. .
Gie N e d e
TS

Py N

RAERRLIA

F-
s

g +
4

4

"

Cect

242 CONVOLUTIONAL CODING A.\'@ DIGITAL COMMUNICATION

Figure 4.10 State diagram labeled
with distance, length, and number
of input *17s.

generating function yields

D1
TD,L1}y=—FF"T"77
(D. L.1) 1 -DL(1 + L)
= D311 + DSI*(1 + L)I* + D'I’(1 + L)*P°
+ .__+D5+kL3+k(1 +L)k11+t 4o (4.3.3)

Thus we have verified that of the two distance 6 paths, one is of length 4 and the
other is of length 5, and both differ in two input bits from the all-zeros. Thus. for
example, if the all-zeros was the correct path and the noise causes us to choose one
of these incorrect paths, two bit errors will be made. Also, of the distance 7 paths,
one is of length 5, two are of length 6, and one is of length 7; all four paths
correspond to input sequences with three * 1 ”s. If we are interested in the jth node
level. clearly we should. truncate the series such that no terms of power greater
than I are included.

We have thus fully determined the properties of all code paths of this simple
convolutional code. The same techniques can obviously be applied to any binary-
symbol code of arbitrary constraint length and arbitrary rate b/n. However, for
b > 1, each state equation of the type of (4.3.1) is a relationship among at most
2% + 1 node variables. In general, there will be 2*X ~ !’ state variables and as many
equations. (For further examples, see Probs. 4.6, 4.17, and 4.18.) In the next two
sections we shall demonstrate how the generating function can be used to bound
directly the error probability of a Viterbi decoder operating on any convolutional
code on a binary-input, memoryless channel.

4.4 PERFORMANCE BOUNDS FOR SPECIFIC
CONVOLUTIONAL CODES ON BINARY-INPUT, OUTPUT-
SYMMETRIC MEMORYLESS CHANNELS

It should be reasonably evident at this point that the block length nB of a
convolutional code is essentially irrelevant, for both the encoder and decoder
complexity and operation depend only on the constraint length K, the code rate,
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Figure 4.11 Example of error events.

and channel parameters; furthermore, the performance is a function of relative
distances among signals. which may be determined from the code state diagram,
whose structure and complexity depends strongly on the constraint length but not
at all on the block length. Thus it would appear that block error probability is not
a reasonable performance measure, particularly when, as is often the case, an
entire message is convolutionally encoded as a single block, whereas in block
coding the same message would be encoded into many smaller blocks. Ultimately,
the most useful measure is bit error probability P, which, as initially defined in
Sec. 2.11. is the expected number of bit errors in a given sequence of received bits
normalized by the total number of bits in the sequence.

While our ultimate goal is to upper-bound Py, we consider initially a more
readily determined performance measure, the error probability per node. which we
denote P,. In Fig. 4.11 we show (as solid lines) two paths through the code treflis.
Without loss of essential generality, we take the upper all-zeros path to be correct,
and the lower path to be that chosen by the maximum likelihood decoder. For this

to oceur. the correct path metric increments over the unmerged segments must be

lower than those of the incorrect (lower solid line) path shown. We shall refer to
these error events as node errors at nodes i, j, and k. On the other hand. the dotted
paths which diverge from the correct path at nodes j' and k" may also have higher
metric increments than the correct path over the unmerged segments. and yet not
be ultimately selected because their accumulated metrics are smaller than those of
the lower solid paths. We may conclude from this exposition that a necessary. but
not sufficient. condition for a node error to occur at node j is that the metric of an
incorrect path diverging from the correct path at this node accumulates higher
metric increments than the correct path over the unmerged segment.

We may therefore upper-bound the probability of node error at node j by the
probability that any path diverging from the correct path at node j accumulates
higher total metric over the unmerged span of the path.

Py<Pr| U {AM(Kj.x))= 0} (44.1)
x e I'()
where X is an incorract path diverging from the correct path at node j, 27(j) is the
set of all such paths, known as the incorrect subset for node j, AM(x]. x;) is the
diflerence between the metric increment of this path and of the correct path x;
over the unmerged segment. :
Employing the union bound, we obtain the more convenient. although looser,

form

P()s Y Pr[aM(xj.x;)=0] (442)
x;eX'(p)
Ry [‘)‘(-ls‘qru\u < 2 P-§%7
X es = 9 X. SarvivEs
alexg) v Te X, % k

Pr {57 sarvives) & Pr [AM (%), 750203 since havis & Rise- we b
PrLam(y’, %, ) 201 C -

