairs in parentheses are considered to be 2-bit
positive binary numbers with the most significant bit on the left.

The decoder contains a complementary differential decoder with the
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Fig. IV-3. The Encoder for Wei’s 4-D, 16-State Code
rule
(13,,I2,)=(I3),12},)-(I3,,12;,) mod 4 (IV-5)

The two bits I1, and I2,’ enter the (3,2) convolutional encoder at
the bottom of the figure resulting in the parity check symbol YO,.
The D? blocks represent 2-baud delays. The bit pair (YO0,,Il;)
selects a rotation group as specified in Table IV-2 and (I2,',I3,")
selects a rotation within the group. The result of these two
operations is the selection of a 4-D type. These two operations
can be simultaneously performed by a simple table look-up based on
Table IV-2. The remaining uncoded bits select a specific 4-D point
within the 4-D type. This selection can be performed in a variety
of ways and has little effect on the coding gain.

The trellis for this convolutional code is described by Table
IV-5. The entries in the table are (W1l_,,,W2_,,,W3_,,,W4,,,) which
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is the next encoder state. Notice that Y0, = W4  is one encoder
output and the other two outputs are the inputs I1, and I2 ‘.
Also, the 4-D subset selected by the encoder is (YO,,I1,,I2.’).

Current Input (I1,,I2.’)
State
W1, W2, W3 ,We_ 00 01 10 11
0000 0000 0010 0001 0011
0001 OIOQ 0110 0101 0111
0010 1001 1011 1000 1010
0011 1101 1111 1100 1110
0100 0010 0000 0011 0001
0101 0110 0100 0111 0101
0110 1011 1001 1010 1000
0111 1111 1101 1110 1100
1000 0001 0011 0000 0010
1001 0101 0111 0100 0110
1010 ‘ 1000 1010 1001 1011
1011 1100 1110 1101 1111
1100 0011 0001 ~ 0010 0000
1101 0111 0101 0110 0100
1110 1010 1000 1011 1001
1111 1110 1100 1111 1101

Table IV-5. State Transitions for the 16-State 4-D Wei Code
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To update the cumulative path metrics in the Viterbi

decoding

algorithm, knowledge of which four previous states have branches
that connect with a current state is required. This is shown in
the following table. The entries in the table are the previous

state (W1,_,,W2,_,,W3,_,,W4,_,) and 4-D subset (YO,_5,I2,_5,12',_,) for

the transition from the previous to current state.

Current Previous States
State and Subsets
Wl,,W2_,W3_ , W4,

0000 0000,000 |} 0100,001 } 1000,010 1100,011
0001 0000,010 | 0100,011 | 1000,000 1100,001
0010 0000,001 | 0100,000 1} 1000,011 1100,010
0011 0000,011 | 0100,010 | 1000,001 1100,000
0100 0001,100 | 0101,101 | 1001,110 1101,111
0101 0001,110 { 0101,111 { 1001,100 1101,101
0110 0001,101 | 0101,100 } 1001,111 1101,110
0111 0001,111 | 0101,110 | 1001,101 1101,100
1000 0010,010 | 0110,011 } 1010,000 1110,001
1001 001i0,000 | 0110,001 ] 1010,010 1110,011
1010 0010,011 } 0110,010 | 1010,001 1110,000
1011 0010,001 | 0110,000 j 1010,011 1110,010
1100 0011,110 | 0111,111 ) 1011,100 1111,101
1101 0011,100 j 0111,101 ] 1011,110 1111,111
1110 011,111 ) 0111,110 ] 1011,110 1111,100
1111 0011,101 | 0111,100 § 1011,111 1111,110

Table IV-6.
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Since the two encoder inputs are not connected to adders at
the output of the right-hand D? element or input of the left-hand
D? element, the four transitions from a given state all have the
same YO, and thus come from the same subset at level 1. Also, the
branches 1leading into a state have the same YO,_. Using this
property, it can be shown that the minimum squared Euclidean
distance along divergent paths in the trellis is greater than the
4-D subset minimum squared Euclidean distance. Therefore, the
minimum free distance for this code is df2 = d42 = 4. In "Coset
Codes I," on page 1140 Forney defines the coding gain of an N-
dimensional trellis code based on a lattice partition A/A’ and

(n,k) convolutional code C with redundancy r = n-k to be

2
y= dt (IV-6)
22:/NV2/N(A)
Thus, for this code which has r=1, A = 2%, and v(z%) =1
- 4 - = -
y-W—zﬁ-4.52db (IV-7)

This code is transparent to 90° rotations. Under 90° rota-
tions, transmitted points remain in the same rotation group so
(Y0,,I1,) 1is wunaffected. Under a k*90° clockwise rotation,
(I3,",I2,’) considered as a 2-bit positive binary number changes to
(I3,7,I2,’) + k mod 4. The differential encoder in the transmitter
and differential decoder in the receiver make the output depend
only on the phase change between adjacent 4-D symbols which is
unaffected by k. Thus, without channel errors, the decoded output
values for (I3,,I2,} will be transparent to the rotations.

Finally, we must check that the rotated sequences are
consistent with the convolutional encoder trellis. From the

encoder block diagram it can be seen that codewords satisfy the

parity check equation
Y0, ,=W3,+W1 +I1 = Yon-4+I21/2-2+Yon—s*’IZr/z-«*Iln (IV-8)

Under a 90° clockwise rotation,
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(130,120 -(13.,120)+(0,1) mod 4= (I3,8I2,, I2,@1) (IV-9)

Also (YO0,,Il,) is unchanged. Substituting these new values in the
parity check equation, (IV-8), we see that it is still satisfied,

so the sequence is consistent with the trellis.

