Trellis-Coded
Modulation with
Redundant
Signal Sets

Part I: Infroduction
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Simple four-state trellis-coded modulation
(TCM) schemes improve the robustness of
digital fransmission against additive noise
by 3 dB without reducing data rate or
requiring more bandwidth than
conventional uncoded modulation
schemes. With more complex schemes,
coding gains up to 6 dB can be achieved.
This article describes how TCM works
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T rellis-Coded Modulation (TCM) has evolved over
the past decade as a combined coding and
modulation technique for digital transmission over
band-limited channels. Its main attraction comes from
the fact that 1t allows the achievement of significant
coding gains over conventional uncoded multilevel
modulation without compromising bandwidth effi-
ciency. The first TCM schemes were proposed in 1976
[1]. Following a more detailed publication[2]1n 1982, an
explosion of research and actual implementations of
TCM took place, to the point where today there is a good
understanding of the theory and capabilitues of TCM
methods. In Part | of this two-part article, an introduc-
tion into TCM is given. The reasons for the development
of TCM are reviewed, and examples of simple TCM
schemes are discussed. Part 11 [15] provides further
msight into code design and performance, and addresses
recent advances in TCM.

TCM schemes employ redundant nonbinary modula-
tion in combination with a finite-state encoder which
governs the selection of modulation signals to generate
coded signal sequences. In the receiver, the noisy signals
are decoded by a soft-decision maximum-likelithood
sequence decoder. Simple four-state TCM schemes can
improve the robustness of digital transmission against
additive noise by 3 dB, compared to conventional
uncoded modulation. With more complex TCM
schemes, the coding gain can reach 6 dB or more. These
gains are obtained without bandwidth expansion or
reduction of the effective information rate as required by
traditional error-correction schemes. Shannon’s infor-
mation theory predicted the existence of coded modula-
tion schemes with these characteristics more than three
decades ago. The development of effective TCM tech-
niques and today’s signal-processing technology now
allow these gains to be obtained in practice.

Signal waveforms representing information sequences
are most impervious to noise-induced detection errors if
they are very different from each other. Mathematically,
this translates into the requirement that signal sequences
should have large distance in Euchidean signal space.
The essential new concept of TCM that led to the afore-
mentioned gains was to use signal-set expansion to
provide redundancy for coding, and to design coding and
signal-mapping functions jointly so as to maximize
directly the “free distance” (minimum Euclidean dis-
tance) between coded signal sequences. This allowed the
construction of modulation codes whose {ree distance
significantly exceeded the minimum distance between
uncoded modulation signals, at the same mformation
rate, bandwidth, and signal power. The term “trellis” is
used because these schemes can be described by a state-
transition (trellis) diagram simtilar to the trellis diagrams
of binary convolutional codes. The difference s that in
TCM schemes, the trellis branches are labeled with
redundant nonbinary modulation signals rather than
with binary code symbols.

The basic principles of TCM were published in 1982
[2]. Further descriptions followed in 1984 [3-6], and
coincided with a rapid wansition of TCM from the re-
search stage to practical use. In 1984, a TCM scheme
with a coding gain of 4 dB was adopted by the Interna-
tional Telegraph and Telephone Consultauve Commit-
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tee (CCITT) for use in new high-speed voiceband
modems [5,7,8]. Prior to TCM, uncoded transmission
at 9.6 kbit/s over voiceband channels was often con-
sidered as a practical limit for data modems. Since
1984, data modems have appeared on the market
which employ TCM along with other improvements in
equalization, synchronization, and so forth, to transmit
data reliably over voiceband channels at rates of 14.4
kbit/s and higher. Similar advances are being achieved
in transmission over other bandwidth-constrained
channels. The common use of TCM techniques in such
applications, as satellite [9-11], terrestrial microwave,
and mobile communications, in order to increase
throughput rate or to permit satisfactory operation at
lower signal-to-noise ratios, can be safely predicted for
the near future.

Classical Error-Correction Coding

In classical digital communication systems, the func-
tions of modulation and error-correction coding are
separated. Modulators and demodulators convert an
analog waveform channel into a discrete channel,
whereas encoders and decoders correct errors that occur
on the discrete channel.

In conventional multilevel (amplitude and/or phase)
modulation systems, during each modulation interval
the modulator maps m binary symbols (bits) into one of
M = 2" possible transmit signals, and the demodulator
recovers the m bits by making an independent M-ary
nearest-neighbor decision on each signal received.
Figure 1 depicts constellations of real- or complex-
valued modulation amplitudes, henceforth called signal
sets, which are commonly employed for one- or two-
dimensional M-ary linear modulation. Two-dimen-
sional carrier modulation requires a bandwidth of 1/T
Hz around the carrier frequency to transmit signals at a
modulation rate of 1/T signals/sec (baud) without
intersymbol interference. Hence, two-dimensional 2"-
ary modulation systems can achieve a spectral efficiency
of about m bit/sec/Hz. (The same spectral efficiency is
obtained with one-dimensional 2™ “-ary baseband
modulation.)

Amplitude modulation Amplitude/Phase modulation
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Fig. 1. Signal sets for one-dimensional amplitude modulation,
and two-dimensional phase and amplitude/ phase modulation.
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Conventional encoders and decoders for error correc-
tion operate on hinary, or more generally Q-ary, code
symbols transmitted over a discrete channel. With a code
of rate k/n < 1, n — k redundant check symbols are
appended to every k information symbols. Since the
decoder receives only discrete code symbols, Hamming
distance (the number of symbols in which two code
sequences or blocks differ, regardless of how these
symbols differ) is the appropriate measure of distance for
decoding and hence for code design. A minimum
Hamming distance d!,,, also called “free Hamming
distance’ in the case of convolutional codes, guarantees
that the decoder can correct at least [(d},, —1)/2] code-
symbol errors. If low signal-to-noise ratios or non-
stationary signal disturbance limit the performance of
the modulation system, the ability to correct errors can
justify the rate loss caused by sending redundant check
symbols. Similarly, long delays in error-recovery
procedures can be a good reason for trading transmission
rate for forward error-correction capability.

Generally, there exist two possibilities to compensate
for the rate loss: increasing the modulation rate if the
channel permits bandwidth expansion, or enlarging the
signal set of the modulation system if the channel is
band-limited. The latter necessarily leads to the use of
nonbinary modulation (M > 2). However, when
modulation and error-correction coding are performed
in the classical independent manner, disappointing
results are obtained.

As an illustration, consider four-phase modulation
(4-PSK) without coding, and eight-phase modulation
(8-PSK) used with a binary error-correction code of rate
2/3. Both systems transmit two information bits per
modulation interval (2 bit/sec/Hz). If the 4-PSK system
operates at an error rate of 1077, at the same signal-to-
noise ratio the “‘raw’” error rate at the 8-PSK demodulator
exceeds 1072 because of the smaller spacing between the
8-PSK signals. Patterns of at least three bit errors must be
corrected to reduce the error rate to that of the uncoded
4-PSK system. A rate-2/3 binary convolutional code with
constraint length v =6 has the required value of df};, =7
[12]. For decoding, a fairly complex 64-state binary
Viterbi decoder is needed. However, after all this effort,
error performance only breaks even with that of uncoded
4-PSK.

Two problems contribute to this unsatisfactory
situation.

Soft-Decision Decoding and Motivation for
New Code Design

One problem in the coded 8-PSK system just described
arises from the independent “hard” signal decisions
made prior to decoding which cause an irreversible loss
of information in the receiver. The remedy for this
problem is soft-decision decoding, which means that the
decoder operates directly on unquantized “soft’”” output
samples of the channel. Let the samples be r, = a, + wa,
(real- or complex-valued, for one- or two-dimensional
modulation, respectively), where the a, are the discrete
signals sent by the modulator, and the w, represent
samples of an additive white Gaussian noise process.
The decision rule of the optimum sequence decoder is to



determine, among the set C of all coded signal sequences
which a cascaded encoder and modulator can produce,
the sequence {4,} with minimum squared Euclidean
distance (sum of squared errors) from {r,}, that is, the
sequence {a,} which satisfies

Irn_— &\11'2: Mln Z IT"— a"|2_
{a,}eC

The Viterbi algorithm, originally proposed in 1967
[13] as an “‘asymptotically optimum” decoding tech-
nique for convolutional codes, can be used to determine
the coded signal sequence {4,} closest to the received
unquantized signal sequence {r,} [12,14], provided that
the generation of coded signal sequences {a,}eC {ollows
the rules of a finite-state machine. However, the notion
of “‘error-correction’’ is then no longer appropriate, since
there are no hard-demodulator decisions to be corrected.
The decoder determines the most likely coded signal
sequence directly from the unquantized channel outputs.

