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Trellis-Coded Modulation with
Multidimensional Constellations

LEE-FANG WEI, MEMBER, IEEE

Abstract —Trellis<coded modulation schemes using four-, eight., or
16-dimensional constellations have 8 number of potential advantages over
the usual two-dimensional schemes: s smaller coastituent two-dimensional
constellation, esasier tolerance to phase ambiguities, and s befter trade-off
between complexity and coding gain. A pumber of such schemes are
presented and evaluated. Starting with a variety of multidimensional
lattices, we show how to select multidimensional constellations, how to
partition them into subsets, how to construct trellis codes using those
subsets, and how to map bits to constellation points. Simplifications of the
Viterbi decoding aigorithm are presented. We conclude that there are
multidimensional trellis-coded modulation schemes that perform better for
the same complexity than do two-dimensional schemes.

1. INnTRODUCTION

ELLIS-CODED modulation schemes using two-
dimensional (2D) constellations have been shown to
improve the error performance of synchronous data links
without sacrificing data rate or requiring more bandwidth
[1]-{3]. In these schemes, to send Q information bits in
each signaling interval, a 2D constellation of 22*! points
1s used. The constellation is partitioned into 2™*! subsets
with enlarged intrasubset minimum Euclidean distance. Of
the Q bits that arrive in each signaling interval, m enter a
rate-m /m + 1 trellis encoder, and the resulting m + 1 coded
bits specify which subset is to be used. The remaining
information bits specify which point from the selected
subset is to be transmitted.

An cight-state nonlinear trellis code with 4-dB coding
gain has now been adopted in the international CCITT
standards V.32 for 9.6-kbit/s transmission over the
switched telephone network and V.33 for 14.4-kbit /s
transmission over private lines [2], [4), [S]. The 2D constel-
lations used 1n those two standards are the 32-point cross
constellation (32-CR) and the 128-point cross constellation
(128-CR), respectively. The use of a nonlinear trellis code
allows the scheme to be immune to the 90° phase ambigui-
ties of those constellations [2], [6).

To improve the performance of the eight-state trellis
code further, more states may be used. However, the
returns are diminishing. The coding gain increases more
slowly and the error coefficient (the multiplicity of mini-
mum-Euclidean-distance error events) of the code starts to
dominate performance.
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An inherent cost of these coded schemes is that the size
of the 2D constellation is doubled over uncoded schemes.
This is due to the fact that a redundant bit is added every
signaling interval. Without that cost, the coding gain of
those coded schemes would be 3 dB greater. Using a
multidimensional ( > 2) constellation with a trellis code of
rate m/m +1 can reduce that cost because fewer redun-
dant bits are added for each 2D signaling interval {3). For
example, that cost is reduced to about 1.5 or 0.75 dB if
four-dimensional (4D) or eight-dimensional (8D) constel-
lations are used, respectively. Additional coding gain may
also be derived from the multidimensional constellation
itself [3), [7]-[12). These observations motivated the inves-
tigation of trellis-coded modulation using multidimen-
sional constellations.

Trellis-coded modulation schemes using 4D constella-
tions have been reported in several papers {3], [13]-{15]. In
both [3] and [15], the 4D constellation is taken from the
4D rectangular lattice. The 4D constellation is partitioned
into 16 4D subsets with four times larger intrasubset
minimum squared Euclidean distance (MSED). In [3], the
partitioning of the 4D constellation is based on the parti-
tioning of each constituent 2D constellation into four 2D
subsets; each 4D subset is formed by concatenating a pair
of 2D subsets. In [15], the partitioning of the 4D constella-
tion is done algebraically without referring to the partition-
ing of the constituent 2D constellations. However, the
results of the two partitionings are the same. Three of the
20 information bits arriving in each block of two signaling
intervals enter a rate-3/4 eight-state trellis encoder with a
minimum free Hamming distance of four. The resulting
four coded bits specify which 4D subset is to be used. The
remaining information bits specify which point from the
selected 4D subset is to be transmitted. The 4D constella-
tion therefore has 22*! points. The mapping of coded
bits t0 4D subsets is such that the Hamming distance
between any two different groups of four coded bits is
proportional to the MSED between the two corresponding
4D subsets. The coding gain therefore is approximately
4.5 dB, which is a gain of 6 dB from the trellis code if the
4D constellation were not expanded from 22€ (o 229*!
points, less 1.5 dB due to that expansion.

Both references, however, did not address other issues
such as error coefficient, phase ambiguities of constella-
tion, and complexity. It was not clear whether those eight-
state 4D trellis-coded modulation schemes performed bet-
ter for the same complexity than did two-dimensional
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schemes. It was also not clear how to construct other
multidimensional trellis-coded modulation schemes.

In this paper, a novel geometrical approach to partition-
ing multidimensional lattices into sublattices with enlarged
intrasublattice MSED is described in Section II. The ap-
proach simplifies both the construction of multidimen-
sional trellis-coded modulation schemes and the corre-
sponding maximum-likelihood decoding. It therefore opens
the door to extensive studies of trellis-coded modulation
using various multidimensional lattices. The lattices con-
sidered are the 4D, 8D, and 16D rectangular lattices, the
densest 4D lattice D,, the densest 8D lattice E,, and an
8D lattice which is the union of E, and a rotated version
of Ey. This latter 8D lattice has not been used before and
will be referred to as DE, (D stands for doutle) in this
paper. The partitioning of these lattices is based on the
partitioning of their constituent 2D rectangular lattices.
Further, the partitioning of a multidimensional lattice is
done in an iterative manner. That is, the partitioning of a
2N-dimensional lattice is based on the partitioning of the
constituent N-dimensional lattices, which is in turn based
on the partitioning of the constituent N/2-dimensional
lattices. To make the resulting trellis-coded modulation
schemes transparent to the phase ambiguities of a multidi-
mensional lattice, the partitioning of the lattice into sub-
lattices is also done such that each sublattice is rotationally
invariant to as many phase ambiguities as possible.

In Section 111, we show how to construct a finite multj-
dimensional constellation from an infinite multidimen-
sional lattice. The construction of the multidimensional
constellation makes it possible to convert a complicated
multidimensional constellation mapping into multiple sim-
ple constituent 2D constellation mappings. The size of the
constituent 2D constellations and the peak-to-average
power ratio (of the multidimensional constellation) are
also reduced as a result of this construction process. Both
the small size and small peak-to-average power ratio are
desirable in a communication system where impairments
other than additive Gaussian noise, such as linear or
nonlinear distortion or phase jitter, are also present, of
which voiceband data transmission is an example. With all
of these desirable characteristics, the construction process
leads the way to practical applications of multidimensional
trellis-coded modulation. The partitioning of the multidi-
mensional lattice underlies the partitioning of the multidi-
mensional constellation.

Section IV is the main section of this paper. A number
of trellis codes using various partitionings of various multi-
dimensional constellations obtained in the previous two
sections are presented. General principles for constructing
those codes are discussed. The codes are evaluated in terms
of their coding gain, error coefficient, transparency to
phase ambiguities, size of constituent 2D constellations,
peak-to-average power ratio, and complexity.

A simplified maximum-ukelihood decoding algorithm is
described in Section V. In that algorithm, the point in each
multidimensional subset closest to a received multidimen-
sional point is also found in an iterative manner, as in the
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partitioning of multidimensional lattices described In Sec-
tion I1. Section VI compares various trellis-coded modula-
tion schemes using multidimensional or 2D constellations
and concludes the paper.

II.  PARTITIONING OF MULTIDIMENSIONAL LATTICES

In this section, we show how a multidimensional lattice
may be geometrically partitioned into sublattices with en-
larged intrasublattice MSED, based iteratively on a parti-
tioning of the constituent 2D lattices. We first give an
example, showing how a 4D rectangular lattice with MSED
d} may be partitioned into eight sublattices with MSED
4d{. We then give general principles for partitioning multi-
dimensional lattices. Those principles are applied to parti-
tion the 4D, 8D, and 16D rectangular lattices, the densest
4D lattice D,, the densest 8D lattice Ey, and a previously
unused 8D lattice DE;. These partitionings will be used in
Section IV to construct trellis<coded modulation schemes.
The relationships between the sublattices and known
lattices such as D, and E; will also be noted and ex-
ploited.

To partition the 4D rectangular lattice with MSED d?
into eight 4D sublattices with MSED 44}, each constituent
2D rectangular lattice with MSED 47 is first partitioned
into two 2D families AU B and CU D with MSED 24d;,
which are further partitioned into four 2D sublattices A,
B, C, and D with MSED 44¢, as shown in Fig. 1 (note
that the infinite 2D rectangular lattices underlying the
finite constellations of Figs. 1-3 are meant when those
constellations are referred to in this section). Each 2D
sublattice comprises those points designated by the same
lower case letter.

Sixteen 4D types may then be defined, each correspond-
ing to a concatenation of a pair of 2D sublattices, and
denoted as (A, 4), (A, B),- - -, and (D, D). The MSED of
each 4D type is 447, the same as that of the constituent
2D sublattices. The 16 4D types may be grouped into eight
4D sublattices, denoted as 0, 1,---, and 7, as shown in
Table 1. The grouping, while yielding only half as many
4D sublattices as 4D tvpes, is done in a way which
maintains the MSED of each 4D sublattice at 44:. The
advantages of grouping are that with fewer 4D sublattices,
the construction of trellis codes using those sublattices is
simplified, and the complexity of the corresponding maxi-
mum-likelihood decoding is reduced. Furthermore, note
that the 4D sublattices of Table I are invariant under 180°
rotation, while the 4D types are not. Therefore, the con-
struction of rotationally invariant trellis codes using those
sublattices does not need to consider 180° rotation and is
thus simplified. The advantages of grouping will be even
greater in the case of eight- or higher-dimensional lattices.

The MSED of the 4D sublattices is verified to be 4d{ as
follows. The two first constituent 2D sublattices associated
with the two 4D types in each 4D sublattice span a 2D
family AU B or CU D, and likewise for the two second
constituent 2D sublattices associated with each 4D sub-
lattice. Because the MSED of each 2D family is 2d}, the
MSED of each 4D sublattice is 4d;.
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Fig. 2. 160-point 2D constellation partitioned into four subsets.

The 4D sublattices are further grouped into two 4D
families U?_,/ and U_,i with MSED 24d?. The two 4D
families may be obtained from the two 2D families in the
same way that we obtain 4D sublattices from 2D sub-

lattices.

192-point 2D constellation partitioned into four subsets.

Before we proceed to describe the general partition
principles, we clarify our terminology. A lattice is paru-
tioned into families, subfamilies, and sublattices with
(strictly) increasing MSED. Only the bottom level of a
partitioning is referred to as sublattice. This level will be
assigned to the state transition, or equivalently, specified
by the output bits of a trellis code (see Section IV). The
intermediate levels, if any, are named first as family, and
then as subfamily. If there are more than two intermediate
levels, then all the additional levels are referred to as
subfamily. Each of these levels of a partitioning of a lattice
will play a different role in our construction of trellis codes
to be described in Section IV.

Associated with each partitioning of a 2 N-dimensional
lattice are partitionings of its constituent N-dimensional
and two-dimensional lattices into families, subfamulies.
and sublattices with increasing MSED. The 2N-, N-, and
two-dimensional sublattices all have the same MSED. A
2 N-dimensional sublattice may be further partitioned into
types and subtypes with the same MSED. Each 2 N-dimen-
sional type is a concatenation of a pair of N-dimensional
sublattices. Further, each 2N-dimensional subtvpe is a
concatenation of N two-dimensional sublattices. The 2 N-
dimensional type plays an important role in the partition-
ing of the 2 N-dimensional lattice into sublattices, and in
the corresponding maximum-likelihood decoding to be
described in Section V. The 2 N-dimensional subtype plays
a role in the 2 N-dimensional constellation mapping to be
described in Section IV.
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Fig. 3. 192-point 2D constellation partitioned into eight subsets.

