Information Theory
Society Newsletter

December 1990 (USPS 360-250)

Editor: Nader Mehravari

=CODED MODULATION FOR BAND-LIMITED CHANNELS*

G. David Forney, Jr.
Codex/Motorola
Mansfield, MA 02048.

Abstract:

In 1948, Shannon developed fundamental
limits on communications efficiency over
band-limited Gaussian noise channels.
Practical modulation techniques have until
recently made only modest progress toward
the Shannon limit. In the past few years,
however, with the introduction of coded
modulation methods, rapid advances have
been made, to the point where practical
systems are being developed that approach
the theoretical Shannon limit. This paper is a
general survey of theory and practice in the
field from 1948 to date.

1. Introduction

In 1948 Shannon [1] introduced his famous
formula for the channel capacity C in bits per
second of an ideal band-limited Gaussian
channel:

C =W log, (1 + SNR) bps,

where W is the channel bandwidth in Hz,
and SNR is the channel signal-to-noise ratio.
For SNR large, Shannon’s result implies that
there exist coding schemes that can achieve
arbitrarily low error probabilities at signal-to-
noise ratios approximately 9 dB lower than
than those required to achieve error rates of
the order of 10 - 10 with conventional

quadrature amplitude modulation (QAM); or,
equivalently, that can achieve rates that are 3
bps/Hz larger than can be achieved with
conventional QAM. Nonetheless, for about 30
years, little progress was made toward
closing this gap, despite the commercial
importance of improved rates and/or SNR
margins for such band-limited applications as
telephone-line data modems. Indeed, the
common wisdom in the 1970’s was that the
highest practically possible data rates had
already been reached.

Ungerboeck’s invention of trellis-coded
modulation (TCM) dramatically altered this
view, particularly after the publication of his
pioneering paper [2] in 1982, which showed
that easily implemented TCM schemes could
yield 3 to 4 dB of coding gain. TCM was
rapidly adopted for implementation in high-
speed telephone-line modems in the mid-
1980’s. The field remains an active research
area, and further advances in theory and
practice continue to occur.

This paper surveys the history of advances
in modulation for band-limited channels,
with particular focus on telephone-line
modems, where these advances have
generally first been implemented. The latest
advances in coded modulation are discussed.

* Editor’s Note: This paper represents a summary of talks given by the author

in the IEEE Region 10 Speakers Tour, October 17-26, 1989.
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2. Fundamental limits

In 1928, Nyquist showed that under certain ideal
symmetry conditions, a channel of nominal (Nyquist)
bandwidth W could support pulse amplitude modulation
(PAM) at a rate of 2W samples per second, with no
intersymbol interference. Alternatively, such a channel
can support guadrature amplitude modulation (QAM) of W
pairs of samples per seconds, using two carriers in
quadrature—e.g., cos 2nf t and sin 2rf t, where f_ is the
center frequency in the band. QAM is generally preferred
in telephone-line modem:s.

To send data using QAM, the sample pairs|x,, y,} are
chosen from a discrete alphabet of two-dimensional
points, called a signal constellation. In strict-sense QAM, the
two coordinates x, and y, are chosen independently from
a standard 2°-point PAM constellation, so that the QAM
constellation is a square 2° x 2° constellation with points
on a rectangular grid. Such a constellation supports a rate
of R = 2b bits per two-dimensional symbol. For example,
a 4x4 strict-sense QAM constellation supports 4 bits per
symbol.

At high signal-to-noise ratios, the symbol error
probability for strict-sense QAM is well approximated by

Pr(E)= 4 Q[3sSNR/28]'/2,
where Qlyl is the Gaussian probability of error

function, Qly] = Jp(x)dx, where p(x) is a Gaussian
distribution with mean 0 and variance 1. Thus there is a
universal performance curve for Pr(E) vs. the high-SNR
normalized signal-to-noise ratio, defined as SNR ., =
SNR/2R®. This curve is shown in Figure 1, with SNR,
expressed in dB. :
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Figure 1: Pr(E) vs. SNR o, for QAM

The capacity of an ideal discrete-time Gaussian
channel is log, (1+SNR) bits per two-dimensional symbol,
or approximately log, SNR at high SNRs. This means that
arbitrarily low error probabilities can be achieved for any
rate R < log, SNR; or, alternatively, whenever SNR_ > 1
(0 dB). This ultimate limit, called the Shannon limit, is also

shown in Figure 1. We see that there is an SNR gaéa of
about 9 dB for error rates of the order of 10 - 10°°; or,
equivalently, a rate gap of about 3 bits per symbol.

3. Telephone-line modems

Voice-grade telephone channels are good examples of
high-SNR band-limited channels. Happily, the model of a
linear filter with additive Gaussian noise applies rather
well to these channels. The usable bandwidth typically
extends from about 300-500 Hz to about 3000-3400 Hz.
On private lines in the U.S,, the signal-to-noise ratio is
guaranteed by tariff to be at least 28 dB, and typically can
be 40 dB or more.