The most probable errors made by the optimum
soft-decision decoder occur between signals or signal
sequences {a,} and {b,}, one transmitted and the other
decoded, that are closest together in terms of squared
Euchidean distance. The minimum squared such dis-
tance is called the squared “‘free distance:”

e = Min Y, |a—b,| ; fa) (b} eC.
{a,}7#{b.}

When optimum sequence decisions are made directly
in terms of Euclidean distance, a second problem
becomes apparent. Mapping of code symbols of a code
optimized for Hamming distance into nonbinary modu-
lation signals does not guarantee that a good Euclidean
distance structure is obtained. In fact, generally one
cannot even find a monotonic relationship between
Hamming and Euclidean distances, no matter how code
symbols are mapped.

For a long time, this has been the main reason for the
lack of good codes for multilevel modulation. Squared
Euclidean and Hamming distances are equivalent only
in the case of binary modulation or four-phase modula-
uon, which merely corresponds to two orthogonal
binary modulations of a carrier. In contrast to coded
multilevel systems, binary modulation systems with
codes optimized for Hamming distance and soft-decision
decoding have been well established since the late 1960s
for power-efficient transmission at spectral efficiencies
of less than 2 bit/sec/Hz.

The motivation of this author for developing TCM
initially came from work on multlevel systems that
employ the Viterbi algorithm to improve signal detection
in the presence of intersymbol interference. This work
provided him with ample evidence of the importance of
Euclidean distance between signal sequences. Since
improvements over the established technique of adaptive
equalization to eliminate intersymbol interference and
then making independent signal decisions in most cases
did not turn out to be very significant, he turned his
attention to using coding to improve performance. In
this connection, it was clear to him that codes should be
designed for maximum tree Euclideanfistance rather
than Hamming distance, and that the redundancy

necessary for coding would have to come from expanding
the signal set to avoid bandwidth expansion.

To understand the potential improvements to be
expected by this approach, he computed the channel
capacity of channels with additive Gaussian noise for the
case of discrete multilevel modulation at the channel
input and unquantized signal observation at the channel
output. The results of these calculations [2] allowed
making two observations: firstly, that in principle
coding gains of about 7-8 dB over conventional uncoded
multilevel modulation should be achievable, and
secondly, that most of the achievable coding gain could
be obtained by expanding the signal sets used for
uncoded modulation only by the factor of two. The
author then concentrated his efforts on finding trellis-
based signaling schemes that use signal sets of size 2™
for transmission of m bits per modulation interval. This
direction turned out to be succesful and today’s TCM
schemes still follow this approach.

The next two sections illustrate with two examples
how TCM schemes work. Whenever distances are
discussed, Euclidean distances are meant.

Four-State Trellis Code for 8-PSK Modulation

The coded 8-PSK scheme described in this section was
the first TCM scheme found by the authorin 1975 with a
sigmificant coding gain over uncoded modulation. It was
designed in a heuristic manner, like other simple TCM
systems shortly thereafter. Figure 2 depicts signal sets
and state-transition (trellis) diagrams for a) uncoded
4-PSK modulation and b) coded 8-PSK modulation with
four trellis states. A trivial one-state trellis diagram is
shown in Fig. 2a only to illustrate uncoded 4-PSK from
the viewpoint of TCM. Every connected path through a
trellis in Fig. 2 represents an allowed signal sequence. In

Redundant 8-PSK signal set

4-PSK signal set

One-—state frellis Four—state trellis

(a) (b)

Fig.2. (a)Uncoded four-phase modulation(4-PSK),(b)Four-state
trellis-coded eight-phase modulation (8-PSK).
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both systems, starting from any state, four transitions can
occur, as required to encode two information bits per
modulation interval (2 bit/sec/Hz). For the following
discusston, the specific encoding of information bits into
signals is not important.

The four “parallel” wransitions in the one-state trellis
diagram of Fig. 2a for uncoded 4-PSK do not restrict the
sequences of 4-PSK signals that can be transmitted, that
1s, there 1s no sequence coding. Hence, the optimum
decoder can make independent nearest-signal decisions
for each noisy 4-PSK signal received. The smallest
distance between the 4-PSK signals is \/§ denoted as A,.
We call 1t the “free distance” of uncoded 4-PSK
modulation to use common terminology with sequence-
coded systems. Each 4-PSK signal has two nearest-
neighbor signals at this distance.

In the four-state trellis of Fig. 2b for the coded 8-PSK
scheme, the transittons occur in pairs of two parallel
transitions. (A four-state code with four distinct transi-
tions from each state 1o all successor states was also
considered; however, the trellis as shown with parallel
transitions permitied the achievement of a larger [ree
distance.) Fig. 2b shows the numbering of the 8-PSK
signals and relevant distances between these signals:
Ay =2sin(m/8), A, = /2, and A, = 2. The 8-PSK sig-
nals are assigned to the transitions in the four-state
trellis in accordance with the following rules:

a) Parallel transitions are associated with signals with
maximum distance A,(8-PSK) = 2 between them,
the signals in the subsets (0,4), (1,5), (2,6), or (3,7).

b) Four transitions originating from or merging in
one state are labeled with signals with at least
distance A(8-PSK) = \/Q_be[weexl them, thatis, the
signals in the subsets (0,4,2,6) or (1,5,3,7).

¢) All 8-PSK signals are used in the trellis diagram
with equal frequency.

Any two signal paths in the trellis of Fig. 2(b) that
diverge i one state and remerge in another after more
than one transition have at least squared distance
AY + Af + A7 = Af + Af between them. For example, the
paths with signals 0-0-0 and 2-1-2 have this distance. The
distance between such paths is greater than the distance
between the signals assigned to parallel transitions,
Ax(8-PSK) = 2, which thus is found as the free distance
in the four-state 8-PSK code: dy.. = 2. Expressed in
decibels, this amounts to an improvement of 3 dB over
the minimum distance \/2 between the signals of
uncoded 4-PSK modulation. For any state transition
along any coded 8-PSK sequence transmitted, there
exists only one nearest-neighbor signal at free distance,
which 1s the 180° rotated version of the transmitred
signal. Hence, the code is invariant to a signal rotation
by 180°, but 1o no other rotations (cf., Part II). Figure 3
illustrates one possible realization of an encoder-modu-
lator for the four-state coded 8-PSK scheme.

Soft-decision decoding is accomplished in two steps:
In the first step, called “subset decoding”’, within each
subset of signals assigned to parallel transitions, the
signal closest to the received channel output is deter-
mined. These signals are stored together with their
squared distances from the channel output. In the second
step, the Viterbi algorithm is used to find the signal path
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through the code trellis with the minimum sum of
squared distances from the sequence of noisy channel
outputs received. Only the signals already chosen by
subset decoding are considered.

Tutorial descriptions of the Viterbi algorithm can be
found 1in several texthooks, for example, [12]. The
essential points are summarized here as follows: assume
that the optimum signal paths from the infinite past to
all trellis states at time n are known; the algorithm
extends these paths iteratively from the states at time n to
the states at time n + 1 by choosing one best path to each
new stateasa “‘survivor’’ and “forgetung’ all other paths
that cannot be extended as the best paths to the new
states; looking backwards in time, the “surviving” paths
tend to merge into the same “history path’ at some time
n — d; with a sufficient decoding delay D (so that the
randomly changing value of d is highly likely to be
smaller than D), the information associated with a
transition on the common history pathat timen — D can
be selected for output.