TABLE I - -
EIGHT-SUBLATTICE PARTITIONING OF 4D RECTANGULAR LaTTiCE

4D HD Satsd

Sublattice ] 1
(Subset) YO, 71, 12, I3, 4D Types 20, 21, Zz0,,, Zl,..,
0 0 0 0 0 4,4 0 0 0 0
0 0 0 1 «B,8) 0 1 0 1
1 0 0 1 0 (C.C)- 1 0 1 0
0 0 1 1 ~(D,Dy 1 1 1 1
2 0 1 0 o »(A.B) 0 0 0 1 < - - .
0 1 0 1 %B,4». 0 1 0 0 e -
3 0 1 1 0 (C.Dy- 1 0 1 1 Sy
0 1 1 1 (D,0C)- 1 1 1 0 4 el Py
p 1 0 0 0 (A.C) 0 0 1 0 T~
1 0 0 1 ~(8,D) 0 1 1 1 - =,
5 1 0 1 0 (C.B)- 1 0 0 1 . T . ,
1 0 1 1 (D, 4)- 1 1 0 0 N
6 1 1 0 0 «A4,D) 0 0 1 1
1 1 0 1 ~(B,C) 0 1 1 0
) 1 1 1 0 (.4 1 0 0 0
1 l) \1 1 (D, B)- 1 1 0 1
e ad T
Lo S SN

Coou

In general, the partitioning of a 2N-dimensional lattice the MSED of each N-dimensional sublattice also equal to
into families, subfamilies, and sublattices with increasing  DIST. The second step is to form 2N-dimensional types,
MSED may be done as follows. Suppose that the desired each type corresponding to a concatenation of a pair of
MSED of each 2N-dimensional sublattice is DIST. The N-dimensional sublattices. The MSED of each 2 N-dimen-
first step is to partition its constituent N-dimensional sional type is thus also DIST. Those 2 N-dimensional types
lattices into families, subfamilies, and sublattices with in- are then grouped into 2 N-dimensional sublattices with the
creasing MSED. Each finer partitioning of the N-dimen- same MSED DIST, based on the N-dimensional subfami-
sional lattice increases the MSED by a factor of two, with lies. To reduce the number of 2 N-dimensional sublattices,
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we should group as many 2N-dimensional types into a TABLE Il
2N-dimensional sublattice as possible. Let us say that 32-SUBLATTICE PARTITIONING OF 4D RECTANGULAR LaTmiCE
there are M N-dimensional sublattices in each N-dimen- 4D 4D
sional subfamily. Each 2N-dimensional sublattice then 4D Sub-  Sublattice vo . 1 1w Je
comprises M 2N-dimensional types. The M first con- Temily famiy (Subset)y YO, T, 13, 13, 14, IS, 4D Types
stituent N-dimensional sublattices of the M 2N-dimen- 0 g g 8 8 g 0 (4.4)
sional types in each 2N-dimensional sublattice span an 0 0 0 0 1 (1) Eggi
N-dimensional subfamily, and likewise for the M second 0 ! 0 0 0 0 1 1 (D.D)
constituent N-dimensional sublattices associated with each 8 0 1 0 0 0 0 (4.8
2 N-dimensional sublattice. 8 i g g ? (1) ((gg;
Those 2N-dimensional sublattices are further grouped 9 0 1 0 0 1 1 (DO
into 2N-dimensional subfamilies and families with de-
creasing MSED. Each grouping reduces the MSED by a 2 9 6 0 1 o0 5 &R
factor of two. The 2 ¥N-dimensional subfamilies or families 3 0 0 0 1 1 0 (GG
with a certain MSED may be obtained from the N-dimen- 1 0o 0 g 1 1 1 (HH
sional subfamilies or families with the same MSED by 10 g i 0 i 8 ? Ef.g
following the same principles used earlier to obtain 2N- 1 0 1 0 1 1 0 (GH
dimensional sublattices. 0 o 1 0 1 1 1 (HG
To simplify the construction of rotationally invariant 0 0 1 0 0 0 (AC
trellis codes using those sublattices, the grouping of 2N- 4 0 0 1 0 0 1 (BD)
dimensional types into sublattices should be done in such 5 6 0 1 0 1 0 (CA
a way that each sublattice is invariant under as many 2 8 (1) i g (l) (1) Ef'g;
rotations as possible, each rotation corresponding to a 12 0 1 1 0 0 1 (BO
phase ambiguity of the lattice. If it is not possible to make 13 o 1 1 0 1 0 (CB)
sublattices invaniant to all rotations, then each rotation o 1 1 0 1 1 (DA
should at least take a sublattice into another sublattice. 6 0 0 1 1 0 0 (EG)
The principles just described may be used iteratively to ¢ 0 1 1 0 1 (FH
partition a multidimensional lattice based on a partition- 7 g g i i 1 (1) (‘gi’)
ing of the constituent 2D lattices. For example, using those 3 0 1 1 1 0 0 (EH
principles, the 8D rectangular lattice with MSED dg may 14 0 1 1 1 0 1 (FG)
be partitioned into 16 8D sublattices with MSED 44, 15 o 1 1 1 1 0 (GF
. . o . 0 1 1 1 1 1 (HE
based iteratively on the partitioning of each constituent 2D
rectangular lattice into four 2D sublattices 4, B, C, and D 16 1 0 0 0 0 0 (4D
. . 1 0 c 0 0 1 (B.F)
as shown in Figs. 1 and 2. 1 0 0 0 1 0 (CO
The partitioning of the 8D rectangular lattice is de- ‘. 17 1 0 0 0 1 1 (DH
scribed in the following. The first and second constituent 24 i : g g 8 (1’ fgg
2D rectangular lattices form a constituent 4D rectangular 1 1 0 0 1 0 (CH
lattice. As in the example given earlier, this 4D rectangular » 1 1 0 0 1 1 (DG
18 1 0 0 1 0 0 (E.O)
1 0 0 1 0 1 (+£D)
19 1 6 o0 1 1 O (’01. /;)
TABLE I 1 0 0 1 1 1 (H.B)
16-SUBI ATTICE PARTITIONING OF 8D RECTANGULAR LATTICE 5 2% 1 1 0 1 0 0 (£D)
- 1 1 0 1 0 1 (FCO
S bleu 2 } 1 8 1 1 0 (g.B)
ublattice 1 1 1 1 (H.A4)
(Subsey YO, [, 12, I3, 8D Types 1 L6 1 0 0 0 a6
0 0o 0 0 0 (0.0,@0D.22AGI 2 1 0 1 0 0 1 (BH
1 0 0 0 1 (0.1),(1,0),(2.3).3.2) ) 1 0 1 0 1 0 (G5
2 o 0 1 0  (©2.(130.3D ¢ 2 1 0 1 0 1 1 (DF)
3 0 0 1 1 (0.3),0.2,@2.1,(3,0 1 1 1 0 0 0 (AH
4 0 1 0 0 (44).(55.(66.0.7) 2 1 1 1 0 0 1 (BG
$ 0 1 0 1 (4.5). (5,4). (6,7, (1,6) 1 1 1 0 1 0O (CF)
6 0 1 1 0  (46.(57.(64),(1.5) ¥ 1 1 1 0 1 1 (DD
7 0 1oy 1 1 (47.(56).(6.5,(7.4)
8 1 0 0 0 0.4),(1,5),(2,6). 3.1 2 1 0 1 1 0 0 (E.A)
9 1 0 0 1 (0,5), (1,4), 2,7), (3,6) 1 0 1 1 0 1 (FB
10 1 0 1 0 (0,6),(1,7,(2,4),(3,5) 2 1 0 1 1 1 0 (6.0
11 1 0 1 1 0.7, (1,6),(2,5). 3.4) 7 1 0 1 1 1 1 (H.D)
12 1 1 0 0 (40).(51).(62).(7.3) 30 1 1 1 1 0 0 (EB
13 1 1 0 1 (4.1),5.0,(3.0.2) 1 1 1 1 0 1 (FA
14 1 1 1 0 (4.2.(53).0,(1.1) n 1 1 1 1 1 06 (GD)
15 1 1 1 1 (4.3),62.61D.0.0 1 1 1 1 1 1 (HO

ot o—
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lattice with MSED 42 is partitioned into two 4D families
U)_oi and U..i with MSED 24¢. Each 4D family is
further partitioned into four 4D sublattices 0, 1, 2, 3, or 4,
3, 6,7, with MSED 442. A second constituent 4D rectan-
gular lattice formed by the third and fourth constituent 2D
rectangular lattices is similarly partitioned.

Sixty-four 8D types are then formed, each correspond-
ing to a pair of 4D sublattices and denoted as (0,0),
0.1),---, and (7,7). Using the general principles described
earlier, those 64 8D types may be grouped into 16 8D
sublattices with MSED 442 and denoted as 0,1,---, and
15, as shown in Table II. Those 16 8D sublattices may be
further grouped into two 8D families Ui and U3 ,i with
MSED 24¢.

The advantages of grouping multidimensicnal types into
sublattices are clear in this example. Without that group-
ing, the 8D rectangular lattice with MSED d? might have
been partitioned into 256 sublattices with MSED 4dg,
cach sublattice being an 8D subtype formed by con-
catenating 2D sublattices of Figs. 1 or 2, and denoted as
(A, A,4,4), (A4, 4,A4,B), -, or (D, D, D, D). The task
of constructing a trellis code using those 256 sublattices
and the corresponding maximum-likelihood decoding
would be extremely difficult if not impossible.

There are other ways to partition the 8D rectangular
lattice into 16 8D sublattices to give the same distance
properties as the earlier partitioning. However, the earlier
partitioning has the special property that each 8D sub-
lattice is invariant under each rotation corresponding to a
phase ambiguity (90°, 180°, or 270°) of the lattice. With
that property, the construction of rotationally invariant
trellis codes using those 8D sublattices does not need to
consider such rotations and is much simplified.

Based on the earlier partitioning of the 8D rectangular
lattice, it is straightforward to show that the 16D rectangu-
lar lattice with MSED d2 may be partitioned into two
families with MSED 242, and each family may be further
partitioned into 16 sublattices with MSED 4d}.

To partition a multidimensional rectangular lattice with
MSED 4§ into sublattices with MSED greater than 442, a
partitioning of each constituent 2D rectangular lattice into
more than four 2D sublattices should be used. Table I11

4D Racrangular

e T
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gives a partitioning of the 4D Trectangular lattice wiy
MSED d{ into 32 sublattices with MSED 847, based o
an eight-sublattice partitioning of the 2D rectangular lattic
shown in Fig. 3 (note that the rectangular lattice in th
figure is rotated by 45°).

The relationships between the sublattices, subfamilies
and families of the 4D rectangular lattice shown in Table:
I or II1 with the densest 4D lattice D, are now exploited
A translation of the 4D lattice D, may be defined as 4D
sublattice 0 of Table I [3]), [9]. With that definition of D, it
is easy to see that each of the 4D sublattices, subfamilies,
and families of Tables I or II] may be interpreted as a
translated, rotated, or scaled version of D,. The partition-
ing of the 4D rectangular lattice may then be expressed as
in Fig. 4. From that figure, we see that each time the
intrasublattice (a D, lattice) MSED ijs doubled, the num-
ber of 4D sublattices is multiplied by four. Extensions 1o
finer partitionings of the 4D rectangular lattice become
obvious. Fig. 4 also says that a 4D lattice D, with MSED
2d§ may be partitioned into 16 sublattices with MSED
842, based on the eight-sublattice partitioning of its con-
stituent 2D rectangular lattice shown in Fig. 3.

Similar relationships are exploited between the sub-
lattices of the 8D rectangular lattice of Table J] and the
densest 8D lattice E;. A translation of Ey may be defined
as 8D sublattice 0 of Table II [3], [6], [9). With this
definition of E,, it is €asy 1o see that other 8D sublattices
of Table II are also translated Or rotated versions of E,.
The partitioning of the 8D rectangular lattice of Table I]
may therefore be expressed as in Fig. 5, where it is also
shown that each 8D family is an 8D lattice D, 19].

A finer partitioning of the 8D rectangular lattice with
MSED 4§ into sublattices with MSED 84¢ will show that
an 8D lattice E, with MSED 44} may be partitioned into
16 sublattices with MSED 84], based on the eight-sub-
lattice Partitioning of its constituent 2D rectangular lattice
shown in Fig. 3. Each sublattice of E; can be shown to be
another translated, rotated, or scaled version of E;. The
partitioning of E; is also shown in Fig. 5. From that
figure, we see that each time the intrasublatiice (an £
lattice) MSED s doubled, the number of 8D sublattices is
multiplied by 16. Extensions to finer partitionings of the
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Fig. 4. Partitioning of 4D rectangular lattice.
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8D rectangular lattice or the densest 8D lattice E; become
obvious.