These parameters imply that the channel capacity can
be from 20,000 to 30,000 bps. Nonetheless, through about
1980, it was generally accepted that 9600 bps was the
highest practical data rate for telephone-line modems.
This is another manifestation of the gap mentione above.

Although telephone channels can generally be
modeled as linear filters, they are generally not ideal
Nyquist filters, so they generate intersymbol interference
(ISD). ISI may be reduced or eliminated by a compensa-
ting filter, called an equalizer. Moreover, different
channels have different characteristics, which may vary
slowly over time, so that ideally the equalizer should be
automatic and adaptive. Much of the early work toward
high-speed data transmission over telephone channels
was directed to the problem of automatic adaptive
equalization; by the late 1960's, it was essentially solved.

Telephore channels do have other disturbances, such
as nonlinearities, phase jitter, echo (on two-wire dial
lines), and the kinds of non-Gaussian noise one hears on
poor lines. Once the ISI problem was solved by adaptive
equalizers, phase jitter became the next limiting impair-
ment on private lines, and was solved in the early 1970’s
by jitter-immune constellations or, alternatively, by high-
performance jitter trackers. The problem of echo has been
solved in the 1980’s (not without difficulty) by precise
echo cancellation. There has been little progress on com-
bating other impairments, but fortunately there effects do
not tend to be large, particularly on private lines.

The most advanced modulation and equalization
techniques have often been developed and first imple-
mented in telephone-line modems, because of the
applicability of a linear Gaussian model, the commercial
importance of the billion-dollar modem industry, the
significance of higher data rates or improved SNR margin
to the customer, and the relatively low symbol rates
(= 2400 symbols per second) of modems, which permit
use of sophisticated digital signal processing algorithms
with thousands of operations per symbol.

Table I is an extension of the "Modem Milestones” table
of [3], which attempts to identify the first commercially
continued on page 4
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successful private-line modems that achieved various
data rates. The table gives the modem type, the year of
introduction, the data rate in bps, the symbol rate W
(nominal Nvquist bandwidth in Hz), the rate R in bits per
symbol, and the signal constellation/modulation

method. An asterisk identifies those modems whose
modulation schemes were subsequently adopted in
international standards.

Year Model Speed W R Mod.
1962 Bell 201B 2400 12000 2 4-PSK*
1967 Milgo 4400/48 4800 1600 3  8PSK*
1971 Codex 9600C 9600 2400 4 16QAM*
1980 Paradyne 14400 14400 2400 6 64-QAM
1981  Codex/ESE SP14.4 14400 2400 6  64-QAM
1984 Codex 2660 14400 2400 6  128-TCM*
1985 Codex 2680 19200 2743 7 160-TCM

Table . Modem Milestones

The Bell 201B was the first widely-used synchronous
modem. Using simple 4-phase modulation and 1200
symbols per second, it achieved 2400 bps on private lines.
Because of the narrow nominal bandwidth of 1200 Hz,
fixed compromise equalization was adequate. The
international 2400 bps modem standard (CCITT
Recommendation V.26, formally adopted in 1968) is
modeled on the 201B.

The Milgo 4400/48 appears to have been the first
commercially successful 4800 bps modem, using 8-phase
modulation at 1600 symbols per second, and a manual
adaptive equalizer. Although an 8-phase signal
constellation is about 1.35 dB less SNR-efficient than an
optimized 8-phase signal constellation, the choice of 8-
phase was made for simplicity of implementation (analog
implementation, in 1967). This modulation scheme is
embodied in CCITT Recommendation V.27 (1972).

The Codex 9600C expanded the symbol rate and
bandwidth to 2400 Hz by use of a digital adaptive
equalizer, and a QAM 16-point constellation optimized
for immunity to combined noise and phase jitter, at a
sacrifice of SNR margin of about 1.3 dB relative to the
square 4x4 constellation. This constellation was adopted
in CCITT Recommendation V.29 (1976).

For the next decade, the industry was preoccupied
with reducing size and cost, and it was generally
accepted that 9600 bps was the highest achievable rate,
even on private lines. This era of complacency was ended
by Paradyne’s announcement of a 14,400 bps modem in
1980. This modem was similar in all respects to earlier
9600 bps QAM modems with 2400 Hz symbol rates,
except that it used a 64-point QAM constellation to
support 6 bits per symbol. Due to advances in modem
implementation and in the general quality of the
telephone network, this modem worked reliably over a

large percentage of private lines.

The constellation used by Paradyne was an 8x8 QAM
constellation, with the 4 corner points moved to the axes.
This modification improves SNR only by about 0.1 dB,
but also improves the peak-to-average ratio and
immunity to phase jitter and other signal-dependent
impairments. From today’s perspective, it can be seen as
an effort to shape the constellation more like a circle than
a square, and therefore can be regarded as the first
embodiment of the concept of shaping (see below).