Let the received signals be disturbed by uncorrelated
Gaussian noise samples with variance ¢” in cach signal
dimension. The probability that at any given time the
decoder makes a wrong decision among the signals
associated with parallel transitions, or starts to make a
sequence of wrong decisions along some path diverging
for more than one transition from the correct path, is
called the error-event probability. At high signal-to-
noise ratios, this probability is generally well approxi-
mated by

Pr(e) = NIW‘ * Q[dm,/(?ﬂ)],

where Q)(.) represents the Gaussian error integral

o0

1 0
Q(x) = ﬁ\ffxp(*y“/?)d%

and Ng. denotes the (average) number of nearest-
neighbor signal sequences with distance d,... thatdiverge
at any state from a transmitted signal sequence, and
remerge with it after one or more transittons. The above
approximate formula expresses the fact that at high

DIFFERENTIAL ENCODER B-PSK SIGNAL
MAPPING

x2—s(E Xh+ 00001111
Xh 00110011
01010101
01234567 = a,
4-STATE CONVOLUTIONAL .
Signal No.

ENCODER

Fig. 3. Hlustrates an encoder for the four-state 8-PSK code.



signal-to-noise ratios the probability of error events
associated with a distance larger then d,. becomes
negligible.

For uncoded 4-PSK, we have d;,.. = \/gzmd Niew =2,
and for four-state coded 8-PSK we found d,,... =2 and N,
= 1. Since in both systems free distance is {found between
parallel transitions, single signal-decision errors are the
dominating error events. In the special case of these
simple systems, the numbers of nearest neighbors do not
depend on which particular signal sequence is trans-
mitted.

Figure 4 shows the error-event probability of the two
systems as a [unction of signal-to-noise ratio. For
uncoded 4-PSK, the crror-event probability is extremely
well approximated by the last two equations above. For
four-state coded 8-PSK, these equations provide a lower
bound that is asymptotically achieved at high signal-to-
noise ratios. Simulation results are included in Fig. 4 for
the coded 8-PSK system to illustrate the effect of error
events with distance larger than free distance, whose
probability of occurrence is not negligible at low signal-
LO-NOISC Talios.

Figure 5 tllustrates a noisy four-state coded 8-PSK
signal as obscrved at complex baseband before sampling
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Fig. 4. Error-event probability versus signal-to-noise ratio for
uncoded £-PSK and four-state coded 8-PSK.

Fig. 5. Nouwsy four-state coded 8-PSK signal al complex baseband
with a signal-to-notse ratio of ENy = 12.6 dB.

in the receiver of an experimental 64 kbit/s satellite
modem [9]. At a signal-to-noise ratio of E./N, =12.6 dB
(E,: signal energy, Ny: one-sided spectral noise density),
the signal is decoded essentially error-free. At the same
signal-to-noise ratio, the error rate with uncoded 4-PSK
modulation would be around 107".

In TCM schemes with more trellis states and other
signal sets, dy.. 1s not necessarily found between parallel
transitions, and Ny,.. will generally be an average number
larger than one, as will be shown by the second example.

Eight-State Trellis Code for
Amplitude/Phase Modulation

The eight-state trellis code discussed in this section
was designed for (wo-dimensional signal sets whose
signals are located on a quadratic grid, also known as a
lattice of type “Zy"". The code can be used with all of the
signal sets depicted in Fig. 1 for amplitude/phase
modulation. To transmit m information bits per modula-
tion interval, a signal set with 2" signals is needed.
Hence, for m =3 the 16-QASK signal set is used, for m =
1 the 32-CROSS signal set, and soforth. For any m, a
coding gain of approximately 4 dB is achieved over
uncoded modulation.

Figure 6 1illustrates a “‘set parttioning” of the 16-
QASK and 32-CROSS signal sets into eight subsets. The
partitioning of larger signal sets is done in the same way.
The signal set chosen is denoted by A0, and its subsets by
DO, DI, ... D7. If the smallest distance among the
signals in A0 is Ay, then among the signals in the union
of the subsets D0,D4,D2,D6 or DI,1D5,D3,D7 the mini-
mum distance is \/§ Ay, 1n the union of the subsets
DO0,D4; D2,D6; DI1,D5; or D3, D7 it 1s \/ZA(,, and within
the individual subsets itis /8 A,. (A conceptually similar
partitioning of the 8-PSK signal set into smaller signal
sets with increasing intra-set distances was implied in the
example of coded 8-PSK. The fundamental importance
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Signal sets: 16-QASK and 32-CROSS

— "Z, lattice

I

Signal subsets

I I N

Do D4 D2

Fig. 6. Set partiioning of the 16-QASK and 32-CROSS signal sels.

of this partitioning for TCM codes will be explained in
Part I1.)

In the eight-state trellis depicted 1n Fig. 7, four
transitions diverge from and merge into each state. To
cach transition, one of the subsets DO, ... D7 is
assigned. If A0 contains 2™ signals, each of its subsets
will comprise 2777 signals. 'This means that the transi-
tions shown in Fig. 7 in fact represent 2% parallel
transitions in the same sense as there were two parallel
transitions in the coded 8-PSK scheme. Hence, 2™ signals
can be sent from each state, as required to encode m bits
per modulation interval.

The assignment of signal subsets to transitions
satisfies the same three rules as discussed for coded 8-
PSK, appropriately adapted to the present situation. The
four transitions from or to the same state are always
assigned either the subsets D0,D4,D2,D6 or D1,D5,D3,D7.
This guarantees a squared signal distance of at least 243
when sequences diverge and when they remerge. If paths
remerge after two transitions, the squared signal distance
is at least 4A3 between the diverging transitions, and
hence the total squared distance between such paths will
be at least 6A;. I paths remerge after three or more
transitions, at least one intermediate transition con-
tributes an additional squared signal distance Aj, so the
squared distance between sequences s at least NEWYS

Hence, the ree distance of this code 1s \/g Ay. This 1s
smaller than the minimum signal distance within in the
subsets DO, ... D7, which is \/8 4,. For one particular
code se quen((‘ I)() D0-D3-D6, Fig. 6 illustrates four error
palhs at distance \f Ay from that code sequence; all
starting at the same state and remerging after three or
four transitions. It can be shown that for any code

DOD?DADG ¥5 DO D6 D4 D2

D1 D7 D5 D3 q ’- D2 D4 D6 DO

D6 D4 D2 DO o) [ D4 D2 DO D6

D7 D1 D3 D5 Q S, D6 DO D2 D4

D4 D6 DO D2 » D1 D7 D5 O3

D5 D3 01 D7 o V' D7 D D3 D5
)

D2 DO D6 D4 © % D5 D3 D1 D7

¢
D3 DS D7 D1

T
03 DS 07 D1_ o
Fig. 7. Eight-state trellis code for amplitude/ phase modulation

with 22" -type signal sets; dppe = \/D Ay
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sequence and from any state along this scquence, there
are four such paths, two of length three and two of length
four. The most likely error events will correspond to
these error paths, and will result in bursts of decision
errors of length three or four.

The coding gains asymptotically achieved at high
signal-to-noise ratios are calculated 1 decibels by

G, . = 10 logiw [(dfree./ dfyen) Ev/E]

where df... and dj..., are the squared free distances, and
E.. and E_, denote theaverage signal energies of the coded
and uncoded schemes, respectively. When the signal sets
have the same minimum signal spacing Ay, e/
dieew = 5, and K,/ E, = 2 tor all relevant values of m.
Hence, the coding gain is 10 log(5/2) = 4 dB.

The number of nearest neighbors depends on the
sequence of signals transmitted, thatis Ny, represents an
average number. This is easy to sce for uncoded
modulation, where signals in the center of a signal sel
have more nearest neighbors than the outer ones. For
uncoded 16-QASK, Ny, equals 3. For cight-state coded
16-QASK, Ny is around 3.75. In the limit of large
“Z,"-type signal sets, these values increase toward 4 and
16 for uncoded and eight-state coded systems, re-
spectively.

Trellis Codes of Higher Complexity

Heuristic code design and checking of code properties
by hand, as was done during the early phases of the
development of TCM schemes, becomes infeasible for
codes with many trellis states. Optimum codes must then
be found by computer search, using knowledge of the
general structure of TCM codes and an efficient method
to determine free distance. The search technique should
also include rules 1o reject codes with improper or
equivalent distance properties without having to evalu-
ate free distance.