Finally, we define an 8D lattice DE; as the union of an
Eg and a rotated version of that E;. The E; is 8D
sublattice 0 of Table II. Furthermore, the rotated version
of that E; is obtained by rotating the third and fourth
constituent 2D points of each 8D point in that E; by 90°
clockwise, which is 8D sublattice 1 of Table II. (Such a
lattice has not to our knowledge appeared previously in the
coding literature.) The MSED of the lattice DE; is thus
2d?. This lattice may be partitioned into two 8D families
with MSED 442 Each family is a version of E; which
may be further partitioned into 16 sublattices with MSED
8d?. We will use DE; and this 32-sublattice partitioning in
a later coded-modulation scheme.

111. CONSTRUCTION OF MULTIDIMENSIONAL
CONSTELLATIONS

To transmit Q information bits per signaling interval
using a 2N-dimensional (rellis code of rate m/m+1, a
2N-dimensional constellation of 2¥¢*! points is needed.
In this section, we show how to construct such finite
constellations from various infinite 2N-dimensional lat-
tices. _

For small values of NQ +1 and a communication sys-
tem where additive Gaussian noise is the only impairment,
the constellation may be constructed to keep the average
power as small as possible. However, for large values of
NQ +1 or a communlcation system where other impair-
ments such as linear or non'near distortion or phase jitter
are also present, of which voiceband data transmission is
an example, it is important to construct the constellation
so0 that 1) the complicated mapping between the NQ +1
bits and the 2N-dimensional constellation may be con-
verted to N simple constituent 2D constellation mappings;

2) the size of the constituent 2D constellations is kept as
small as possible; and 3) the peak-to-average power ratio is
also kept as small as possible. The construction we give is
similar to that used in [3] for transmitting a nonintegral
number of bits per signaling interval in an uncoded scheme.

As we shall see, using this construction, the size of the
constituent 2D constellations of a multidimensional con-
stellation may be significantly -smaller than that of a
corresponding 2D trellis-coded modulation scheme. There
is also essentially no penalty in peak-to-average power
ratio from the use of a multidimensional constellation.
With all of these desirable characteristics, the construction
leads the way to practical applications of multidimensional
trellis-coded modulation.

To appreciate the advantages L)f this construction, we
will focus on the case where Q is equal to seven (unless
otherwise specified). Such a number of bits per signaling
interval may be used in voiceband modems at data rates
higher than 14.4 kbit/s.

To construct a 4D constellation of 2!* points from the
4D rectangular lattice, we first construct its constituent 2D
constellations. Fig. 1 shows a 192-point 2D constellation
partitioned into four subsets A4, B, C, and D. The 2D
constellation includes the 128-point cross constellation
(128-CR) located within the boundary shown, which is
typically used in an uncoded scheme for transmitting seven
bits per signaling interval. Those 128 points are called
inner points. The 2D constellation also includes an outer
group of 64 points, half as many as in the inner group. The
outer points are selected as close to the ongin as possible
while satisfying the following two requirements. First, each
subset A, B, C, or D has the same number of outer points.
Second, if an outer point is rotated by 90°, 180°, or 270°,
another outer point is obtained. The first requirement is
necessary to convert the 4D constellation mapping into a
pair of 2D constellation mappings. The second require-
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ment preserves the symmetries of the lattice in the constel-
lation. The two requirements should also be satisfied by
the inner points, as 128-CR does.

The 4D constellation of 2'* points is then constructed
by concatenating a pair of the 192-point 2D constellations,
and excluding those 4D points whose corresponding pair
of 2D points are both outer points. The average power of
the 4D constellation may be determined as follows. For
each constituent 192-point 2D constellation, the inner
group is used three times as often as the outer group. The
average power of the 4D constellation, which is also the
average power of each constituent 192-point 2D constella-
ton in this case, is thus 3 /4 times the average power of the
inner points plus 1/4 times the average power of the outer
points. It is then straightforward to show that the average
power of the 4D constellation is 28.0625d¢. The peak
power of the 4D constellation, which is also the peak
power of the constituent 192-point 2D constellations, is
60.5d. The peak-to-average power ratio of the 4D constel-
lation is therefore 2.16, smaller than the peak-to-average
power ratio, 2.33, of the 64-point 2D square constellation
commonly used in an uncoded scheme for transmitting six
bits per signaling interval.

The partitioning of the 4D rectangular lattice of Table I
underlies the partitioning of this 4D constellation. From
now on, for notational convenience, when we say that a
constellation is of a certain type, we mean that the constel-
lation is derived from a lattice of that type. For example,
when we say a 4D rectangular constellation, we mean a 4D
constellation derived from the 4D rectangular lattice. Fur-
thermore, we will carry over the termunology used in the
partitioning of a lattice, such as family, subfamily, type,
and subtype, to the partitioning of a constellation derived
from that lattice. The terminology “sublattice” will be
replaced by “subset” to be consistent with previous work
on partitioning 2D constellations.

In general, to transmit Q information bits per signaling
interval using a rate-m/m+1 trellis code with a 2N-
dimensional rectangular constellation, where N is a power
of two, the 2 N-dimensional constellation of 2¥@+! points
1s constructed as follows. The first slep is 10 obtain a
constituent 2D rectangular constellation. The 2D constel-
lation is divided into two groups, an inner group and an
outer group. The number of points in the inner group is
29, the same as that in the corresponding uncoded scheme.
The number of points in the outer group is 1/N of that in
the inner group. The inner group is selected first from the
rectangular lattice so that the average power of the inner
group is kept as small as possible. The outer group is
sclected from the rest of the rectangular lattice so that the
average power of the outer group is minimized. The inner
and outer groups must satisfy two requirements: first, each
subset, obtained by partitioning the 2D constellation in
accordance with the partitioning of the 2 N-dimensional
constellation as described in the last section, has the same
number of points in each group as other subsets; and
second, each group is invariant under 90°, 180°, and 270°
rotations. (Note that when a 2D rectangular constellation
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is partitioned into four subsets as in Fig. 1, satisfaction of
the second requirement guarantees that the first require-
ment is also satisfied. However, this may not be the case
when a 2D rectangular constellation is partitioned into
more than four subsets.)

The 2N-dimensional constellation of 2V¥+! points is
then constructed by concatenating N such 2D constella-
tions, and excluding those 2 N-dimensional points corre-
sponding to more than one 2D outer point. There are 2¥2
2 N-dimensional points comprising only 2D inner points
and 272 2 N-dimensional points comprising one 2D outer
point. For each constituent 2D constellation, the innper
group is used 2N —1 times as often as the outer group.
The average power of the 2 N-dimensional constellation,
which is also the average power of each constituent 2D
constellation in this case, is thus (2N -1)/2N times the
average power of the inner points plus 1/2N times the
average power of the outer points.

Following the general principles described, an 8D rect-
angular constellation of 2% points may be constructed
from the 160-point 2D constellation shown in Fig. 2. The
2D constellation is partitioned into four subsets A, B, C,
and D in accordance with the 16-subset partitioning of the
8D rectangular constellation (see Table II). The innper
group is still 128-CR. The outer group has 32 points, only
a quarter as many as in the inner group. The 8D constella-
tion is formed by concatenating four such 160-point 2D
constellations, and excluding those 8D points correspond-
ing to more than one 2D outer point. The average power
of this 8D constellation is 23.59375d{ with peak-to-aver-
age power ratio 2.14.

One advantage of using trellis coding with a multidi-
mensional rectangular constellation instead of a 2D con-
stellation becomes clear. It not only reduces the number of
redundant bits but also reduces the size of the constituent
2D constellations. This is desirable especially when the size
of the 2D constellation for the corresponding uncoded
scheme, such as 128-CR, is already very large.

Using a multidimensional constellation has another ad-
vantage. It is easy to transmit a nonintegral number of
information bits per signaling interval in such a constella-
tion. Nonintegral numbers of bits per signaling interval
poses a serious problem to any 2D modulation scheme. An
unnecessarily large 2D constellation with a large peak-to-
dverage power ratio is often required. This issue may be
eliminated in a multidimensional constellation. For exam-
Ple, to transmit 7-1/4 information bits per signaling inter-
val using a rate m/m +1 trellis code with an 8D rectangu-
lar constellation partitioned in accordance with Table II,
the 8D constellation of 2% points may be constructed
from the 192-point 2D constellation of Fig. 1 as follows. A
4D constellation of 2'% points is first constructed from the
192-point 2D constellation of Fig. 1 as before. The 8D
constellation of 2% points is then formed by simply con-
Catenating a pair of such 4D constellations. The average
power and peak-to-average power ratio of this 8D constel-
lation are 28.062542 and 2.16, respectively, the same as
those of the constituent 4D constellations. The increase in
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the average power of this 8D constellation from that of the
previous 8D constellation of 2% points is 0.75 dB, as one
would expect based on the expectation that an additional
information bit per signaling interval costs about an ad-
ditional 3 dB of signal power [3]. Generalization of this
example to other nonintegral numbers of bits or other
multidimensional constellations will be reported in a com-
panion paper.

In the remainder of this section, we shall briefly describe
a few more multi-dimensional constellations to be used in
the later coded modulation schemes. To partition a 4D
rectangular constellation into 32 subsets as shown in Table
111, each constituent 2D constellation is partitioned into
eight subsets. Fig. 3 shows a 192-point 2D constellation
with such a partitioning. The constellation happens 1o be
the same as that of Fig. 1 except for a 45° rotation. A pair
of such 2D constellations may be used to construct a 4D
rectangular constellation of 2'* points with the same aver-
age power and peak-lo-average power ratio as before.

A 16D rectangular constellation of 2*7 points may be
constructed from a 144-point 2D constellation with 128-CR
as its inner group and only 16 pdints in its outer group.
The average power of the 16D constellation can be shown
to be 21.87542 with peak-to-average power ratio 2.03.

In the case where a multidimensional constellation is
derived from a nonrectangular lattice such as D,, Eg, or
DE,, the construction of the nonrectangular constellation
is slightly different from that of a rectangular constella-
tion. The difference occurs because when the multidimen-
sional nonrectangular constellation is constructed from its
constituent 2D rectangular constellations, the concatena-
tion of 2D points must be a valid point of the nonrectan-
gular lattice.

With this difference, it can be shown that a 4D constel-
lation D, of 2!* points may be constructed by concatenat-
ing a pair of 256-point 2D rectangular constellations. The
4D constellation has an average power 40.6875d2 and
peak-to-average power ratio 1.93.

Similarly, a 320-point 2D rectangular constellation may
be used 1o construct an 8D constellation Ey of 2% points
with average power 47.133d? and peak-to-average power
ratio 2.17. The same 256-point 2D rectangular constella-
tion used for the 4D constellation D, may be used to
construct an 8D constellation DE; of 2*° points with the
same average power and peak-to-average power ratio as
for the 4D constellation D,. Note that using an 8D con-
stellation DE, rather than E, reduces both the size of the
constituent 2D constellation and the average power of the
8D constellation.

IV. TreLLs-CODED MODULATION WITH
MULTIDIMENSIONAL CONSTELLATIONS

To send Q information hits per signaling interval using
arate-m /m +1 trellis code with a 2 N-dimensional constel-
lation partitioned into 27" ! subsets, m of the NQ infor-
mation bits arriving in each block of N signaling intervals
enter the trellis encoder, and the resulting m +1 coded bits
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specify which 2 N-dimensional subset is to be used. The
remaining information bits specify which point from the
selected 2 N-dimensional subset is to be transmitted.

In this section, we show how to construct rate-m /m+1
trellis codes with various partitionings of 2N-dimensional
constellations and how to select a point from a 2N-dimen-
sional subset; or, more generally, how to map the NO +1
trellis-encoded or nontrellis-encoded bits into a 2 N-dimen-
sional constellation. The 2 N-dimensional constellation
mapping is converted to N constituent 2D constellation
mappings with the assistance of a bit converter and a
block encoder.

A number of trellis codes have been constructed and
evaluated in terms of coding gain, error coefficient, trans-
parency to phase ambiguities, size of constituent 2D con-
stellations, peak-to-average power ratio, and complexity.
In particular, a 16-state code with a 4D rectangular con-
stellation partitioned as in Table 1 is shown in Section
IV-A. Section IV-B shows a 64-state code with an 8D
rectangular constellation partitioned as in Table 11. These
two codes are optimal in the sense that, given the constel-
lation and its partitioning, each code achieves both the
largest possible coding gain and the smallest possible error
coefficient with the smallest number of states. Both codes
are transparent to all phase ambiguities (90°, 180°, and
270°) of their constellations.