C. The 4-D Trellis Decoder
Viterbi decoding of Wei’s 16-state 4-D code is almost the same
as Viterbi decoding of 2-D codes. The required decoding steps are:
1. Quantizing received 4-D points to 4-D subsets
The first step is to quantize the received 4-D point consist-
ing of a pair of consecutive 2-D received points to the
nearest ideal point in each of the eight 4-D subsets listed in
Table IV-2 on page 61. This can be done with a 2-stage
process.
Stage 1. Quantizing to 2-D subsets
First quantize the first 2-D received symbol to the
nearest A, B, C, and D subset 2-D points and record (1)
the squared Euclidean errors between the received and
quantized points, (2) Z0_,,21,, and (3) the corresponding
uncoded bits. Repeat this process for the 2nd received

2-D point.

stage 2. Quantizing to 4-D subsets

Next guantized 2-D subsets are combined to form quantized
4-D subsets. For each 4-D subset listed in Table IV-2
compute the squared Euclidean error for each of the two
4-D types by adding the squared errors saved in Stage 1
for the 1st and 2nd received 2-D points. Select the type
from the pair with the smallest 4-D error and save the
4-D squared branch error and Z bits. For example, for 4-
D subset 0, compute the squared 4-D errors for 4-D types
(A,A) and (B,B) and select the one with the smallest

squared error.

70



This process can occasionally lead to 4-D points
that do not lie in the finite point constellation. This
typically happens rarely and most likely with points on
the boundary of the constellation. The easiest way to
handle this event is to simply let the decoder make an
error. More sophisticated schemes can be easily invent-
ed. The required procedure depends on how the uncoded
input bits were assigned to constellation points.

Updating the cumulative path metrics

The standard method for updating the cumulative path metrics
can be used. Each of the eight trellis states has four
branches that lead to it. These are listed in Table IV-6 on
page 68 along with the 4-D subsets associated with the
branches. The decoder must contain a 1list of the eight
cumulative path metrics for the survivors to each state. For
a given state, the four branch metrics (squared Euclidean
errors) for the paths converging on that state should be added
to the cumulative path metrics for the states the branches
come from. The surviving path to the given state is the one
corresponding to the smallest of the four cumulative path
metrics to the given state. The surviving cumulative path
metric should be stored in the updated path metric table and
a pointer to the best previous state should be stored in the
trellis record for the given state along with the Z bits and
uncoded bits.

Tracing back the trellis path

The decoder output is found by first selecting the current
state with the smallest updated surviving cumulative path
metric. Then the path starting at this state can be traced
back to the end of the trellis memory by following the
pointers to the best previous states. The four 2 bits found
at the record at the end of the trellis can be converted back
to the encoder input bits YO0, I1, I2’, and I3’ using a 16 word
lookup table based on Table IV-2 and (I3’,I2’) can be differ-
entially decoded according to Equation IV-5.

71



D.

SERIAL INPUT DATA BITS

Trellis Shaping Combined with Wei’s 4-D Code
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Fig. IV-4. Combining Trellis Shaping with Wei’s 4-D Code

The trellis shaping methods presented in Sections III-B and
III-C can be combined with Wei’s 4-D code quite easily. The
technique for doing this will be described by using the example
shown in Fig. IV-4 above. Each 4-D symbol (every 2 bauds), the

combined encoder takes in 13 source data bits which are stored in

the Serial-to-Parallel Converter, so the data rate 1is 6.5
bits/baud. Three of these bits are selected for the 4-D Wei
encoder inputs I1,, I2,, and I3, shown in Fig. IV-3. The encoder

selects a 4-D type consisting of the
(Z1pn, 203pn) and ¥oniy = (Z1op41s 203447)
Iv-4.
Eight of the input bits are uncoded and are grouped

pair of 2-D subsets y,,
shown at the output of the
is the time index in

Weli encoder in Fig. The subscript, n,

2-D symbols.
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into the two 4-tuples W,, and Wy,,1- Without shaping, the pair of
6-tuples, (Yon, Wan) and (¥an+1s Wone1) s specify a pair of 2-D
points, each selected from a 64-point constellation consisting of
16 points specified by the w’s from each of the four 2-D subsets
specified by the y’s. For example, this constellation could be the
64 points on the 8x8 grid in the 1st guadrant of the %2 lattice
shown in Fig. IV-1 with the w assignment shown in Fig. III-12.
The remaining two bits labelled s,, and s;,,; are connected to the
inverse syndrome former for the trellis shaping code.

The shaping is performed on 2-D symbols using the Ungerboeck
4-state code as described in Example III-10. Remember that the 2-D
shaping code was based on the lattice partition A /A’ = 822/1622
and the 4-D code selects pairs of 2-D symbols from shifted cosets
of 222. Thus, shaping can be performed serially on the stream of
2-D symbols selected by the 4-D channel encoder since 8z? is a
sublattice of 222 so A, B, C, and D are invariant to translations
by elements of 822. Each baud (2-D symbol) the output t of the
inverse syndrome former, one of the outputs ¥y of the Wei 4-D
encoder, and one of the pair of uncoded 4-tuples w enters the
Decoder for C, which selects the best shaping code sequence as
described in Section III-C. The resulting 8-tuple (2Z,,, Yan: Wap)
or (Zons1r Yon+1r Won+1) is mapped to a 2-D point selected from a
256-point constellation. The code can be made 90° rotationally

invariant using the constellation described in Example III-10.
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