Cwts P Yo

open S 38TY

S bv V@i So Pe

e S e
s 2 wytanen

~3vua 3E03IeLY

- 3

b

1w i K *CQ«SSQ7



244 CONVOLUTIONAL CODING AND DIGITAL COMMUNICATION

But each term of this summation is the pairwise error probability for two code
vectors over the unmerged segment. For a binary-input channel, this is readily
bounded as a function of the distance between code vectors over this segment. For,
if the total Hamming distance between code vectors x; and x] (over their un-
merged segment) is d(x].X;)=d, we have from (2.9.19) that, for an output-
symmetric channel, the pairwise error probability is bounded by the
Bhattacharyya bound

P;<exp |dln ; vV Po(¥)P1(¥) (443)

where p;(y) is the conditional (channel transition) probability of output y given
that the input symbol was i(i = 0, 1). Equivalently, we may express this bound in
the more convenient form

P, <2’ (4.4.4)

where

z=3 JrOP0) (3.4.12)

S
Thus given that there are a(d) incorrect paths which are at Hamming distance d

from the correct path over the unmerged segment, we obtain from (4.4.1) through
(4.4.4)

o

, error caused by any one of a(d)|
P() < P ’ . .
) = ,ﬁ\:':,, r lincorrect paths at distance d |

< ) a(d)P,

< f a(d)z? (4.4.5)

where d, is the minimum distance of any path from the correct path, which we
called the free distance in the last section. Clearly (4.4.5) is a union-Bhattacharyya
bound similar to those derived for block codes in Chap. 2.

We also found in the last section that the set of all distances from any one path
to all other paths could be found from the generating function T(D). For demon-
stration purposes, let us consider again the code example of Figs. 4.2a, 4.4, and 4.5.
We found then that

5
T(D)‘-‘l—-i‘)z—D‘ =D? +2D6+4D7+...+2k-5Dk+.“
— sz—SDd
d=5

Thus in this case d; = 5 and a(d) = 2¢~%/. The same argument can be applied to
any binary code whose generating function we can determine by the techniques of
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the last section. Thus we have in general that

T(D)= i a(d)D* (4.4.6)
and it then follows from (4.4.5) and (4.4.6) that

i
P.(j) < T(D), (4.4.7)
}

D=2

We note also that this node error probability bound for a fixed convolutional code
1s the same for all nodes when B = o¢ and that this is also an upper bound for
finite B.

Turning now to the bit error probability. we note that the expected number of
bit errors, caused by any incorrect path which diverges {from the correct path at
node j. can be bounded by weighting each term of the union bound by the number
of bit errors which occur on that incorrect path. Taking the all-zeros data path to
be the correct path (without loss of generality on output-symmetric channels). this
then corresponds to the number of * 1”s in the data sequence over the unmerged
segment. Thus the bound on the expected number of bit errors caused by an

mncorrect path diverging at node j is ) . |
Q{pgciﬂngw o Aecaclech b ternrs fer single wede eprey

2 E[n(j)] < i iia(d, i)P, < i i ia(d. i)Z° (4.4.8)

i=1 d=dys i=1d=dys

where a(d. i) is the number of paths diverging from the all-zeros path (at node j) at
distance 4 and with i *17s in its data sequence over the unmerged segment. But
the coefficients a(d. i) are also the coefficients of the augmented generating func-
tion T(D. 1) derived in the last section. For the running example, we have from
(4.3.3) (with L = 1 since we are not interested in path lengths)

5
I
T(D 1):—..1—D—2—[—)7 = DSI +2D612 +4D713 + ...+2k‘5Dk1k——4 4o
= T4 spips
Py
and hence
a(d. i) 27* fori=d-4.d>5

. 10 otherwise

In this case then.

ET(D. 1)

E(m())] < i (d— 443z = =

=5
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In general it should be clear that the augmented generating function can be
expanded in the form

a(d. i\D*I' (4.4.9)

s

T(D. I) =

o

gk
s

1

whose derivative at I = | is

TODI 25§ e, iyp? (4.4.10)

cl = i=1 d=ds
Consequently, comparing (4.4.8) and (4.4.10), we have

aT(D, I)

E[m()] < —5— (4.4.11)

,I =1.D=27
This is an upper bound on the expected number of bit errors caused by an
incorrect path diverging at any node j.

For a rate 1/n code, each node {branch) represents one bit of information into
the encoder or decoder. Thus the bit error probability defined as the expected
number of bit errors per bit decoded is bounded by

itttk
: cT(D, 1
P} = Ein() < 121
cl I=1.D=2
as shown in (4.4.11). For a rate b 1 code, one branch corresponds to b information
bits. Thus in general

(44.12)

(4.4.13)

where Z is given by (3.4.12).
P2 b = T Efn(hy < X dlfﬁ_)./
L3

b = ,o. bL bL e =1
4.5 SPECIAL CASES AND EXAMPLES /
It is somewhat instructive to consider the BSC and the binary-input AWGN
channel, special cases of the channels considered in the last section. Clearly the
union-Bhattacharyya bounds apply with [see (2.11.6) and (2.11.7) and, (3.4.15)
and (3.4.17)] .