To increase the coding gain further using a 4D rectangu-
lar constellation, a finer partitioning of the 4D constella-
tion as shown in Table III should be used. Section IV-C
shows a 64-state code with this partitioning of the 4D
rectangular constellation. This is the smallest number of
states that can be used to realize the larger coding gain
promised by the finer partitioning of the 4D constellation.
This 64-state code is also transparent to all phase ambigui-
ties of the constellation.

In Section IV-D, we extend our study to other codes
with 4D, 8D, and 16D rectangular constellations, D,, Ejg,
and DE,. Again, as in the previous section, we will focus
on the case where the number Q of information bits
transmitted per signaling interval is scven unless otherwise
specified. The seven information bits arriving in the cur-
rent signaling interval n are denoted as I1,, I2,,---, and
17,.

A. 16-State Code with 4D Rectangular Constellation

A rate-2/3, 16-state code with a 4D rectangular constel-
lation of 2!3 points is shown in Fig. 6. The 4D constella-
tion is constructed from the 192-point 2D constellation of
Fig. 1 as in the last section and is partitioned into eight
subsets as in Table 1. The three output bits Y0,, 11, and
127, of the trellis encoder are associated with the 4D
subsets in accordance with Table L.

If we denote the current and next states of the trellis
encoder as Wl,WZ,WB'W4’, p=n and n+2, the trellis
diagram is as shown in Fig. 7. The association of 4D
subsets with the state transitions of Fig. 7 satisfies the
following three requirements: 1) the 4D subsets associated




4Y.
I Tnes 2Tael
16"' z‘m
1544, 157
LLLRT] 24 040
*——qls"' ] 23041
12ne1 |40 BLOCK 22 nei
et ENCODER I3,
1laet 22,
174 2T
‘6' zs.
13a 28n
144 : 24,
LT ey L 130 =1 Zlaw:
J2a_ Jencober  Jlarm-—~————oo o a2 12n BT 2004t
lin ‘

® Edwiwm

T  Sigoaliag Istarval

ED teley Dlamame

Fig. 6. 16-state code with 4D rectangular constellation.
Sare sTaE
40 SUBSET w2 W3y, 0213 Wios2 W22 W30s w2
o21rs]oooo
4657|000
2031 ({0010
€475 /0011 ’;'{;‘:‘:""éi’
130210100 \\‘\\\‘)'?0.-,";;0?
5746 (0101 agg‘.}%..;’o;”a';
3120{01i1 10 X
7564 [0 1 1
2031|1000
6€475({ 100!
cz2is3/i1010
46571101 )
si120(1100
75641101
1so2li1 110
S746[1 11
Fig. 7. Trellis diagram of 16-state code of Fig. 6.

with the transitions leading from a state are different from
cach other and belong to the same 4D family U2_,i or
U4 (see Section 11), and likewise for the 4D subsets
associated with the transitions leading to a state; 2) the
MSED between two allowed sequences of 4D subsets
corresponding to two distinct trellis paths is larger than
4d3, which is the MSED of each 4D subset; and 3) a
one-to-one function' £ that maps each state of the trellis
encoder into another state may be defined so that the
following statement is valid Denote X as the 4D subset
associated with the transition from a current state i to a
next state j, and Y as the 4D subset obtained when X is
rotated by 90° clockwise. Then Y is associated with the
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transition from the current state F(i) to the next state
F(j). The function F for this code is

F: W1, W2, W3 Wa, ~ W1 w2, W3, wa,

where an overbar denotes inversion.

That the second requirement above is satisfied may be
seen as follows. Referring to Fig. 7, for each current state
W1 W2 W3 W4, the four possible next states are
W3, W4 X1X2, where X1X2 = 00, 01, 10, or 11. All trans;-
tions originating from even-numbered states (states with
W4, equal to zero) are associated with 4D subsets from the
first 4D family U?_ i, while all transitions originating from
odd-numbered states (states with W4, equal 10 one) are
associated with 4D subsets from the second 4D family
U/_.i. Furthermore, if Y is the 4D subset associated with
the transition from a current state W1 M2,W3 W4, 10 an
even-numbered (or odd-numbered) next state, then Y is
also the 4D subset associated with the transition from the
current state W1, W2 W3 W4, to an odd-numbered (or
even-numbered) next state.

The first requirement guarantees that the MSED be-
tween any two allowed sequences of 4D points is 442. The
coding gain of the code over the uncoded 128-CR there-
fore is

101 4ds 9\ _ 46648
%8101 28062547 | 20547 | ~ 466 9B,

where 28.06254¢ is the average power of the 4D constella-
tion as determined in the last section, and 20.5d¢ is the
average power of 128-CR. This is also the largest possible

. coding gain that can be achieved with the partitioning of

the 4D rectangular constellation of Table I. This coding
gain may be viewed as the combination of a gain of 6.02
dB from the trellis code if the 4D constellation were not
expanded from 2'* to 2'* points, and a loss of 1.36 dB due
to that expansion. The expansion loss is less than the 3 dB
loss of a 2D rate-m /m +1 trellis code, as promised by the
use of a 4D constellation.

The second requirement ahove eliminates MSED error
events which differ in more than one 4D point from a
given sequence of 4D points. The error coefficient of the
code is thus minimized to 24 per 4D point (equivalent to
12 per 2D point), which is the number of nearest neighbors
to any point in the same 4D subset (a D, lattice). Taking
into account the boundary effect of the finite constellation
would reduce this value.

The third requirement guarantees that the code can be
made transparent to all phase ambiguities (90°, 180°, and
270°) of the constellation. Since the same 4D subset is
obtained when a 4D subset is rotated by 180°, the con-
struction of the trellis code needs to take into account only
90° rotation. The 270° rotation is then taken care of
automatically.

We now show how to map the three trellis-encoded bits
and the remaining 12 non-treliis-encoded information bits
into the 4D constellation. Referring to Table I, after using
the three trellis-encoded bits to specify a 4D subset, a
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fourth nontrellis-encoded information bit I3, is used to
specify a 4D type within the 4D subset. To make the
scheme transparent to all phase ambiguities of the constel-
lation the association of the three trellis-encoded bits Y0,,
., and 127, and the fourth uncoded bit /3], with 4D
lypes is done as follows. For each pattern Y0,71,72,13.,
denote X as the associated 4D type. Denote X1, X2, and
X3 as the 4D types obtained when the 4D type X is
rotated by 90°, 180°, and 270° clockwise, respectively.
Denote §3,52,. §3,52,, and $3,52, as the bit pairs
obtained when the bit pair 73;J2, is advanced by
one, two, and three positions, respectively, in a circular
sequence 00, 01, 10, 11. Then the 4D types associated
with the bit patterns Y0,J1,52,83,, Y0,/1,52,53,;, and
Y0,71,52,53, are X1, X2, and X3, respectively.

As a first step of the 4D constellation mapping, 8 bit
converter converts the four bits Y0,, I1,, J2;, and I3;
into two pairs of selection bits, 20,21, and 20,,,7Z1,.,,,
which are used to select the pair of 2D subsets correspond-
ing to the 4D type. With the correspondence between the
bit pair 20,21, and 2D subsets A, B, C, and D as shown
in Table 1V, the operation of the bit converter is shown in
Table 1. '

TABLE IV
CORRESPONDENCE BETWEEN Z0, Z1, AND Four 2D SUBSETS
2D Subset 20,21,
A 00
B 01
C 10
D 11

A 4D block encoder then takes three of the remaining
eleven uncoded information bits, I1,,,, 12,,,,and I3, ,,,
and generates two pairs of selection bits, Z2,Z3, and

Z2,.,Z3,., in accordance with Table V. Each of the bit
pairs can assume any of the values 00, 01, or 10, but they
cannot both assume the value 10. The first pair 22,73,
will be used to select the inner group or outer group of the
first <elected 2D subset, and likewise for the second pair
with respect to the second 2D subset. The inner group is
organized into two halves. If the bit pair is 00, one-half of
the inner eroup is selected; if the bit pair is 01, the other
half of the inner group is selected; otherwise the outer
group 1s selected.

TABLE V
4D BLoCk ENCODER
n,., 12, 13, ., z2, Z3, Z2,., Z3,.,
0 0 0 0 0 0 0
0 0 1 0 0 0 1
0 1 0 0 0 1 0
0 1 v 0 1 1 0
1 0 0 1 0 0 0
1 0 1 1 0 0 1
1 1 0 0 1 0 0
1 1 1 0 1 0 1

There are 16 2D points in the outer group or in either
half of the inner group of a 2D subset, and eight uncoded
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information bits remain for selecting from among those
2D points. Those eight bits are taken in two groups of four
bits each and are renamed as 74,75 76 z27,,
p=n and n+ 1. The first group Z24,75,26, Z7 1s used to
select a 2D point from the prcvxous]y sclcctcd outer group
or the selected half of the inner group of the first 2D sub-
set, and likewise for the second group Z4,,,25, .26 .,
Z7,,,

To make the scheme transparent 1o all phase ambiguities
of the constellation, the association of the bit group
22,73,24,25,26,Z7,, p=n or n+1, with 2D points
should be such that e same bit pattern of the group is
associated with each of the four 2D points which can be
obtained from each other through 90° rotations. In Fig. 1,

each point in subset A is associated with a bit pattern of
22,73,24,75,76,Z7,. The bit pattern associated with
pomts m othcr sugscts can be obtained by following the
above rule.

To summarize, the bit converter and the 4D block
encoder take the three trellis-encoded bits and the 12
remaining uncoded information bits and produce two
groups of eight selection bits each, 72,723,724 75 76,
Z7,20,71,, p=n and n+1. The first group is then used
to addrcss a 2D mapping table to obtain a first 2D point.
The table may be constructed from Fig. 1 and Table 1V.
The second group addresses the same 2D mapping table to
obtain the second 2D point. The 4D point corresponding
to the pair of 2D points is the one selected for transmuis-
sion.

That the scheme is transparent to all the phase ambigui-
ties of the constellation may be seen as follows. If we
translate a sequence of the bit pairs J/3,J2/ appearing at
the inputs of the trellis encoder and the bit converter all by
the same number of positions, one, two, or three, in a
circular sequence, 00, 01, 10, 11, then the sequence of 2D
points produced by the 4D constellation mapping proce-
dure will be rotated by 90°, 180°, and 270° clockwise,
respectively. Therefore, a differential encoder of the form

1312, = (13,12, _,+ I3,12,)mod 100, .,

in Fig. 6 and a corresponding differential decoder of the
form

13,12, = (1312, - I3, _,12'_,)mod 100, ..,

at the output of the trellis decoder will remove all the
phase ambiguities of the constellation.

Two general principles in constructing a trellis code with
a multidimensional constellation may be extracted here.
The first principle says that the intersubset MSED of the
multidimensional subsets associated with transitions
originating from each state of the trellis encoder should be
kept as large as possible, and likewise for the multidimen-
sional subsets associated with transitions leading to each
state. This principle is also used in [1] for constructing a
2D trellis code. '

The second principle says that for each of those phase
ambiguities of the constellation such that the multidimen-
sional subsets are not invariant under the corresponding
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rotations, it should be possible to define a one-to-one
function F which maps each state of the trellis encoder
into another state so that the following statement is valid.
Let X be the multidimensional subset associated with the
transiton from a current state i 10 a next state J.Let Y be
the multidimensional subset obtained when X is rotated
by a number of degrees corresponding to that phase am-
biguity. Then Y is the multidimensional subset associated
with the transition from the current state F(i) to the next
state F( ;). The second principle is also used in [2] for
constructing a rotationally invariant 2D trellis code.

B. 64-State Code with 8D Rectangular Constellation

A rate-3/4, 64-state code with an 8D rectanguiar con-
stellation of 2%° points is shown in Fig. 8. The 8D constel-
lation is constructed from the 160-point 2D constellation
of Fig. 2 as in the last section and is partitioned into
sixteen subsets as in Table I1. The association of the four
trellis-encoded bits Y0,, /1, I2,, and I3, with the 8D
subsets is also shown in Table II.
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Fig. B. 64-state code with 8D rectangular constellation.