In Part 11, the principles of TCM code design are
outlined, and tables of optimum TCM codes given for
one-, two-, and higher-dimensional signal sets. TCM
encoder/modulators arce shown to exhibit the following
general structure: (a) of the m bits to be transmitted per
encoder/modulator operation, m < m bits are expanded
into M + 1 coded bits by a binary rate-m/(m+1)
convolutional encoder; (b) the m + 1 coded bits select one
of 27" subsets of a redundant 2" -ary signal set; (¢) the
remaining m—m bits determine one of 2" signals
within the selected subset.

New Ground Covered by Trellis-Coded
Modulation

TCM schemes achieve significant coding gains at
values of spectral efficiency for which efficient coded-
modulation schemes were not previously known, thatis,
above and including 2 bit/sec/Hz. Figure 8 shows the
free distances obtained by binary convolutional coding
with 4-PSK modulation [or spectral efficiencies smaller
than 2 bit/sec/Hz, and by TCM schemes with two-
dimensional signal sets for spectral elliciencies equal to
or larger than 2 bit/sec/Hz. The free distances of
uncoded modulation at the respective spectral effi-
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Fig. 8. Free distance of binary convolutional codes with 4-PSK

moduldation, and TCM with a variety of two-dimensional modula-
tion schemes, for speciral efficiencies from 2/3 1o 6 bit’sec Hz.

ciencies are also depicted. The average signal energy of
all signal sets is normalized to unity. Free distances are
expressed i decibels relative to the value df.. = 2 of
uncoded 4-PSK modulation. The binary convolutional
codes of rates 1/3, 1/2, and 3/4 with optimum Hamming
distances are taken from textbooks, such as, [12]. The
TCM codes and their properties are found in the code
tables presented in Part 11 (largely reproduced from [2]).
All coded systems achieve significant distance gains
with as few as 4, 8, and 16 code states. Roughly speaking,
it 1s possible 1o gain 3 dB with 4 states, 4 dB with 8 states,
nearly 5 dB with 16 states, and up 1o 6 dB with 128 or
more states. The gains obtained with two-state codes
usually are very modest. With higher numbers of states,
the incremental gains become smaller. Doubling the
number of states does notalways yield a code with larger
free distance. Generally, Imited distance growth and
increasing numbers of nearest neighbors, and neighbors
with next-larger distances, are the two mechanisms that
prevent real coding gains from exceeding the ultimate
limit set by channel capacity. This limit can be
characterized by the signal-to-noise ratio at which the
channel capacity of a modulation system with a 2%+ -ary
signal set equals m bit/sec/Hz [2] (see also Fig. 4).

Conclusion

Trellis-coded modulation was invented as a method to
improve the noise immunity of digital transmission
systems without bandwidth expansion or reduction of
datarate. TCM extended the principles of convolutional

11

coding to nonbinary modulation with signal sets of
arbitrary size. It allows the achievement of coding gains
ol 3-6 dB at spectral efficiencies equal to or larger than 2
bit/sec/Hz. These are the values at which one wants to
operate on many band-limited channels. Thus, a gap in
the theory and practice of channel coding has been
closed.
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Trellis-Coded
Modulation with
Redundant Signal
Sets

Part |l: State of
the Art

Gottfried Ungerboeck

This article is intended to bring the reader
up to the state of the art in trellis-coded
‘modulation. The general principles that
have proven useful in code design are
explained. The important effects of carrier-
phase offset and phase invariance are
discussed. Finally, recent work in trellis-
coded modulation with multi-dimensional
signal sets is described

February 1987—Vol. 25, No. 2
|IEEE Communications Magazine

I n this second part[1], a synopsis of the present state of
the artin trellis-coded modulation (TCM) 1s given for
the more interested reader. First, the general structure of
TCM schemes and the principles of code construction
are reviewed. Next, the effects of carrier-phase offset in
carrier-modulated TCM systems are discussed. The topic
is important, since TCM schemes turn out to be more
sensitive to phase offset than uncoded modulation
systems. Also, TCM schemes are generally not phase
invariant to the same extent as their signal sets. Finally,
recent advances in TCM schemes that use signal sets
defined in more than two dimensions are described, and
other work related to trellis-coded modulauton is men-
tioned. The best codes currently known for one-, two-,
four-, and eight-dimensional signal sets are given in an
Appendix.

Design of Trellis-Coded
Modulation Schemes

The trellis structure of the early hand-designed TCM
schemes and the heuristic rules used to assign signals to
tretlis transitions suggested that TCM schemes should
have an interpretation in terms of convolutional codes
with a special signal mapping. This mapping should be
based on grouping signals into subscts with large
distance between the subset signals. Attempts to explain
TCM schemes in this manner led o the general structure
of TCM encoders/modulators depicted in Fig. 1. Accord-
ing to this figure, TCM signals arc generated as follows:
When m bitsare to be transmitted per encoder/modulator
operation, m < m bits are expanded by a rate-m/(im + 1)
binary convolutional encoder into m + 1 coded bits.
These bits are used to select one of 2™ ! subsets of a
redundant 2" '-ary signal set. The remaining m — m
uncoded bits determine which of the 2™ " signals in this
subset is to be transmitted.

Set Partitioning

The concept of set partitioning is of central significance
for TCM schemes. Figure 2 shows this concept for a
32-CROSS signal set [ 1], a signal set of lattice type “Z,"".
Generally, the notation “Z,”" is used to denote an infintte
“lattice’’ of points in k-dimensional space with integer
coordinates. Lattice-type signal sets are {inite subsets of
lattice points, which are centered around the origin and
have a minimum spacing of 4.

Set partitioning divides a signal set successively into
smaller subsets with maximally increasing smallest
intra-set distances A;, 1 = 0,1, ... . Fach partidon 1s
two-way. The partitioning is repeated m + 1 times until
Aqsisequal to or greater than the desired free distance of
the TCM scheme to be designed. The finally obtained
subsets, labeled DO, DI, ... D7 in the case of Fig. 2, will
henceforth be referred toas the “subsets.” The labeling of
branches in the partition tree by the m + 1 coded bits zi)',
..., 2% in the order as shown in Fig. 2, results in a label z,
=z, ... 78] for each subset. The label reflects the position
of the subset in the tree.

This labeling leads to an important property. If the
labels of two subsets agree in the last g positions, butnot
in the bit z!, then the signals of the two subsets are
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Fig. 1. Generval structure of encoder- modulator for trellis-coded

modulation.

elements of the same subsetat level g in the partaon tree;
thus they have at least distance A, This distance bound
can be stated in a “set-parutoning lemma’ and will be
used in the next subsection.

The m —m uncoded bits xI, ..., x " are used to choose
asignal from the selected subset. The specific labeling of
subset signals by these bits is not parucularly important
at this point of the discussion. In the code wrellis, the
signals ol the subsets become associated with 2m7
parallel transitions.

The free Euchidean distance of a TCM code can now be
expressed as

dper = Min| Ay, dp (m) ],

where Ay 15 the mintmum distance between parallel
transitions and dy,..(m) denotes the minimum distance
between nonparallel paths in the TCM trellis diagram.
In the special case of m = m, the subsets contain only one
signal, and hence there are no parallel transitions.

Convolutional Codes for Trellis-Coded
Modulation

At every rime n, the rate-m/(m + 1) convolutional
encoder depicted in Fig. | receives m input bits, and
generates m + 1 coded bits which serve as the subset
labels z, = [, ... 20]. The set of all possible sequences
{zo}, which the encoder can generate, forms a convo-
lutional code. A linear convolutional code of rate m/
(m + 1) is most compactly defined by a parity-check
equation which puts a constraint on the code bits in a
shding time window of length v + 1:

"

Do (A ® iz ® L Rz) =0,

In this (I*q‘{union. ® denotes modulo-2 addition. The
quantity v 1s called the constraint length. The quantites
hy. v =2 €2 0; 0 <1 =< m, are the binary parity-check
coefficients of the code. Valid code sequences satisfy this
equation at all tumes n. The equaton defines only the
code sequences, not the input/output relation of an
encoder. A later subsection deals with minimal encoder
realizations with v binary storage elements, which is
equivalent to saying that the code has 2¥ rellis states.

From the parity-check equation, one can observe that
code sequences {z,} can have arbitrary values for each
m-tuple {2}, ... z.] with an appropriate choice of the
sequence {zn} so that the parity-check equation is
satistied. This property can be expressed in a “‘rate-n/
(m + 1) code lemma.”