(Z)ssc = \4p(1 = p) (45.1)

and (Z)awon = e~ 4N (4.5.2)

We note also, as was already observed in Sec. 2.11, that if the AWGN channel is
converted to the BSC by hard quantization for £,/N, < 1, then
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1in which case

AN

-2 N,

-InZ=x-In[/1—-46/aN,]x —In N,

for a loss of 2,7, or approximately 2 dB, in energy-to-noise ratio.

However, for these two special channels, tighter bounds can be found by
obtaining the exact pairwise error probabilities rather than their Bhattacharyya
bounds. For the BSC, we recall from (2.10.14) that, for unmerged segments at
distance d from the correct path’

@t —py~* dodd
| k=(d+1)2

= <

\ p
{%Gz)l’“(l -pri+ ¥ (- pf* deven (453)

k=d.2+1

d

d

This can be used in the middle expressions of inequalities (4.4.5) and (4.4.8) to
obtain tighter results than (4.4.7) and (4.4.12) (see also Prob. 4.10).

Similarly. for the binary-input AWGN channel, we have from (2.3.10) that the
pairwise error probability for code vectors at distance dis

P,=Q("2d¢,'N,) (4.5.4)
While we may substitute this in the above expressions in place of Z* = ¢~ **%. a
more elegant and useful expression results from noting that (Prob. 4.8)
QWX+ <QW/x)e??  x20,y20 (4.5.5)
Since d > d, we may bound (4.5.4) by
P, < Q( —2‘%?—’) g dmdnts No (4.5.6)

which is tighter than the Bhattacharyya bound. Substituting in the middle terms
of (4.4.5) and (4.4.8), then using (4.4.6) and (4.4.10), we obtain

= Q( deg.s)edf«f,/.\'-T(D) o (4.5.7)

" Ties are assumed to be randomly resolved. Note that unlike the block code case for which
(2.10.14) holds. all probabilities here are for pairwise errors.
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and
p, = U %Q( ——Zdl\f,"”) A S Siad Dt
L4 i=1 d=dy D=e- 45 Ne
1 2,6, /“NGGT(D, 1)
- bQ( N0 )ei 81 =1, D=e¢e-%s "0

(4.5.8)

The last bound has been used very effectively to obtain tight upper bounds for
the bit error probability on the binary-input AWGN channel for a variety of
convolutional codes of constraint lengths less than 10. For, while the computation
of T(D, I) for a constraint length K code would appear to involve the analytical
solution of 2%*~ ) simultaneous algebraic equations (Sec. 4.3), the computation of
T(D, I) for fixed values of D = Z and I becomes merely a numerical matrix
inversion. Also since T(D, I}is a polynomialin I with nonnegative coefficients and
has a nondecreasing first derivative for positive arguments, the derivativeat [ = 1
can be upper-bounded numerically by computing instead the normalized first
difference. Thus

erid. 1) Jzlro-T2D (4.5.9)
¢l I=1,p=2 €

Even the numerical matrix inversion involved in calculating T(D, I) for fixed D
and / is greatly simplified by the fact that the diagonal terms of the state equations
matrix [see (4.3.1) and Probs. 4.17 and 4.18] dominate all other terms in the same
row. As a result, the inverse can be computed as a rapidly convergent series of
powers of the given matrix (see Prob. 4.18). The results for optimum rate 4 codes®
of constraint length 3 through 8 are shown in Fig. 4.12. To assess the tightness of
these bounds we show also in the figure the results of simulations of the same
codes. but with output quantization to eight levels. For the low error probability
region (&,/N, > 5 dB), it appears that the upper bounds lie slightly below the
simulation. The simulations should, in fact, lie above the exact curve because the
quantization loss is on the order of 0.25 dB (see Sec. 2.8). This, in fact, appears to
be the approximate separation between simulation and upper bounds, attesting to

the accuracy of the bounds.
In all codes considered thus far, the generating function sequence

T(D)= Y a(d)D* (4.5.10)

d=dy
was assumed to converge for any value of D less than unity. That this will not
always be true is demonstrated by the example of Fig. 4.13. For this code, the self

8 The codes were selected on the basis of maximum free distance and minimum number of bit
errors caused by incorrect paths at the free distance, i.e, minimum a(d,, i) (Odenwalder [1970]).
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Figure 4.13 Encoder displaying catastrophic error propagation and its state diagram.

loop at state d does not increase distance, so that the path abddd ... ddca will be at
distance 6 from the correct path no matter how many times it circulates about this
self-loop. Thus it is possible on a BSC, for example, for a fixed finite number of
channel errors to cause an arbitrarily large number of decoded bit errors. To
illustrate in this case, for example, if the correct path is the all-zeros and the BSC
produces two errors in the first branch, no errors in the next B branches and two
errors in the (B + 1)st branch, B — 1 decoded bit errors will occur for an arbi-
trarily large B. For obvious reasons, such a code, for which a finite number of
channel errors (or noise) can cause an infinite number of decoded bit errors, is
called catastrophic.