The association of the 80 subsets with the state transi-
tions of the trellis code satisfies the first general principle
described at the end of the last subsection. Therefore the
MSED between two allowed sequences of 8D points is
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4d}, and the coding gain over the uncoded 128-CR is

101 44} d?
%B10| 235937547 | 20543 | =541 B

where 23.5937547 is the average power of the 8D constel-
lation as determined in the last section. This is also the
largest possible coding gain that can be achieved with the
partitioning of the 8D rectangular constellation of Table
I1. This coding gain may be segregated into two parts, a
gain of 6.02 dB from the trellis code if the 8D constellation
were not expanded from 2% to 2% points, and a loss of
0.61 dB due to that expansion. This expansion loss is less
than the 1.36 dB loss for the 4D code in the Jast subsec-
tion.

There is no need 1o consider any of the phase ambigui-
ties (90°, 180°, and 270°) of the 8D rectangular constella-
tion in the construction of a rotationally invariant trellis
code with the partitioning of the constellation of Table 11
because each 8D subset is invariant under rotations corre-
sponding to those phase ambiguities.

The association of the 8D subsets with the state transi-
tions also meets the following requirement. The MSED
between two valid sequences of 8D subsets corresponding
to two distinct trellis paths is larger than 4d2, which is the
MSED of each 8D subset. The error coefficient of the code
is thus minimized to 240 per 8D point (equivalent to 60
per 2D point), which is the number of nearest neighbors to
any point in the same 8D subset (an E, lattice).

Referring to Fig. 8, after an 8D subset is selected by the
four trellis-encoded bits, another four nontrellis-encoded
information bits 14, IS,, 16,, and 17, are used to select
an 8D subtype within the 8D subset (see Section 1I). To
make the scheme transparent to all phase ambiguities of
the constellation, the association of the four uncoded
information bits with the 8D subtypes meets the following
requirement. For each 8D subset, let X be the 8D subtype
associated with a bit pattern of 14,15,16,17!. Let X1, X2,
and X3 be the 8D subtypes obtained when X is rotated by
90°, 180°, and 270° clockwise, respectively. Denote $6,57,,
56,57,, and §6,S7, as the bit pairs obtained when the bit
pair 16,17, is advanced by one, two, and three positions,
respectively, in a circular sequence 00, 01. 10, 11. Then the
8D subtypes associated with the bit patterns J4,15,56,57,,
14,15,56,87,, and 14,15,56,57;, are X1, X2. and X3,
respectively. The 8D subtype selection procedure shown in
Fig. 9 meets the above requirement.

To map the four trellis-encoded bits and the 25 remain-
ing nontrellis-encoded information bits into the 8D con-
stellation, a bit converter and an 8D block encoder are
used to convert those 29 bits into four groups of eight
selection bits each, 22},23’24'25’26,27,2%21,‘ p=n,
n+1, n+2 and n+3. Each group is then used to address
the same 2D mapping table 10 obtain a 2D point. The 8D
point corresponding to those four 2D points is the one
selected for transmission. The 2D mapping table may be
constructed from Fig. 2 and Table ]V. In Fig. 2, the same
six-bit value is associated with each of the four points
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Fig. 9. 8D subtype sclection procedure for 64-state code of Fig. 8.

which can be obtained from each other through 90° rota-
tions.

The table for the bit converter can be obtained from Fig.
9 and Table IV. The operation of the 8D block encoder is
shown in Fig. 10. It takes nine uncoded information bits
and generates four groups of three selection bits each.
Each bit group can assume any of the values 000, 001, 010,
011, and 100, but at most one of the bit groups can assume
the value 100. Each bit group is used to select the inner or
outer group of points of a 2D subset corresponding to the
previously selected 8D subtype. If the value of the bit
group is 000, 001, 010, or 011, a quarter of the inner group
of points is selected; if it is 100, the outer group of points
is selected.

The differential encoder in Fig. 8 has the form
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It is straightforward to show that the scheme in Fig. B is
transparent to all phase ambiguities of the constellation.

C. 64-State Code with 4D Rectangular Constellation

To increase the coding gain further using a 4D rectangu-
lar constellation, a finer partitioning of the 4D constella-
tion as shown in Table III should be used. A rate-4/5,
64-state code with a 4D rectangular constellation of 21
points is shown in Fig. 11. The 4D constellation is con-
structed from the 192-point 2D constellation of Fig. 3 as in
the last section. The association of the five trellis-encoded
bits Y0,, I1,, I12,, I3, and I4,, and a sixth nontrellis-
encoded information bit, 15,, with the 4D types is shown
in Table I11. The 4D constellation mapping is converted
into a pair of constituent 2D constellation mappings in a
manner similar to that in the previous two subsections.

The MSED between two allowed sequences of 4D points
of this code may be derived from the trellis diagram of the
code. The trellis diagram satisfies the first general principle
described in Section IV-A. The MSED of the code there-
fore is at least 4d42. For each current state W1,W2 W3,
W4 WS W6,, the sixteen possible next states are W5,W6,
X1X2X3X4 where X1, X2, X3, and X4 are binary vana-
bles. All the transitions originating from even-numbered
states (states with W6, equal to 0) are associated with 4D
subsets from 4D family O (see Table III). All the transi-
tions originating from odd-numbered states (states with
W6, equal to one) are associated with 4D subsets from 4D
family 1. Denote Y as the 4D subset associated with the
transition from a current state W1 W2 W3 W4 W5 W6, to
a next state WS W6 X1X2X3X4. Then Y and the three
4D subsets associated with the transitions from the current
state W1 W2 W3 W4 W5 W6, to the three next states
WS W6, XS X6X3X4, where X5 and X6 are binary vari-
ables and X5X6 is not equal to X1X2, all belong to the
same 4D subfamily (see Table 11I). Furthermore, if Y is
the 4D subset associated with the transition from a current
state W1, W2 W3 W4 W5 W6, to an even-numbered (or
odd-numbered) next state, then for each of the four values
of a bit pair X1X2, Y is also the 4D subset associated with
the transition from the current state W1,W2 X1XIWS5,

1617 = (I6]_ J7;_ o+ 16,17,) 00d 100

W6, to an odd-numbered (or even-numbered) next state.

1,020,100 | Za2%hs | ZeiPeni Bl | Btz [PonsBPaestes
o x xfom 1|01 15 |0 B 17, |00 12,
. 1 o of1 0 o 0 15 [0 3,17 ,,]0 nﬂzuﬁ
1 0 tlom 15,01 0 0 o ® 17, o 12,
101 of o w1 o 1011 0 O 0 Il .12,
101 v fone s o T |0 T I3, 0 0

Fig. 10. 8D block encoder.
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Fig. 11. 64-state code with 4D rectangular constellation.

The above statements together guarantee that the MSED
of the code is at least 542. Since there exists an error event
with a squared Euclidean distance 542, the coding gain of
this code over the uncoded 128-CR is 5.63 dB. This coding
gain may be segregated into two parts, a gain of 6.99 dB
from the trellis code if the 4D constellation were not
expanded from 2'* to 2'* points, and a loss of 1.36 dB due
to that expansion. With some straightforward calculation,
the error coefficient of the code may be shown to be 144
per 4D point, equivalent to 72 per 2D point.

Since the 4D subsets are not invariant under any of the
rotations corresponding to the three phase ambiguities of
the constellation, three one-to-one functions F1, F2, and
£3, which map each state of the trellis encoder into
another state and correspond to 90°, 180°, and 270°
rotations, respectively, are needed as required bv the sec-
ond general principle of Section IV-A. Those three func-
tions are defined as follows:

F1: W1,W2, W3, W8, WS, We, W1, W2, X3W4, Xsws,
F2: W1,W2,W3 W4 WS, we, - W1,W2, W3, W4, Ws W,
F3: W1,W2,W3,W4,Ws We, - WI,W2,Y3Wa,Yswe,

]

where
X3X5=(W3,Ws, +01) mod,,,,

and
Y3YS = (W3,W5, +11)mod,_,.

The differential encoder of Fig. 11 is the same as that of
Fig. 6 except that its input and output bit pairs are now
named as J4,13, and 14,13, rather than 13,12, and
13,12;, respectively.

D. Extensions

The number of states of the 16-state 4D code of Section
IV-A or 64-state 8D code of Section IV-B may be reduced
without sacrificing the coding gain, but the error coeffi-
cient is increased. For example, a 32-state code with the
same partitioning of the 8D rectangular constellation as in
Section IV-B can provide 5.41 dB coding gain, the same as
the 64-state code of that subsection, but its error coeffi-
cient is 124 per 2D point, compared to 60 for the 64-state
code. The smallest number of states required for a code
with the partitioning of the 4D rectangular constellation of
Section IV-A to provide 4.66 dB coding gain is eight, the
same as the number of 4D subsets of that partitioning. The
smallest number of states required for a code with the
partitioning of the 8D rectangular constellation of Section
IV-B to provide 5.41 dB coding gain is 16, again the same
as the number of 8D subsets of the partitioning.

Given the partitioning of the 4D or 8D rectangular
constellation of Section IV-A or -B, it is impossible to
increase the coding gain further or reduce the error coeffi-
cient of the 16-state or 64-state code of those two subsec-
tions. With a finer partitioning of the 4D or 8D rectangu-
lar constellation based on the same partitioning of the
constituent 2D constellations, however, it becomes possi-
ble to reduce the error coefficient further by increasing the
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number of states. For example, a 32-state code with the 4D
rectangular constellation partitioned into 16 subsets, each
subset corresponding to a 4D type of Table I, can provide
4.66 dB coding gain, the same as that of the 16-state code
of Section IV-A, but the error coefficient is four per 2D
point, less than the 12 of the 16-state code and the same as
that for the uncoded 128-CR. Note that this kind of
partitioning of a multidimensional lattice may be easily
derived from a coarser partitioning of the same lattice
obtained by following the principles described in Sec-
tion 1.

To increase further the coding gain of the 16-state or
64-state code of Sections IV-A or -B, a finer partitioning of
the 4D or 8D constellation based on a finer partitioning of
the constituent 2D constellations should be used. The
64-state code of Section IV-C is an example. Note that the
number of states of that code cannot be reduced without
sacrificing the coding gain. On the other hand, the coding
gain can be further increased, or the error coefficient
reduced, using the same partitioning of the 4D rectangular
constellation as in Section IV-C, if the number of states is
increased beyond 64. The upper limit on the coding gain in
this case is 7.67 dB, and the lower limit on the error
coefficient in the case of 7.67 dB coding gain is 12 per 2D
point.

With a 16D rectangular constellation of 2°” points con-
structed from a 144-point 2D constellation and partitioned
into 32 subsets as in the previous sections, it can be shown
that a 32-state code can be constructed to achieve a MSED
of 4d2. The coding gain of this code over the uncoded
128-CR is 5.74 dB. This is also the largest possible coding
gain that can be achieved with the 32-subset partitioning
of the 16D rectangular constellation. This coding gain may
be segregated into two parts, a gain of 6.02 dB from the
trellis code if the 16D constellation were not expanded
from 2% to 2% points, and a loss of 0.28 dB due to that
expansion. This expansion loss is only 0.33 dB less than
that for the 8D code of Section IV-B. The error coefficient
of this code is larger than 1000 per 2D point. This number
can be reduced to 412 if the number of states is increased
10 128. The lower limit on the error coefficient using the
32-subset partitioning of the 16D constellation is 284 per
2D point, which is 1/8 the number (2272) of nearest
neighbors to any point in the same 16D subset.

Trellis codes using an 8D constellation Eg of 2% points
constructed from a 320-point 2D constellation and parti-
tioned into 16 subsets as in the previous sections are
described next. Although the partitioning of Ey is such
that there is no 8D family in between the constellation and
the 8D subsets (see Fig. ), we group the 16 8D subsets
into two equal-sized 8D families in an arbitrary manner.
The intrafamily MSED is therefore the same as the MSED
of the constellation. Now note that the distance rela-
tionship between an 8D family and its eight subsets of the
constellation E, is identical to that between an 8D family
and its eight subsets of the 8D rectangular constellation
partitioned in accordance with Table 11 Since the con-
struction of a trellis code with that partitioning of the 8D

497

rectangular constellation does not depend on the inter-
family MSED, all the trellis codes constructed for the 8D
rectangular constellation can be used for the constellation
E,.
’ln particular, the rate-3/4, 64-state code of Section IV-B
can be used with E, to achieve a MSED of 84¢, which is
the MSED of each 8D subset. Since the average power of
the constellation E, is 47.133d], the coding gain of this
code over the uncoded 128-CR is 541 dB. Thus 1s also the
largest possible coding gain that can be achieved with the
16-subset partitioning of E,. This coding gain may be
segregated into three parts: a gain of 3.04 dB from the use
of E; [3], another gain of 3.01 dB from the trellis code if
the constellation E; were not expanded from 2% 10 2%
points, and a loss of 0.64 dB due to that expansion. The
error coefficient of this code is the minimum, 240 per 8D
point (or 60 per 2D point), which is the number of nearest
neighbors to any point in the same 8D subset (an E,
lattice). Note that both the coding gain and error coeffi-
cient of this code are the same as those of the 64-state code
with the 8D rectangular constellation of Section IV-B.