Letnow {z,} and {2/} = {z, D ¢.} be two code sequences,

where {¢.} denotes the error sequence by which these
scquences differ. Since the convolutonal code is linear,
fea} 1s also a code sequence. It follows from the “sct-
partitoning lemma’” mentoned i the preceding sub-
secuion and the “rate-m/(m + 1) code lemma™ that the
squared free distance between non-parallel paths in the
TCM trellis 1s bounded by [2]
di..(m)=  Min Z Al

ety

Here q(e,) 1s the number of tratling zervos in e, that s,
the number of trailing positons 1 which two subset
labels z, and 2/, =z, ® ¢, agree. Forexample, (e, J= 2, if
en=ler, ..., ¢, 10,01 The “set-partitioning lemma’ states
that the distance between signals in the subsets selected
by z, and 2z is lower-bounded by A, .. One must ake
Ay = 0, not A4, Minimization has to be carried out
over all non-zero code (error) sequences {e,.} that deviate
at, say, time 0 from the all-zero sequence {0} and remerge
with rtata later ume. The “rate-m/(m + 1) code lemma’™
assures that for any given sequence {e,} there exist two
coded signal sequences whose signals have at any ume n
the smallest possible distance between the signals of
subsets whose labels differ by ¢,,. Usually, this smallest
distance equals A, forall ¢, If thisis the case, the above
bound on d;,..(1M) becomes an cquation. (Only when the
signal subsets contamn very few signals may the bound
not be sausfied with equality. A similar always true
equation can then be used 1o compute d,,..(m}) [2].)

This equation 1s of key importance in the search {or
optimum TCM codes. Tt states that free Euclidean
distance can be determined in much the same way as {ree
Hamming distance ts found in linear binary codes, cven
though linearity does nothold for TCM signal sequences.
It 1s only necessary to replace the Hamming weights of
the e, (number of I's in ¢,) by the Fuclidean weights
Al",“_,”,. It is not necessary (as some authors scem to think)
to compute distance between cevery pair of TCM signal
SCQUENCes.
Search for Optimum TCM Codes

For the one- and two-dimensional signal sets depicted
in Fig. 1 of ParcI[1], the minimum intra-setdistances are

“Z; latlice

90°, CO — €1 — €2 — C3 — CO
Fig. 2. Set partitioning of the 32-CROSS signal set (of lattice type
AN
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as follows. For 4-AM, 8-AM, ... (signal sets of type “Z,”’),
Ay = 2A;, 1= 0.1, ... . For 16-QASK, 32-CROSS, ...
(signal setsof lattice type “'Z,""), Ay = \/_2—Ai, 1=0,1,....
The non-lattice type signal sets 8-PSK and 16-PSK have
special sequences of intra-set distances. The intra-set
distances for higher-dimensional signal sets will be
given when mulu-dimensional TCM schemes are dis-
cussed later in this article.

For a given sequence of minimum intra-set distances
Ay<A,<...A;,andachosen value of v, a convolutional
code with the largest possible value of dy.(mi) can be
found by a code-search program described in [2]. The
program performs the search for the (v + 1) - (m + 1)
binary parity-check coefficients in a particular order and
with a set of code-rejection rules such thatexplicitchecks
on the value of d,..(h) are very {requently avoided.

Tables of optimum codes for one-, two-, four-, and
eight-dimensional TCM schemes are shown in the
Appendix. Parity-check coctficients are specified in octal
form, for example, [h{, ..., h{]=1[1,0,0,0,1,0,1]is written
as h" = 105,. Equivalent codes in terms of free distance
will be obtained if the parity-check coefficients of h' are
added modulo-2 to the cocfficients of h*, for i >k [2]. If
A;= A, h'and h* may also be interchanged. When in the
code tables the free distance of a code is marked by an
asterisk (*), dp..(M) exceeds A+1, and hence the free distance
occurs only between the subset signals assigned to
parallel transitions. These schemes have the smallest
numbers of nearest neighbors. For example, the 256-state
code for “Z;"-type signals has this property. For large
values of m, this code attains a full 6 dB coding gain with
only two nearest neighbors.

Two Encoder Realizations

The parity-check equation specifies only the convolu-
tional code. Encoders for the same code can differ in the
input/output relation which they realize. Figure 3
Hlustrates two encoders for the 8-state hinear code
specified in Tables 1T and III (v = 3) in the Appendix.
One is called a systematic encoder with feedback, the
other a feedback-free encoder. Both encoders are minimal,
that is, they are realized with v binary storage elements.
The transformation ol one minimal encoder into the
other follows from the structural properties of convolu-
tional codes described in [3]. With a systematic encoder,
the input bits appear unchanged at the output. Therefore,
a systematic encoder cannot generate a catastrophic code,
1.¢., a code with no distance increase between two trellis
paths that remain distinct for an unbounded length.
This isalso true, although {ar from being obvious, foran
equivalent minimal feedback-free encoder [3].

The forward and backward connections in the syste-
matic encoder are specified by the parity-check coeffi-
clents of the code. All codes presented in the Appendix
have h! = h{ = 1. This guarantees the realizability of an
encoder in the form shown in Fig. 3a. The reader
familiar with recursive digital filters will sec that the
parity-check equation is used (almost directly) to
compute the bit z) from the other uncoded bats.
Furthermore, all codes have h!, = hj =0, fori1 > 0. This
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Fig. 3. Two encoders for a linear 8-state convolutional code with
parity-check coefficients b° =[0,1,00), k' = [0.0,1,0] h° =[1,0,0,1]
(¢f. Tables II and 11 in the Appendix). (a) Minimal systematic
encoder with feedback. (b) Minimal feedback-free encoder.

ensures thatat time n the uncoded bits have no influence
on the bit 2!, nor on the input to the tirst binary storage
element in the encoder. Hence, whenever in the code
trellis two paths diverge from or merge into a common
state, the bit z must be the same for these transitions,
whereas the other bits differ in at least one bit. Signals
associated with diverging and merging transitions
therefore have at least distance A, between them, which
reflects the second heuristic rule for good TCM codes
mentioned in Part T [1].

"T'CM schemes for two-dimensional carrier modulation
(with 8-PSK signal sets and “Z,"-type signal sets) have up
to the present time attracted the most attention. Practical
realizations of these systems indicated that the effects of
transmission impairments other than additive Gaussian
noise on their performance need to be studied, in
particular those of carrier offset.

Effects of Carrier-Phase Offset

This section addresses the problems that arise when a
carrier-modulated two-dimensional TCM signal is de-
modulated with a phase offset Ag. The soft-decision
decoder then operates on a sequence of complex-valued
signals {r,} = {a, * exp(jA¢) + w,}, where the a, are
transmitted TCM signals and the w, denote additve
Gaussian noise. The phase offset Ag could be caused, [or
instance, by disturbances of the carrier phase of the
received signal which the phase-tracking scheme of the
receiver cannot track instantly.
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Performance Degradation

The error performance of 4-state and 8-state coded
8-PSK systems in the presence of phase offset (based on
unpublished work) ts illustrated 1n Fig. 4. The figure
shows the signal-to-noise ratio needed to sustain an
error-event probability of 107" as a funcuon of A¢. For
the coded 8-PSK systems, the required signal-to-noise
ratio increases with increasing values ol A¢ until both
systems a1l at Ag =22.5°, even 1n the absence of noise. In
contrast, uncoded 4-PSK requires a higher signal-to-
notse ratio at small phase offsets, but has an operating
range up to A¢ = 45° in the absence of noise. These
results are typical for TCM schemes.

The greater suscepubility of TCM schemes to phase
offset can be explained as follows. In the trellis diagrams
of TCM schemes, there exist long distinet paths with low
growth of signal distance between them, that is, paths
which have either the same signals or signals with
smallest distance A, assigned (o concurrent transitions.
In the absence of phase offset, the non-zero squared
distances Ajand the squared larger distances of diverging
or merging transitions add up to at least the squared free
distance. However, if phase offset rotates the received
signals such that received signals become located
hallway between the signals of the original signal set, the
difference in distance between received signals and the
signals on distinct transitions that are A, apart may be
reduced to zero. There may then be no difference in
distance between a long segment of received signals and
two distinct rellis paths, just as though the code were
catastrophic. At this point, the decoder begins to fail.