It is clear from the above example that a convolutional code is catastrophic
if and only if, for some directed closed loop in the state diagram, all branches
have zero weight; that is, the closed loop path generating function is D°. An even
more useful method to ensure the avoidance of a catastrophic code is to establish
necessary and sufficient conditions in terms of the code-generator sequences g;.
Forrate 1/n codes, Massey and Sain [1968] have obtained such conditions in terms
of the code generator polynomials which are defined in terms of the generator
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sequences as’

gk(Z)-_— 1 +g1'kz +g2,k22 + +g(K—l),k:K_ k= lq 2,...,"

In terms of these polynomials, the theorem of Massey and Sain (see Prob. 4.11) s
states that a fixed convolutional code is catastrophic if and only if all generator

polynomials have a common polynomial factor (of degree at least one). Also of i3
interest is the question of the relative fraction of catastrophic codes in the en- -4
semble of all convolutional codes of a given rate and constraint length. Forney 7

sd_Rosenberg [1971] have shown that, for a rate 1/n code, this fraction is
dependent of constraint length (see Prob. 4.12). Hence generally. the >
e3 a good code is not seriously encumbered by the catastrophic codes, ‘
' which are relatively sparse and easy to distinguish. g
; One subclass of convolutional codes that are not catastrophic is that of the =
' systematic convolutional codes. As with systematic block codes. systematic convo-

% In this context, = is taken to be an abstract variable, not a real number. The lowest order :

coefficient can always be taken as one without loss of optimality or essential generality.

Table 4.1 Maximum free distance :
of noncatastrophic codes
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lutional codes have the property that the data symbols are transmitted unchanged
among the coded symbols. For a systematic rate b,n convolutional code, in each
branch the first b symbols are data symbols followed by n — b parity or coded
symbols. The coded symbols are generated just as for nonsystematic codes, and
consequently depend on the last Kb data symbols where Kb is the constraint
length. Since data symbols appear directly on each branch in the state or trellis
diagram, for systematic convolutional codes it is impossible to have a self-loopin
which distance to the all-zeros path does not increase, and therefore these codes
are not catastrophic.

In Sec. 5.7, we show that systematic feed-forward convolutional codes do not
perform as well as nonsystematic convolutional codes.!® There we show that, for
asymptotically large K, the performance of a systematic code of constraint length
K is approximately the same as that of a nonsystematic code of constraint length
K(1 — r) where r = b/n. Thus for rate r = 4 and very large K, systematic codes
have about the performance of nonsystematic codes of half the constraint length.
while requiring exactly the same optimal decoder complexity.

Another indication of the relative weakness of systematic convolutional codes
is shown in the free distance, d,, which is the exponent of D in the leading term of
the generating function T(D). Table 4.1 shows the maximum free distance achiev-
able with binary feed-forward systematic codes and nonsystematic codes that are
not catastrophic. We show this for various constraint lengths K and rates r. As
indicated by the results of Sec. 5.7, for large K the differences are even greater.

4.6 STRUCTURE OF RATE 1/n CODES AND ORTHOGONAL
CONVOLUTIONAL CODES

While the weight or distance properties of the paths of a convolutional code
naturally depend on the encoder generator sequences, both the unmerged path
lengths and the number of “1”s in the data sequence for a particular code path
are functions only of the constraint length, K, and rate numerator, b. Thus for
example, for any rate 1/n, constraint length 3 code [see (4.3.3)]

LI
1- L1+ L)

To obtain a general formula for the generating function Ti(L, I} of any rate 1/n
code of constraint length K, we may proceed as follows. Consider the state just
prior to the terminal state in the state diagram of a constraint length K code (see
Fig 4.10 for K = 3). The (K — 1}dimensional vector for this state is 10... 0.
Suppose this were the terminal state and that when a path reached this state it was
considered absorbed (or remerged) without the possibility to go on to either of the

L(L )= (4.6.1)

19 It can be shown {Forney [1970]) that for any nonsystematic convolutional code. there is an
equivalent systematic code in which the parity symbols are generated with linear feedback logic.
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