The fact that the large MSED of E; does not help a
trellis code achieve additional coding gain suggests the
consideration of the 8D lattice DE;. The MSED of the
lattice DE; is only 2d2. An 8D constellation DE; of 2%
points can be constructed from a 256-point 2D constella-
tion with an average power 40.6875d3, as shown in Section
111. Both the size of the constituent 2D constellation and
the average power of the constellation DE; are less than
those of an 8D constellation E, of equal size. The constel-
lation DE, is partitioned into two families of 16 subsets
each as in Section II. The intrafamily and intrasubset
MSED’s are 4d3 and 84¢, respectively, which are the same
as those of the partitioning of Eg described above. A
rate-4/5, 32-state code can be constructed with the con-
stellation DE, to achieve an MSED of 843. The coding
gain of this code over the uncoded 128-CR is therefore
6.05 dB. This is also the largest possible coding gain that
can be achieved with the 32 subsets of the constellation
DE,. With some calculation, this coding gain may be
segregated into three parts: a gain of 0.93 dB from the use
of DE,, another gain of 6.02 dB from the trellis code if the
constellation DE, were not expanded from 2% 1o 2%
points, and a loss of 0.9 dB due to that expansion. Com-
paring this segregation of coding gain with that for the
constellation E,, one can see that although the lattice DE,
is a poor lattice for block-coded modulation, it is 8 good
lattice for trellis-coded modulation. The error coefficient
of this code is more than 500 per 2D point. This number
can be reduced to 316 and 124 if the number of states is
increased to 64 and 128, respectively. Further improve-
ment is certainly possible by further increasing the number
of states.

A recent report [16] gives trelliscoded modulation
schemes based on a partitioning of the 4D lattice D,, the
most complex using a 64-state trellis code. Similar schemes
may be constructed using the techniques of this paper,
with a 4D constellation D, of 2'° points constructed from
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aumber of states. For example, a 32-state code with the 4D
rectangular constellation partitioned into 16 subsets, each
subset corresponding to a 4D type of Table I, can provide
4.66 dB coding gain, the same as that of the 16-state code
of Section TV-A, but the error coefficient is four per 2D
point, less than the 12 of the 16-state code and the same as
that for the uncoded 128-CR. Note that this kind of
partitioning of a multidimensional lattice may be easily
derived from a coarser partitioning of the same lattice
obtained by following the principles described in Sec-
tion IL

To increase further the coding gain of the 16-state or
64-state code of Sections IV-A or -B, a finer partitioning of
the 4D or 8D constellation based on a finer partitioning of
the constituent 2D constellations should be used. The
64-state code of Section IV-C is an example. Note that the
number of states of that code cannot be reduced without
sacrificing the coding gain. On the other hand, the coding
gain can be further increased, or the error coefficient
reduced, using the same partitioning of the 4D rectangular
constellation as in Section IV-C, if the number of states is
increased beyond 64. The upper limit on the coding gain in
this case is 7.67 dB, and the lower limit on the error
coefficient in the case of 7.67 dB coding gain is 12 per 2D
point.

With a 16D rectangular constellation of 2°7 points con-
structed from a 144-point 2D constellation and partitioned
into 32 subsets as in the previous sections, it can be shown
that a 32-state code can be constructed to achieve a MSED
of 4d2. The coding gain of this code over the uncoded
128-CR is 5.74 dB. This is also the largest possible coding
gain that can be achieved with the 32-subset partitioning
of the 16D rectangular constellation. This coding gain may
be segregated into two parts, a gain of 6.02 dB from the
trellis code if the 16D constellation were not expanded
from 2% to 2% points, and a loss of 0.28 dB due to that
expansion. This expansion loss is only 0.33 dB less than
that for the 8D code of Section IV-B. The error coefficient
of this code is larger than 1000 per 2D point. This number
can be reduced to 412 if the number of states is increased
to 128. The lower limit on the error coefficient using the
32-subset partitioning of the 16D constellation is 284 per
2D point, which is 1/8 the number (2272) of nearest
neighbors to any point in the same 16D subset.

Trellis codes using an 8D constellation Eg of 2% points
constructed from a 320-point 2D constellation and parti-
tioned into 16 subsets as in the previous sections are
described next. Although the partitioning of Ey is such
that there is no 8D family in between the constellation and
the 8D subsets (see Fig. 5), we group the 16 8D subsets
into two equal-sized 8D families in an arbitrary manner.
The intrafamily MSED is therefore the same as the MSED
of the constellation. Now note that the distance rela-
tionship between an 8D family and its eight subsets of the
constellation Ej is identical to that between an 8D family
and its eight subsets of the 8D rectangular constellation
partitioned in accordance with Table 1. Since the con-
struction of a trellis code with that partitioning of the 8D
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rectangular constellation does not depend on the inter-
family MSED, all the trellis codes constructed for the 8D
rectangular constellation can be used for the constellation
E,.
'ln particular, the rate-3/4, 64-state code of Section IV-B
can be used with E, to achieve a MSED of 84/, which is
the MSED of each 8D subset. Since the average power of
the constellation E, is 47.133d], the coding gain of this
code over the uncoded 128-CR is 5.41 dB. This is also the
largest possible coding gain that can be achieved with the
16-subset partitioning of E,. This coding gain may be
segregated into three parts: a gain of 3.04 dB from the use
of E, (3], another gain of 3.01 dB from the trellis code if
the constellation E; were not expanded from 2% to 2%
points, and a loss of 0.64 dB due to that expansion. The
error coefficient of this code is the minimum, 240 per 8D
point (or 60 per 2D point), which is the number of nearest
neighbors to any point in the same 8D subset (an E;
lattice). Note that both the coding gain and error coeffi-
cient of this code are the same as those of the 64-state code
with the 8D rectangular constellation of Section 1V-B.

The fact that the large MSED of E; does not help a
trellis code achieve additional coding gain suggests the
consideration of the 8D lattice DE;. The MSED of the
lattice DE; is only 2d2. An 8D constellation DE; of 2%
points can be constructed from a 256-point 2D constella-
tion with an average power 40.6875d2, as shown in Section
I11. Both the size of the constituent 2D constellation and
the average power of the constellation DE; are less than
those of an 8D constellation E, of equal size. The constel-
lation DEj; is partitioned into two families of 16 subsets
each as in Section II. The intrafamily and intrasubset
MSED’s are 443 and 84}, respectively, which are the same
as those of the partitioning of E; described above. A
rate-4/5, 32-state code can be constructed with the con-
stellation DE, to achieve an MSED of 8d3. The coding
gain of this code over the uncoded 128-CR is therefore
6.05 dB. This is also the largest possible coding gain that
can be achieved with the 32 subsets of the constellation
DE,. With some calculation, this coding gain may be
segregated into three parts: a gain of 0.93 dB from the use
of DE,, another gain of 6.02 dB from the trellis code if the
constellation DE, were not expanded from 2% to 2%
points, and a loss of 0.9 dB due to that expansion. Com-
paring this segregation of coding gain with that for the
constellation Ej, one can see that although the lattice DEg
is a poor lattice for block-coded modulation, it is a good
lattice for trellis-coded modulation. The error coefficient
of this code is more than 500 per 2D point. This number
can be reduced to 316 and 124 if the number of states is
increased to 64 and 128, respectively. Further improve-
ment is certainly possible by further increasing the number
of states.

A recent report [16] gives trelliscoded modulation
schemes based on a partitioning of the 4D lattice D, the
most complex using a 64-state trellis code. Similar schemes
may be constructed using the techniques of this paper,
with a 4D constellation D, of 2'* points constructed from
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a 256-point 2D constellation and partitioned into sixteen
subsets as in the previous sections. A 64-state code can be
shown 1o achieve a coding gain of 6.05 dB over the
uncoded 128-CR. This is also the largest possible coding
gain that can be achieved with the 16-subset partitioning
of the constellation D,. The coding gain may be segregated
into three parts: a gain of 1.64 dB from the use of D, [3],
another gain of 6.02 dB from the trellis code if the constel-
lation D, were not expanded from 2!4 10 2! points, and a
loss of 1.61 dB due to that expansion. The error coefficient
of this code is, however, quite large, about ten times as
large as that of the 64-state code with the 4D rectangular
constellation of Section IV-C. It may be interesting to note
here that the 4D rectangular lattice may be characterized
as the union of D, and a rotated version of D, (see Fig. 4),
which is similar to the relationship between the lattices
DEy and E, and is another motivation for us to consider
the lattice DE,.

V. DEcoper

A conventional maximum-likelihood decoding algorithm
such as the Viterbi algorithm is used as the decoder [17].
As a preliminary step, the decoder must determine the
point in each of the multidimensional subsets which is
closest to the received point, and calculate its associated
metric (the squared Euclidean distance between the two
points). Because of the way in which a multidimensional
constellation is partitioned, the closest point in each multi-
dimensional subset and its associated metric may be ob-
tained as follows. Each received 2 N-dimensional point is
divided into a pair of N-dimensional points. The closest
point in each 2N-dimensional subset and its associated
metric are found based on the point in each of the N-
dimensional subsets which is closest to the corresponding
received N-dimensional point and its associated metric.
The N-dimensional subsets are those subsets which are
used in Section II to construct the 2 N-dimensional subsets.
The foregoing process may be used iteratively to obtain the
closest point in each 2 N-dimensional subset and its associ-
ated metric based on the closest point in each of the basic
2D subsets and its associated metric.

As an example, we show how to determine the closest
point in each of the 16 subsets of the 8D rectangular
constellation of Section IV-B and its associated metric (see
Fig. 12). First, for each of the four received 2D points of a
received 8D point, the decoder determines the closest 2D
point in each of the four 2D subsets of the 160-point 2D
constellation of Fig. 2, and calculates its associated metric,
These metrics are called 2D subset metrics. Because there
are only 40 2D points in each of the four 2D subsets, this
Step is quite easy, being no more complex than that
required for a 2D code.

Next, the decoder determines the 4D point in each of
the 16 4D types (see Table I) which is closest to the first
received 4D point (the 4L point corresponding to the first
and second 2D points of the received 8D point), and
calculates its associated metric. These metrics are called
4D type metrics. The 4D type metric for a 4D type is
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Fig 12. Viterbi decoding algorithm for 64-state code of Fig, 8.

obtained merely by adding the two 2D subset metrics for
the pair of 2D subsets corresponding to that 4D type. The
decoder then compares the two 4D type metncs for the
pair of 4D types within each 4D subset (see Table I). The
smaller 4D type metric becomes the 4D subset metric
associated with that 4D subset, and the 4D point associ-
ated with the smaller 4D type metric is the 4D point in
that 4D subset which is closest to the first received 4D
point. The same process is repeated for the second received
4D point.

The decoder then determines the closest 8D point in
each of the 64 8D types (see Table II) and calculates its
associated metric. These metrics are called 8D type met-
rics. The 8D type metric for an 8D type is obtained by
adding the two 4D subset metrics for the pair of 4D
subsets corresponding to that 8D type. Finally, the de-
coder compares the four 8D type metrics corresponding to
the four 8D types within each 8D subset (see Table II).
The smallest 8D type metric becomes the 8D subset metric
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associated with that 8D subset, and the 8D point associ-
ated with the smallest 8D type metric is the closest 8D
point in that 8D subset. These 8D subset metrics are then
used 1o extend the trellis paths and generate final decisions
on the transmitted 8D points in the usual way.

The final decision on a transmitted 8D point obtained
from the foregoing procedure may not be a valid point of
the 8D constellation of Section ]V-B because more than
one of the four 2D points of the decision may come from
the outer group of the 2D constellation of Fig. 2. When
this happens, a modification must be made in the proce-
dure to arrive at a valid 8D point. This type of error is
caused by the boundary effect of the finite constellation.
Since we did not consider that effect in our calculation of
the error coefficient in the last secuon, this type of error is
already included in the error coefficient.