Behavior of Carrier-Phase Tracking Loops

Nowadays, in most digital carrier-modulation systems,
decision-directed loops are employed for carrier-phase

tracking. In these loops, the phase offset 1s estimated
from the received signal and the decoder decisions. The
estimated phase offset controls the demodulating carrier
phase. In a TCM receiver, if the phase offset exceeds a
critical value, for example, 22.5° in the case of coded
8-PSK, the decoder decisions become essentially uncorre-
lated with the received signal and the mean value of the
phase estimate drops to zero. Figure 5 illustrates. lor
4-state coded 8-PSK [2], the mean estimate of A¢ (S-
curve’’) and its variance as a function of the actual value
of the phase offset. A vanishing mean estimate, as occurs
for A¢ between 22.5° and 157.5°, leaves the carrier-phase
tracking loop 1n an undriven random-walk situation
which can last for long periods. Eventually, the system
resynchronizes when the randomly-fluctuating demod-
ulating carrier phase approaches a value for which the
received signal again resembles a valid TCM sequence.
This behavioris in significant contrast to the short phase
skips and rapid recovery observed in uncoded 4-PSK or
8-PSK systems. It suggests that in some cases TCM
systems may require special methods o lorce rapid
resynchronization.

Invariance of Two-Dimensional TCM Codes
under Phase Rotation

TCM codes are not usually invariant to all phase
rotations under which the signal set 1s phase invariant.
Figure 5 indicates a phasc symmetry of 4-state coded
8-PSK only at A¢ = 180°, but not at other multiples of
45°, This symmetry can be verified by inspection of the
code trellis presented in Fig. 2b of Part1[ 1]. Coded 8-PSK
schemes which are invariant to phase shifts ol all
multiples of 45° have been found [4], but these schemes
require more than four states to achieve a coding gain of
3 dB.

In general, 1t is desirable that TCM codes have as many
phase symmetries as possible to ensure rapid carrier-
phase resynchronization after temporary loss of syn-
chronization. On the other hand, such phase tnvariances
must be made transparent to the transmitted user
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Fig. 5. Mean (“S-curve” ) and variance of the estimated phase offsel

A in a decision-directed carrier-phase iracking loop for 4-state

coded 8-PSK versus the actual phase offset A¢, at a signal-to-noise
ratio of 13 dB (tentative decisions used with zevo delay).
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information by some form of differential encoding and
decoding. If loss of phase synchronization is very
unlikely, one may argue that TCM codes without phase
invariances may have the advantage that the receiver can
establish absolute phase [rom the received signal, so that
no differential encoding/decoding is required.

The problems of phase invariance and differential
encoding/decoding attracted considerable attention in
work toward a TCM code for use in CCITT Recommen-
dations for voice-band modems operating full-duplex at
up 10 9.6 kbit-'s over two-wire telephone circuits, and at
up to 14.4 kbit/s over four-wire circuits. There was
constderable interest in a two-dimensional 8-state code
that can achieve, with 90°-symmetric QASK and CROSS
signal sets, a coding gain of about 4 dB over uncoded
modulation. With the known linear code (cf. Table IIl1n
the Appendix, v = 3), it was only possible (by adding
parity-check coefficients in a way which does not change
free distance, as mentioned in the subsection on
optimum-code search) to have either no phase symmetry
orasymmetry at 180°[5],{4, PartI]. A breakthrough was
finally accomplished by L.F. Wei, who intoduced
nonlinear elements into the convolutional encoder of the
8-state code. This made the code invariant to 90°
rotations while maintaining its coding gain of 41 dB [6],
[5, Part 1]. Figure 6 shows the resulting encoder/modu-
lator with 1ts differential encoder, nonlinear convo-
lutional encoder, and signal mapping for a 32-CROSS
signal set (m = 4), as {inally adopted in the CCITT V.32
Recommendation [7, Part 1]. The labeling of subsets
differs slightly from that indicated in Fig. 2, but the
subsets are the same. The same code was also chosen for

February 1987—Vol. 25, No. 2
IEEE Communications Magazine

16

the CCITT V.33 Draft Recommendation |8, Part 1], but
with 64-QASK and 128-CROSS signal sets (im =5,6). In
the limit of large signal sets, the number of nearest
neighbors in the 8-state lincar and the CCI'T'T nonlinear
code 15 16.

In a late contribution to the CCITT [7], itlustrated in
Fig. 7, an alternative 8-state nonlinear encoder with the
differential-encoding function integrated mto the en-
coder was proposed. The coding gain and the number of
nearest neighbors are identical to those of the other 8-
state schemes. The trellis diagram of the alternative
nonlinear code was shown in Fig. 6 of Part I [1].
Differential decoding requires that the receiver compute
x! =20 @28, Subsets are labeled as indicated in Fig. 2.
The selection of signals within the subsets by the
uncoded bits x/, x} 1s worth mentioning. If x| =0, only
signals of the inner 16-QASK setare transmitted (m =3).
With non-zero values of x}, outer signals of the larger
32-CROSS set are also selected (m = 4). Extension of this
concept to larger signal sets resulted in one general
signal mapping for all data rates, e.g.. for 3 =m = 7[7].
The mapping has the additional property thatitcan just
as well be used for uncoded modulation with modulo-1
dilferential encoding of the bits ), 7).

The nonlinear 8-state TCM codes appear to be special
cases. Similar nonlinear phase-invartant codes with 16
and more states can be constructed. However, at least for
16 states, it does not seem possible to find a code with the
same 4.8 dB coding gain as can be obtained with a linear
code.
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grated differential encoding and general signal mapping for 16-
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Multi-Dimensional Trellis Codes

Recently, there have been a number of investigations
mto tretlis coding with signal sets defined in more than
two dimensions |3, Part I, [8-11]. In practical systems,
multi-dimensional signals can be transmitted as se-
quences of constituent one- or two-dimensional (1-D or
2-D) signals. In this section, 2K-D T'CM schemes are
considered which transmit m bits per constituent 2-D
signal, and hence mK bits per 2K-D signal. The principle
of using a redundant signal set of twice the size needed [or
uncoded modulation 1s maintained. Thus, 2K-D TCM

“schemes use 28 ary sets of 2K-D signals. Compared o

2-D TCM schemes, this resules in less signal redundancy
mn the constituent 2-D signal sets.

For 2-D TCM schemes with “Z,7"-type signal sets, the
minimum  signal spacing A, must be reduced by
approximately the factor \/"Z(— 3 dB) to have the same
average signal power as for uncoded modulation. This
toss in signal spacing needs 1o be more than compensated
for by coding to obtain an overall improvement in free
distance. The lower signal redundancy of multi-dimen-
stonal TCM schemes with “Z., " -type signal sets results
only in a reducton of the minimum signal spacing by
the 2K-throotof 2(—1.5dBfer K=2;and —0.75dB for K
=4), so coding has to contribute less than in the case of
2-D 'T'CM to obtain the same gain in free distance. The
larger signal spacing should also make mult-dimen-
stonal TCM systems less sensitive 1o phase offset.
Finally, it has been found that multi-dimensional TCM
schemes with 90° phase mvartance can be obtained with
lincar codes.

Four-Dimensional Trellis-Coded Modulation

The 4-D TCM schemes (K = 2) described in this
subsection employ compact sets of 224! signals chosen
froma lattice of type 7, with minimum signal spacing
Ay Figure 8 illustrates the set partitioning ol a signal set
At ol type 7,7, The general idea is o derive the set
partitoning of a higher-dimensional signal set from the
set partitioning of constituent lower-dimensional signal
sets. Inthe present case, A and its subsets are character-
1zed by two constituent 7, -type signal sets AQ and their
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Fig. & Set partiioning of four-dimensional signal sets of lattice
iype 2,7, also showing the effect of a 90° rotation.
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Fig. 9. Sixteen-state encoder:demodudator for four-dimensional
2y -type trellis-coded modulation with diffevential encoding.

subsets, such as introduced i Fig. 2. This leads 1o a
partition tree with signal sets of types “Z," —= "D, —
ST Dy — 77, ete., with minimum  intra-set
distances Ay, A, = A, = \/§A(., Ay=A, = \/TA,,, etc. The
next paragraph describes the details of the partitioning
process (and may be skipped by readers without specific
mterest in this process).