Because of the construction of multidimensional constel-
lations described in Section 111, at the receiver the map-
ping from each decoded multidimensional point back to
the information bits is simplified. Again, we will use the
code of Section 1V-B to illustrate this inverse mapping
procedure. Each of the four 2D points corresponding 10
the final decision on a transmitted 8D point is first mapped
back to eight Z bits (see Fig. 2 and Table 1V). Then
performing the inverse conversions corresponding to the
bit converter and 8D biock encoder (see Figs. 9 and 10)
followed by a differential decoding operation produces the
desired 28 information bits. The mapping from a 2D point
back to the eight Z bits requires a table of only 160x8
bits. The inverse conversion corresponding to the bit con-
verter requires a table of only 256x7 bits. The inverse
conversion corresponding to the 8D block encoder may be
done with a short procedure which does not even require a
table.

V1. CoMPARISONS AND CONCLUSION

To compare trellis codes using various partitionings of
multidimensional or 2D constellations, a way to measure
code complexity is needed. With the simplified multidi-
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mensional constellation mapping as described in Section
IV and the simplified decoding method as described in
Section V, a good measure of code complexity is the ratio
of the total number of allowed state transitions of a code
to the number of signaling imervals corresponding to the
dimensionality of its constellation. For example, for the
eight-state 2D code used in the CCITT standards V.32 and
V.33, this ratio is 32 [2], [4), [5). For the 16-state 4D code
of Section IV-A, this ratio is also 32.

The reason for using this ratio to measure code complex-
ity is that to update the path metric of each state of a code
in the Viterbi decoding algorithm, the path metrics associ-
ated with all the transitions leading to that state need to be
calculated and compared. This must be done only once
every block of N signaling intervals, where 2N is the
pumber of dimensions in the constellation. The updating
of the path metrics dominates the code complexity. (The
Jast statement is valid at least for the codes to be compared
in Table VI. A refined measure of code complexity, which
takes into account the calculation used to obtain multidi-
mensional subset metrics, may be considered for codes
with a small number of states relative to their number of
dimensions.)

Table V1 lists the characteristics of some of the multdi-
mensional trellis codes that have been studied, along with
the characteristics of some 2D trellis codes from [1}, [2].
(Some of the 2D code characteristics have not been pub-
lished previously.) The error coefficients for the 64- and
128-state 2D codes are due to [18}. The codes in Table VI
are listed by increasing complexity and, for codes of equal
complexity, by increasing number of dimensions. Although
some characteristics shown in Table VI are for the case
where the number of information bits transmitted per 2D
signaling interval is equal to seven, the conclusions drawn
below may be generally applied to other transmission
rates.

The principal conclusion is that for the same (modest)
complexity (i.c., complexity less than or equal to that of
the 32-state 2D code), trellis-coded modulation with multi-

TABLE VI
CopE COMPARISON
Number of
Points in
Constituent Number of  Number of Error Peak-to-
2D States of Multi- Relative Coding Coefficient Average
Constella- Trellis  Dimensional Code Gain~®  (per 2D Power
Scheme Lattice ton* Code Subsets Complexity  (dB) Point) Rato*
1 2D Rectangular 256 8 ] 1 401 16 193
2 4D Rectangular 192 16 8 1 4.66 12 216
3 2D Rectangular 256 32 8 4 4.80 16 1.93
4 8D Rectangular 160 64 16 4 541 60 2.14
5 7 E, 320 64 16 4 5.41 60 217
6 2D Rectangular 256 64 8 8 5.47 56 1.93
7 A 256 64 16 8 6.05 828 1.93
8 DE, 256 64 32 8 6.05 316 193
9 16D Rectangular 144 128 32 8 5.74 412 203
10 2D Rectangular 256 128 8 16 6.05 344 1.93
11 4D Rectangular 192 64 32 16 5.63 7 216
12 DE, 256 128 32 16 6.05 124 1.93

3For transmitting seven information bits per 2D signaling interval.

®As compared to the uncoded 128-CR.
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dimensional rectangular constellations is superior to using
2D constellations. Using a multidimensional rectangular
constellation not only improves the performance in terms
of both the coding gain and error coefficient, but also
reduces the size of the constituent 2D constellations. A
smaller 2D constellation implies better performance when
the received signal contains signal-dependent noise. Exam-
Ples of this conclusion are Scheme 1 versus Scheme 2 and
Scheme 3 versus Scheme 4 of Table V1. The better perfor-
mance of Schemes 2 and 4 is not obtained at the cost of
increasing the peak-to-average power ratio of the constella-
tions to an unacceptably large value. This is also true for
all other multidimensional trellis codes appearing in this
paper. It is important to keep this ratio small hecause the
transmission medium may distort the transmitted signal
nonlinearly.

Trellis codes with the densest 8D consteliation E, do
Dot seem to have any advantage over codes using the 8D
rectangular constellation. There is, however, a disad-
vantage associated with the constellation E;, namely that
the constituent 2D constellation of Ey is twice as large as
that for the 8D rectangular constellation, as may be seen
by comparing Schemes 4 and S

Using a rectangular constellation with more than eight
dimensions seems to yield diminishing returns, as may be
seen by comparing Scheme 4 and 9. The size of the
constituent 2D constellations of Scheme 9 is 9/10 times
that of Scheme 4, which is not much smaller. The coding
gain of Scheme 9 is only 0.33 dB more than that of Scheme
4, but the error coefficient of Scheme 9 is about seven
times that of Scheme 4. Fven worse, the complexity of
Scheme 9 is twice as much as that of Scheme 4. 7

For higher complexity, using a multidimensional rectan-
gular constellation has less 1o offer. Schemes 10 and 11
bave about the same performance, comparing both the
coding gain and error coefficient. The advantage of a
smaller constituent 2D constellation for the multidimen-
sional rectangular constellation is, however, preserved.

The advantage of a smaller constituent 2D constellation
for the multidimensional constellation disappears when the
densest 4D constellation D, or the 8D constellation DE,
is used. Trellis codes with the constellation DE, are only
slightly better than their 2D correspondents, as may be
seen by comparing Schemes 6 and 8, or Schemes 10 and
12. DE; shows, however, an important concept. That is,
while it is desirable that the multidimensional subsets used
in trellis-coded modulation be dense lattices, it is not
necessarily desirable that the overall multidimensional
constellation be as dense. Multidimensional rectangular
constellations are the extreme case of the above statement.
We have not found that trellis codes using the densest 4D
constellation D, have any advantage.

From another viewpoint, using a multidimensional con-
stellation instead of a 2D constellation with a trellis code
reduces the code complexity while maintaining the same
performance in terms of both the coding gain and error
coefficient. Examples of this conclusion are Scheme 2
versus Scheme 3, Scheme 4 versus Scheme 6, and Scheme 8
versus Scheme 10.
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Generally speaking, it is easier to construct a trellis cod;
that is transparent 1o all Phase ambiguities of the constel-
lation using a multidimensiona) instead of a 2D conste].
lation. The reason is that some or al] of the phase ambigy;.
ties of a multidimensional constellation may be removed
by a careful partitioning of the multidimensional conste)-
lation into subsets as described in Section 11, without the
involvement of the trellis code. Examples are Schemes 2,4,
5. 8,9, and 12. Scheme 11 is also transparent to all phase
ambiguities of its constellation as demonstrated in Section
IV-C. All phase ambiguities of Scheme 11 are, bowever,
removed with the involvement of the trellis code.

These multidimensional trellis codes may be generalized
to rectangular constellations with dimensions other than 4,
8, or 16, to other multidimensional constellations with
rectangular or nonrectangular constituent 2D conste]-
lations, and to trellis codes of rate other than m/m +1.

ACKNOWLEDGMENT

The author is indebted to Dr. G. D. Forney, Jr., for his
encouragement and guidance in Preparing this paper. The
author also wishes to thank Dr. S. U. Qureshi and Prof.
R. G. Gallager for their helpful discussions. Dr. V.
Eyuboglu, Mr. M. E. Huntzinger, and Mr. M. Gilbride
provided useful help in doing real-time experiments with
some codes.

REFERENCES

{11 G. Ungerboeck, “Channel coding with multilevel /phase signals,”
IEEE Trans. Inform. Theory, vol. IT-28, Pp. 55-67, Jan. 1982,

[2] L F. Wwe, “Rotationally invariant convolutional channel coding
with expanded signal space—Pan I: 180 degrees and Pan HE
Nonlinear codes,” JEEE J. Select. Areas Commun.. vol. SAC-2, pp.
659-686, Sept. 1984,

(3] G D Forney, Jr., er al., “Efficient modulation for band-limited
channels,” JEEE J. Select. Areas Commun., vol. SAC-2, pp.
632-647, Sep1. 1984,

[4] CCITT Study Group XV1I, *“Recommendation V.32 for a family of
2-wire, duplex modems operating at data signalling rates of up 10
9600 bit,/s for use on the general switched telephone network and
on leased telephone-type circuits,” Document AP VIII-43.E. May
1984,

CCITT Study Group XV1I, “Draf recommendation V.33 for 14400

bits per second modem standardized for use on point-to-point

4-wire leased tclcphone-typc circuits,” Circular 12, COM XV1I/YS,

Geneva, Switzerland, May 17, 1985.

J.D. Brownlie and E. L. Cusack, “Duplex transmission at 4800 and

9600 bit/s op the general switched telephone network and the use

of channe! coding with 3 partitioned signal constellation,” in Proc.

Zurich Int. Sem. Digital Commun., Mar. 1984

{71 1 H. Conway and N. J. A Sloane, “Voronoi regions of lattices,
second moments of pol . and quantization,” JEEE Trans.
Inform. Theory, vol. IT-28, pp. 211-226, Mar 1982,

8) ____, “A fas encoding method for Lattice codes and quantizers,”
1EEE Trans. Inform. Theory, vol. IT-29, pp. 820-824, Nov. 1983

(9] . “Fast quantizing and decoding algorithms for lattice quan-

tizers and codes,” JEEE Trans Inform. Theory, vol. IT-28, pp.

227-232, Mar. 1982,

N. J A Sloane, “Tables of spbere packings and spherical codes,”

JEEE Trans. Inform. Theory, vol. IT-27, pp. 327-338, May 1981.

A Gersho and V. B, Lawrence, “Multidimensional signal constel-

lations for voiceband data transmission,” JEEE J. Select. Areas

Commun_, vol. SAC-2, Pp. 687-702, Sept. 1984,

(5]

{6

(10
1]



WEl: TRELLIS-CODED MODULATION

12] E L. Cusack, “Esror control codes for QAM signaling,” Electron.
Lerr., vol 20, pp. 62-63, 1984,

{13] R Fang and W Lee, “Four-dimensionally coded PSK systems for
combatting effects of severe ISI and CCL" in Proc. JEEE Globe-
com Conv. Rec., pp. 30.4.1-30.4.7, 1983.

(14] S. G. Wilson er al., “Four-dimensional modulation and coding: An
alternate 1o frequency-reuse,” in Proc. JEEE ICC Conv. Rec., pp.
919-923, 1984

(13)

(16]
17
(18

501

A. R. Calderbank and N. J. A. Sloane, “Four-dimensional modula-
tion with an eight-state wellis code,” AT&T Tech. J., vol. 64, pp.
1005-1018, May-June 1985.

____, “New trellis codes based on lattices and cosets,” JEEE
Trans. Inform. Theory, vol. 1T-33, pp. 177-195, Mar. 1987,

G. D. Forney, Jr., “Tbe Viterbi algorithm,” Proc. JEEE, vol. 61,
pp- 268-278, Mar. 1973.

V. Eyuboglu, private communication.




AN EIGHT DIMENSIONAt 64-STATE TRELLIS CODE FOR
TRANSMITTING 4 BITS PER 2D SYMBOL

S.A. Tretter
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University of Maryland

College Park, MD 20742

ABSTRACT

An eight-dimensional, 64-state, 90 degree rotationally
invariant trellis code for transmitting 4 bits per baud over
a bandlimited channel is described. The 2D constellation
contains 20 points. The code achieves a 5.23 dB cod-
ing gain over the uncoded 4x4 QAM constellation and
a 1.23 dB gain over the standard CCITT V32 trellis code.
Simulation results are presented that verify these coding
gains. Simulation results showing symbol error probability
vs. SNR and trellis depth are also presented.

1. INTRODUCTION

This paper describes an eight-dimensional, 64-state,
90 degree rotationally invariant trellis code for transmit-
ting four bits per baud over a bandlimited channel with
QAM modulation. It is based on the work of Wei [1].
The code achieves a 5.23 dB coding gain over the uncoded
4x4 QAM constellation and a 1.23 dB gain over the stan-
dard two-dimensional CCITT V32 trellis code when soft
decision Viterbi decoding is used. The 8§D encoder oper-
ates on blocks of 16 consecutive data bits taken four per
baud over four bauds. A systematic convolutional encoder
adds one check bit to the 16 data bits and the resulting
17 bits are mapped into an 8D point consisting of a se-
quence of four 2D signal points each selected from a 20-
point 2D constellation. The V32 code selects signal points
from the 32-point cross 2D constellation. The fact that
a 20-point 2D constellation is used each baud for the 8D
code rather than the 32-point constellation makes this 8D
code more immune to channel impairments such as phase
jitter and nonlinearities. Furthermore, when the received
baseband signal point is used for equalizer updating and
carrier tracking. the 20 point constellation gives more re-
liable decision directed performance.

The 8D signal constellation and its theoretical coding
gain when combined with the G4-state trellis encoder are
presented in Scction 11. The 8D encoder is described in
Section 111 and the decoder in Section IV. The results of
simulations to measure symbol error probability vs. SNR
and trellis depth are discussed in Section V.

I1. CONSTELLATION FOR THE 8D CODE
AND ITS THEORETICAL PERFORMANCE

The 2'7 8D constellation points are selected from an
8D rectangular lattice. Each 8D point consists of 8 se-
quence of four 2D points which are selected from a 2D rect-
angular lattice and each 2D point is transmitted by QAM
modulation. The 2D constellation is formed by first select-
ing 16 points from a 2D rectangular lattice corresponding
to a standard uncoded constellation with 90 degree rota-
tional symmetry for transmitting 4 bits per symbol. These
points are called the inner points. In this case, the 4x4
rectangular grid of points shown inside the dotted lines in
Fig. 1 was selected. Next, four outer points selected from

the rectangular lattice to preserve symmetry and have min-
imum energy are added to the inner points resulting in the
20-point constellation shown in Fig. 1. These 20 points are
partitioned into the four subsets designated A. B.C. and
D in Fig. 1. Each subset contains five points and the min-
imum Euclidean distance between points within a subset
is dy = 4. Under 2 90 degree clockwise rotation, subset A
becomes C, C becomes B, B becomes D, and D becomes
A. Also notice that the three bits assigned to each point
are invariant to 90 degree rotations. This is part of the

reason the code is transparent to rotations.

Next, pairs of 2D subsets are concatenated to form
the eight 4D subsets listed in Table 1. These subsets were
formed so that the minimum Euclidean distance between
4D points within a subset is 4 just as in the 2D case.

Finally, pairs of 4D subsets are concatenated to form
the 16 8D subsets shown in Table 2. The integers under
the column labelled “8D Types™ refer to the 4D subsets
in Table 1. Each 8D type contains four sequences of 2D
subsets so each 8D subset contains 16 distinct sequences
of four 2D subsets, each of which is called an 8D subtype.
The minimum Euclidean distances between 8D subtypes
within an 8D subset is again 4. Also, the 8D subsets are
invariant of 90 degree rotations.

8D constellation points are selected by the encoder so
that either a sequence of four 9D inner points or a sequence
with one outer point and three inner points is selected.
The outer point can be in any of the four positions. This
results in 2'7 8D constellation points. Also, the probability
of selecting an inner point is P, = 7/8 and the probability
of an outer point is Poyr = 1/8. Thus, the average signal
power transmitted per baud is

S= Pinsin + Poulsout =12

Wei [1] shows that the minimum free Euclidean dis-
tance for the encoder described in Section 111 is equal to
the minimum distance between points within one of the 2D
subsets which is 4. At high signal-to-noise ratios (SNR).
the coding gain is

(dqj /5)coded

unc e

111. THE 8D ENCODER

A block diagram of the 8D encoder is shown in Fig. 2.
It accepts blocks of 16 successive data bits taken four bits
per baud. These are labelled I1n, I2n,- - -,J4n+3. The sub-
scripts n,n + 1,n + 2, and n + 3 indicate the four suc-
cessive bauds. The first three bits (I1n, I2n, 13n) drive
a systematic, rate 3/4, 64 state, feedback convolutional
encoder. The encoder generates the one redundant bit la-
belled YOn. The bits 13n+1 and 12n+1 are differentially



encoded to make the code transparent to 90 degree rota-
tions. If the pairs are considered to be two bit numbers,
the differential encoding rule is

(I3n+1.I2n+1") = (I3n + 1.I2n 4+ 1)+
(I3n =3 ,I2n - 3') mod4

The eight bits YOn.-- .13u+1" are mapped into the
eight bits ZOn, Z1n.-- ..Z1n+3 by the BIT CONVERTER
which can be implemented most easily as a 256 byte lookup
table. The four bits YOn. Iln, 121, and 13n are used to
select the 8D subset according to Table 2. The remaining
four bits select the subtype within the subset. Within each
subset. there are four groups of four subtypes that are
rotationally invariant to 90 degree rotations.
select one of these four groups. 12n+1" and 13n+1’ select
the subtype within the selected group. The differential
encoding described above makes the code transparect to
90 degree rotations. A specific algorithm for selecting the
sequence of four 9D subsets for an §D subtype is shown in
Table 3. Each pair (21, Z0) specifies a 2D subset according
to the rule

Z1 Z0 2D
Subset

0 A
1 C
0 B
1 D

— s O O

The remaining nine input bits determine the specific
8D point within the 8D subtype. The 8D BLOCK EN-
CODER shown in Fig. 2 maps these 9 bits into the 12 Z
bits (Z2n+i. Z3n+i, Z4n+i) for i=0,1.2, and 3 using the
rules displayed Table 4. These triplets of Z bits specify
the sequence of four 2D constellation points corresponding
to the sequence of 2D subsets of the 8D subtype selected.
The mapping of a triplet to a 2D point is shown in Fig. 1.

Notice that Z2n+i determines whether the 2D point is an
inner or outer point.

Iin. 12n, and I3n direct the convolutional encoder
through a sequence of states. Each state consists of the
six W bits shown in Fig. 2. Each state can make a transi-
tion to eight distinct next states and each next state can be
reached from eight distinct previous states. A table show-
ing the state trensitions with their 8D subset assignments
can be found in {1].

Iv. THE 8D DECODER

The decoder is presented with received 8D symbols
consisting of blocks of four successive 2D symbols. Each
2D symbol consists of an x and y component represented to
the accuracy of the receiver's A/D converter. The decoder
implements the soft decision Viterbi algorithm.

The encoder assigns an 8D subset to each branch in
the trellis, so there are parallel paths. Thus, the first step
in the decoding process is to quantize the received 8D sym-
bol to the nearest point in each of the 16 8D subsets. This
can be efficiently accomplished by going from 2D to 4D
to 8D decisions. The decoder first quantizes each received
2D symbol to the closest constellation point in each of the

-y — -—

n and Ifn+

oD subsets A, B, C, and D. The corresponding squared
Euclidean distances and Z bits are saved. The next step is
to combine pairs of 2D decisions into 4D decisions. Using
Table 1. the best 4D point for each of the eight 4D sub-
sets is found for the first and second pairs of received 2D
points and the corresponding Z bits and squared distances
are saved. Finally, these pairs of 4D points are combined
to find the best 8D point in each of the 8D subsets listed in
Table 2 and the corresponding Z bits and squared distances
are saved.

Next the path metrics to each of the 64 states are
updated using the standard soft decision Viterbi decoding
algorithm. The state with the smallest metric is found
and the trellis memory is traced back to its beginning to
find the decoded 8D symbols. The decoded Z bits are
transformed back into information bits by inverses of the
bit converter and block encoder.

V. SIMULATION RESULTS

A FORTRAN simulation was used to evaluate the
performance of this 8D code in the presence of additive
Gaussian noise. The 2D CCITT V32 code and 4x4 QAM
uncoded constellation were also simulated. Complete pro-
grams and a more detailed report are available from the
author.

Simulation results for the 8D code with a trellis depth
of 32 8D symbols, the V32 code with a trellis depth of 32
2D symbols, and the 4x4 QAM constellation are shown in
Fig. 3. The expected coding gains were achieved at high
SNR. As expected, the gains diminished as SNR decreased.

Simulations were also performed to measure the per-
formance as a function of the trellis depth. The required
trellis depth is an important parameter to know for a prac-
tical decoder implementation. The results are shown in
Fig. 4. Essentially all the expected coding gain was achieved
with a trellis depth of 15 8D symbols.
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4D Subset 4D Types STEP 1

0 (A.A), (B,B) Use YOn, Iln, I2n, and I3n to select an 8D subtype from
1 (C.C). (D.D) this table
2 (AB), (B,A) Y0, | 11, | 12. | 13, | 8D Subtypes |
3 (C.D), (D,C) o lolo0]o0O (AAAA) |
4 (A,C), (B.D) 0 o| 011 (AACC)
5 (C,B), (D.A) 0 1 01 1] 0| (AAAB)
6 (A.D), (B.C) 0 1 0] 1] 1| (AACD)
7 (C,A). (D.B) o 110 0| (ACAC
Table 1 0 1 0 1 (ACCB)
Pa.rtitioni.ng of 4D Constellation 0 1 1 0 (ACAD)
into 8 Subsets 0 ] ) ] (ACCA)
1 10| 0] 0} (AAAC)
8D | YOn | I1a | 124 | I3a 8D Types 1 ] ol o 1] (AACB)
Subset 1 10| 1] 0] (AAAD)
0 o 1ol o] o](00112233 1 [0 [ 1] 1| (AACA)
1 o Lo lo | 1 [(01).10).23)32 1 | 1[0 |0} (ACAA)
2 0 10 11| 0 ]02),13,2031) 1 [1]0 1| (aCCC)
3 0 1ol 1 | 1 [0342,2)30 1 [1]1]0] (ACAB)
4 0 11101 0445568470 1 [ 1] 1 [ 1] (ACCD)
5 o 11101 1 [(455460(16) | STEP2
6 0 111 11 0 |(46.57).64).(75) 3rd & 4th
7 0 1 1 1 | (4.7),(5.6),(6.5),(7:4) Rotate the 2nd & 4th 2D subsets of the 8D subtype by 180
s 11 100 |0 |(04052637 2nd & 3rd -
9 1 ] 0] 0 [ 1 [(05(4N20B6) |  gegreesif (14n. lIn+1) =1 0
10 1T 1o | 1] 0 ](08).17)24)35) 11
T [ 1 o |11 lOnaeENEH) STEPS
['12 ! ! 0 |0 | 4056219 Rotate all four 2D subsets of the 8D subtype obtained in
13 T T 110 1 | (41506372 | STEP2by
14 T 11110 |(42.6360,(T)] g o
15 T 11 |1 | 1 | (43526170
180 degrees clockwise if (I2n+1', I3n+1) = 10
. Table 2 . 270 11
Partitioning of 8D Constellation into
16 Subsets Table 3

Note: The integers under the column labelled 8D Types 8D Subtype Selection Procedure

refer to the 4D subsets defined in Table 1.

ldn+1 Io+2 12042 Z2n  Z3n Z4n  Z20+1 Z3o+1 Ao+l Z2o+2 23n0+2 Z4n+2 22042 Z30+3 Zint+d

imq‘, p1$ — 0 _x_ x 0 Iln+2 12042 O 130+2 4n+2 0 Iln+3 2043 o 130+3 ldn+3
- - 1 0 o 1 0 0 0 IDo+2 Mo+2 0  lind3 2043 0 Do+3 Ho+d
lowte~ 1 0 1 0 I3n+2 Mn+2 1 0 0 0 lo+3 12043 0  I30+43 ldn+3
3 inwer N 1 1 o 0 In+2 Ma+2 0  In+3 D2o+3 1 0 0 0 I3n43 Mo+3
1 1 L 0 Do+2 Mos2 0 To#3 12043 0 Bo+d Moed 1 0 0

Table 4

8D BLOCK ENCODER
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