Set partitioning begins by writing A} = A0 X AQ (X
denotes set-product operation: the product set consists of
all concatenations ol elements of the lirst set with the
clements of the second set). Substitution of A0 = B0 U Bl
(U denotes set union) yields AY = (BOUB1)X(BOUB1) =
(BOXBO)U(BOXB1)U(BIXBOYJ(BIXBI). The first para-
ton divides AY into the two subsets BY = (BOXBO)U
(BI1XBl)and B} = (BOXBIU(BIXB0). These subsets are
of type "D, where "D, denotes the densest lattice
known in 4-I space [12]. The minimum intra-set
distance in BY and B} is /2 A, which is the minimum
distance between constituent 2-1 signals in BO or Bl, and
also between one 4-D signal in BOXBO and another 1n
B1IXBI1. On the next binary partition, e.g., when BY s
parutioned into subsets BOXB0 and BIXBI, no distance
increase s obtained. These subsets are of type 'Z,7", like

{, from which they differ only in their orientation,
position with respect to the origin, and scaling. Hence,
their partitioning is conceptually similar to that of Af.
The minimum intra-sct distance increases 10 \/~}—A(.
when, e.g., BOXBO 1s split into subsets C} = (COXC0)U
(C2XC2) and C} = (COXC2)U(C2XC0), which are now
again of type “D;”.

Optimum convolutional codes are found by using the
obtained sequence of minimum intra-set distances in the
code-search program mentioned earlier. The codes and
their asymptotic coding gains over uncoded modulation
with “Z, -type signals are given in Table TV in the
Appendix. The gains are valid for large signal sets which
fill the same volume insignal space as the signal sets used
for uncoded modulaton. Thus, the comparison is made
tor the same average signal power and the same peak
power of 2-D signals.

It may be helpful 1o discuss the 16-state code of Table
IV, which achieves an asymptotic coding gain ol 4.52 dB,
in more detail. The code uses the eight 4-D subsets CY, ...
Cishown in Fig. 8, and has 64 distinct transitions in its
trellis diagram. The only nearest-neighbor signals are
those associated with parallel vansitons, and their
number at any transition is 24 (the number ol nearest
neighborsina D" lawice). Figure 9 depicts one possible
realization of an encoder/modulator with differential
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Fig. 10.  Set partitioning of eight-dimensional signal sets of latlice
type “Zy", also showing the effect of a 90° rotation.

encoding. The code from Table IV was first made
invariant to inversion of the bit 2}, by interchanging the
parity-check coefficient vectors h!' and h® Invariance to
90° rotations and the required differential encoding
follow from the 90° symmetries indicated in Fig. 8, which
m turn are based on the 90° symmetries in the constituent
2-D signal subscts. The subsets CY, ... C1, each composed
of two subsets CiXCk, must be chosen individually for
each value of m. The subset COXCO contains 277
signals, and may be constructed {irst. The other subsets
CiXCk are then obtained by 90° rotations of the two
constituent subsets CO in COXCO. For the specilic case of
m = 4.5, COXCO contains 8X8 signals, and hence the
8-ary subset C0 of Fig. 2 can be used. This construction of
the 1-D subsets also suggests an efficient subset-decoding
method that begins with signal decisions within the
constituent 2-D subsets CO, ... C3. In general, the design
of signal sets can be more complicated. References [3,
Part 1] and [11] discuss mapping techniques for cases
where signal-set sizes are not powers of 2.

Eight-Dimensional Trellis-Coded Modulation

The technique of set partitioning of a higher-
dimensional signal set based on the known partitioning
of lower-dimensional sets is now applied 1o 8-D signal
sets (K=1) ot type "2y =7, X 7Z,". Figure 10 illustrates
the details. The sequence of minimum intra-set distances
Do, A= A2=0,=24,8,=4,= 4= A, =/14,,
etc., 1s obtained, corresponding to a chain of lattice types
L= DT =D XD~ CDES — CEy =Dy et
where “Ey denotes the famous Gosset lattice, the densest
lattice known 1n 8-D space [12]. (The nomenclature
“DET was introduced in {97 [11] uses “D47))

Codes obtained by the code-search program are given
in Table V in the Appendix. The codes use 2'™*' 8-D
signals partitioned into 16 subsets Cy, ... Cf of type “Ey".
In the It of Targe signal sets, the codes achieve an
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asymptotic coding gain ol 5.27 dB over uncoded “Z,"'-
type modulation. If code complexity is increased to 64
states, the only nearest neighbors are those associated
with parallel ransitons, and thenr number 1s 240, which
is the number of nearest neighbors iman “Eg’" lattice. The
“Eq-type subsets can be further paruuoned into two
subsets with 90° symmetries as indicated in Fig. 10. This
property can be verified by observing the 90° symmetries
among the constituent 1-D signals as shown 1n Fig. 8.
Hence, 8-D codes are inherently 90° phase invariant,
because their subscts have this property. Differenual
encoding/decoding can be perlormed entirely within the
subsets, decoupled from the convoluuonal encoding
funcuon.

Other 8-D TCM schemes are obtained by choosing the
2im*! gignals from another lattice type than “Z” in the
chain of types encountered i Fig. 10, and performing
the code search for the sequence of minimum intra-set
distances that originates {rom this type. Codes with
signals from “DE"" or “Ey’" are of some interest [9]-[11],
although 1t does not seem that these codes exhibit
significant advantages over the "7, -type codes, 1f code
complexities, asymptotic coding gains, and numbers of
nearest neighbors are compared. This 1salso true for 4-D
codes with “'D,” signals, as compared to codes with “Z;”
signals.

Discussion

The number of disunct wransinons in the wellis
diagrams of TCM codes is 2'™. This so-called “trellis
complexity” represents a measure of code (decoding)
complexity. A fair comparison ol TCM schemes with
different signal dimensionalities requires normalization
of trellis complexities and numbers of nearest neighbors
to the same number of signal dimensions. In the
following, normalization to two dimensions 1s assumed.
Hence, normalized wrellis complexity specifies the num-
ber of distunct wrellis transitions (o be dealt with by the
decoder per 2-D signal or two 1-D signals received.
Similarly, a normalized number of nearest neighbors
indicates the number of error events with free distance
that could start (on average) during the same tume
mterval.

In Fig. 11, asymptotic coding gains of TCM schemes
with fTarge 1-D (K = 0.5) to 8-D (K = 1) signal sets are
plotied versus normalized trellis complexity, 27"/K.
Normalized numbers of nearest neighbors, Ny, /K, are
given in parentheses. Ata normalized trellis complexity
of 8, the "7, -1type 1-state code is without competition.
The “Z, -type 16-state code, whose encoder/modulator
was ilustrated in Fig. 9, shows a 0.5 dB advantage over a
“Zs"-type 8-state code, e.g., the nonlincar CCITT code,
and also a shghtly reduced number of nearest neighbors,
at the same normalized complexity of 32, Next in the
order of increasing complexities, the 7, -type 16-state
code may be of interest, but it cannot be made invariant
to 90° rotations. At a normalized complexiy of 128, ie.,
four umes the complexity of the CCI'TT code, the “7Zy"-
and “Ey"-type 64-state codes are found as atractive 90°
phasc-invariant codes. Finally, at a 32 umes higher
complexity than the CCITT code, the 7, -type 2b6-state
code stands out for its asymptotic coding gain and low
number of nearest neighbors.
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The asymptotic coding gain of the “DEs” codes
exceeds thatof the “'Zy and “Ey” codes by 0.75 dB, but the
“DEy"" codes also have many more nearest neighbors.
Hence, one may question their usefulness. Similarly, the
"7 -type 128-state code with the highest asymptotic cod-
ing gain of 6.28 dB shown in Fig. 11 may not be of prac-
tical interest, because of its large number of nearest
neighbors.

Figure 11 gives important information about the
ranking of TCM codes. However, the picture also
remains somewhat incomplete. Real coding gains at
given error probabilities, considering nearest and next-
nearest neighbors and the boundary effect of finite signal
sets, are not included. In first approximation, one may
use the rule that for crror rates around 107 the real
coding gamn 1s reduced by 0.2 dB for every increase in the
number of nearest neighbors by the factor of 2. There is
also very hiude published information about the carrier-
phase sensitivity (a possible advantage of the multi-
dimensional TCM schemes) of the TCM schemes under
discussion. The complexity of subset decoding and
decoder-memory requirements are f{urther important
aspects that need o be constdered.

In general, one can make the following observations.
At low complexity, higher-dimensional TCM schemes
exhibit larger asymptotic coding gains than the lower-
dimenstonal schemes, however, these coding gains are
compromised by large numbers of nearest neighbors. In
the mid-range, 4-D and 8-D TCM schemes achieve
slightly larger real coding gains than the 1-D and 2-D
schemes. Finally, at high wellis complexities lower-
dimensional TCM schemes will eventually prevail in
performance. This can be explained by the fact that these
schemes have more signal redundancy available for
coding than higher-dimensional T'CM schemes. Overall,
the differences 1n real coding gains are not very large,
that 1s, they are smaller than | dB for the range of com-
plexities considered.

i
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Other Recent Work

Trellis codes have also been designed for 1-D and
2-D signal sets with nonequally-spaced (“‘asymmetric’)
signals [6, Part I],.[13]. Some modest coding gains
compared to schemes with equally-spaced signals are
achieved when the codes have few states and small sig-
nal sets. These gains disappear for larger signal sets
and higher code complexity. There are open questions
about the number of nearest neighbors and sensitivity
to carrier phase offset when signals are nonequally
spaced.

While TCM schemes have been destgned for linear
modulation channels, similar developments took place
in the field of continuous phase modulation (CPM) for
channels requiring constant envelope signals. A sum-
mary on CPM schemes ts given in [14].

Conclusion

It is probably fair to state that in recent years the
theory of trellis-coded modulation has matured to the
point where the achievement of further major gains
seem less likely. However, there are sull open ques-
tions concerning real coding gains, performance under
channel impairments other than Gaussian noise, and
actual implementation complexities.

The 8-state CCI'T'T scheme was established only two
years ago (1984). In the meanwhile, many manulaciur-
ers of voice-band modems and other transmission
cquipment have adopted the new combined coding
and modulation technique. At least one manufacturer
has already realized the sophisticated "7 "-type 6:4-state
TCM scheme in a commercial product. In the struggle
toward higher coding gains, application of more com-
plexity is met with diminishing returns. For channels
with Gaussian noise, the so-called “cut-off rate” R,
which is smaller (han channel capacity by the equiva-
lent of about 3 dB, has been suggested as a more realis-
tic limit [15]. TCM schemes have reached this barrier.
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Appendix: Code Tables

Tables I-1T1 are largely reproduced from [2]. Tables
IV and V have not been published previously; however,
similar codes with up to 64 states were found by L.F.
Wei [9]. In the tables, an asterisk (*) indicates that free
distance occurs only among parallel vansitons, Le.,

dll('(‘(ﬁl) > Aﬁn i-
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TABLE 1

{AL 01 =2} = Ay, 24, 44,

CODES FOR AMPLITUDE MODULATION WITH “Z,” SIGNALS,

No. of Parity check Asympt. coding gain [dB]
states coefficients Gaamoam GgaMm aam Gy Niree
2" m h' h? ../ A7 (m =1) (m =2) (m—o0) (m—c<)
4 1 2 5 9.0 2.55 3.31 3.52 4
8 1 04 13 10.0 3.01 3.77 3.97 4
16 1 04 23 11.0 3.42 4.18 4.39 8
32 1 10 45 15.0 4.15 4.91] 5.11 12
61 1 024 103 14.0 4.47 5.23 5.44 36
128 1 126 235 16.0 5.05 5.81 6.02 66
256 1 362 515 16.0* — 5.81 6.02 2
256 1 362 515 17.0 5.30 — —
TABLE 11
CODES FOR PHASE MODULATION
8-PSK: {A;, 0 <1i<2}=2sin(n/8), V2, 2
16-PSK: {A;, 0 < i< 3} = 2 sin(n/16), 2 sin(7/8),\/2, 2.
No. of Asympt. coding gain [dB]
states Parity-check coefficients Gypsk/apsk G1epsk/spsk Niree
2 m h? h' h* dfee/ Af (m=2) (m=3) (m—o0)
4 1 — 2 5 4.000* 3.01 — 1
8 2 04 02 11 4.586 3.60 — 2
16 2 16 04 23 5172 4.13 — ~=2 3
32 2 34 16 45 5.758 4.59 — 4
64 2 066 030 103 6.343 5.01 — =03
128 2 122 054 277 6.586 5.17 — ==().5
256 p 130 072 435 7.515 5.75 — =15
4 1 — 2 5 1.324 — 3.54 4
8 1 — 04 13 1.476 — 4.01 4
16 1 — 04 23 1.628 — 4.44 8
32 1 — 10 45 1.910 — 5.13 8
61 1 — 024 103 2,000* — 5.33 2
128 1 — 024 203 2,000* — 5.33 2
256 2 374 176 427 2.085 — h.51 ==8.0
TABLE 111
CODES FOR TWO-DIMENSIONAL MODULATION WITH “Z,” SIGNALS,
(AL 0= 1<38)1= Ap, V2 Ay, V1 Ao, V8 Ao
No. of Asympt. coding gain [dB]
states Parity-check coefficients G1s0a/8psk G3o0r 1604 Geagasszcr Gev Niree
2y m h® h! h? dfee/ AR (m=3) (m=4) (m=5) (m—o0) (m—)
4 1 — 2 5 4.0* 4.56 3.01 2.80 3.01 4
8 2 04 02 it 5.0 5.33 3.98 3.77 3.98 16
16 2 16 04 23 6.0 6.12 4.77 4.56 4.77 56
32 2 10 06 41 6.0 6.12 4.77 4.56 4.77 16
64 2 064 016 101 7.0 6.79 5.44 5.23 5.44 56
128 p 042 014 203 8.0 7.37 6.02 5.81 6.02 344
256 2 304 056 401 8.0 7.37 6.02 5.81 6.02 44
hH12 2 0510 0346 1001 8.0* 7.37 6.02 5.81 6.02 4
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TABLE IV
CODES FOR FOUR-DIMENSIONAL MODULATION WITH ““Z,”” SIGNALS,

{AL 0 =1 =5} = A, \/‘?Au, \/Z—Ao, \/TAO» \/’4—3(% \/B_Ao-

No. of Parity-check coefficients Asympt. coding
states gain [dB] Niree
ov m h* h? h? h! h° dfce’ Af (m—o0) (m—e0)
8 2 — — 01 02 11 4.0 1.52 88
16 2 — — 11 02 21 4.0* 4.52 24
32 3 — 30 11 02 41 4.0* 4.52 8
64 4 050 030 014 002 101 5.0 5.48 144
128 4 120 050 022 006 203 6.0 6.28
TABLE V
CODES FOR EIGHT-DIMENSIONAL MODULATION WITH “Z3’" SIGNALS,
(A 0 =1 =5} = Ay, \/—Q‘AU' \/?Z_Ao, ﬁA(,, \/TAU, \/‘?Ao.
No. of Parity-check coefficients Asympt. coding
states gain [dB] Ntree
2 m h' h? h* h! h’ dfee/ A (m—o0) (m—oo)
16 3 - 10 04 02 21 4.0 5.27
32 3 — 10 04 02 41 4.0 h.27 496
64 3 — 044 014 002 101 4.0* 5.27 240
128 4 120 041 014 002 201 4.0* 5.27 112
V.M. Eyuboglu and G;.D. Forney [16] discovered typo- (6] AT&T Information Systems, “A trellis coded modulation

graphical errors in the earlier published “Z,”- and
“Z,"-type 2b6-state codes [2], which have now been cor-
rected 1n Tables T and 1L

Some of the 8-PSK codes of Table IT were tmproved,
compared to those published 1n [2], by using the exact
expression for di..(m) in the code search. The 16-PSK
codes of Table IT are new.

The exact numbers of nearest neighbors, Ny, given in
the tables were taken from various sources, in partcular
[11]and [17]. The approximate values of Ny,.., given for
some codes in Table I1, are average values recently
determined by the author.
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