Codex and others then scrambled to develop compar-
able modems. The Codex/ESE SP14.4 was similar to the
Paradyne modem in most respects, but used a 64-point
constellation with points from a hexagonal rather than a
rectangular grid. This gives a SNR improvement of about
0.6 dB, due to the greater packing efficiency of the hexag-
onal (‘penny-packed’) grid, which can be regarded as the
first ‘coding gain’ achieved in a commercial modem.

Neither of these modems was standardized. By the
time that the CCITT began to consider a standard for 9600
bps dial modems in 1983, Ungerboeck’s paper |2} had
appeared, and it was recognized that the 3 or more dB of
coding gain that TCM could provide would be essential
for reliable 9600 bps operation over the dial network. A
variant of Ungerboeck’s 8-state 2- dimensional code, due
to Wei [4], was adopted in CCITT Recommendation V.32,
with a coding gain of about 4 dB, and also subsequently
in the V.33 standard for 14,400 bps private-line modem:s.
At 6 bits per symbol, this code requires a 128-point
constellation. The Codex 2660 was merely the first of
many such modems.

In 1985, however, the Codex 2680 was able to achieve
reliable 19,200 bps operation by expanding the band-
width to 2743 Hz and using a multidimensional TCM
scheme, also due to Wei [5], to support 7 bits per symbol
with a signal constellation of only 160 points. This
remains (in 1989) the highest achievable rate. The CCITT
has not commenced any standardization activities for
this rate. ( Mo longo,- ‘f‘ruu;,/ V.Fast)

4. Lattice codes

Before considering trellis codes, let us spend a moment
on lattice codes, which have a longer history, and which
illustrate many of the principles of coded modulation.

An N-dimensional latticc A is an array of discrete
points in N-space that form an algebraic group under
vector addition. For example, the set Z~ of all N-tuples of
integers is a lattice.

A lattice code C (A,R) may be defined as the set of all
points in some lattice A (or a translate of A) that lie in
some bounding region R. For example, a strict-sense
QAM constellation is the set of all points in a translate of

continued on page 5
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Z" that lie in a square region R of appropriate size.

At high signal-to-noise ratios, the SNR improvement of
a lattice code over an uncoded strict-sense QAM
constellation can be shown [6] to be separable into a
coding gant ¥.(A) that depends only on the packing density
of the lattice A, and a shaping gam v,(R) that depends only
on the shape of the region R.

The nominal coding gain of a lattice is a measure of its
efficiency for sphere packing in N dimensions. Finding
the best N-dimensional sphere packing is an old mathe-
matical problem. Table Il shows the best known lattices
for sphere packing in for various values of N < 24, from
Conway and Sloane [7], with their coding gains in dB.
Note that the best sphere packings in 16 and 24 dimen -
sions were not known at the time of Shannon’s paper [1].

A N Name Date YA
Zz 1 Integer lattice 0.00
A 2 Hexagonal lattice 0.62
D, 4 Schlafh =1830 1.51
E. 8 Gosset =1900 3.01
An le Barnes-\Wall 1939 4.52
Asy 24 Leech 1967 6.02

Table I1. Coding Gains of Lattices

As N = =, the nominal coding gain increases with-
out limit, whereas, from the capacity result, only about 9
dB of gain is actuallv possible. The effective coding gain
for these dense lattices is reduced from the nominal gain
by the large number of nearest neighbors to each lattice
point. For example, in the Leech lattice, which has
actually been used in a 19,200 bps coded modem [8], the
number of nearest neighbors is 196,240, which reduces
the effective coding gain by about 2 dB. These high-
dimensional lattices also tend to have large decoding
complexity and constellation expansion (see below).

As for shaping gain, the optimum shape in N
dimensions is an N-sphere. The shaping gain of an N-
sphere is about 0.20 dB for N = 2, about 1.10 dB for N =
24, and as N = o, the shaping gain approaches ne/6 (1.53
dB) [3]. Therefore, of the total 9 dB gap, only about 1.5 dB
can pussiblv be achieved bv shaping, and the remainder
must be achieved by coding. However, shaping gain is
quite independent of coding gain, and shaping gains of
areater than 1 dB can be achieved quite simply with a
technique called trellis shaping [9].

DeBuda [10] has shown that there exist lattice codes
that can achieve capacity, which implies that effective
coding gains of up to about 7.5 dB at error rates ot 107 -
10 are possible.

5. Trellis codes

Trellis codes are to lattice codes as convolutional codes
are to block codes, and have many of the same

advantages in practice. Thev tend to achieve better
effective coding gains for the same implementation
complexity, due to their generally much lower number of
nearest neighbors (not to better nominal coding gains).
They are naturally suited to sending continuous data
sequences, which is the form of input data into modems,
whereas lattice codes are more naturallv suited to blocks
of data. Trellis codes have been almost universally
adopted in the modem industry.

As an example, Ungerboeck’s 2-dimensional 4-state
trellis code works as follows. To send R bits per svmbol, a
rectangular-grid QAM signal constellation with 27"
points is used; the constellation expansion ratio is thus a
factor of 2. The constellation is divided into 4 subsets,
each with 2% points, in a regular way, such that the
distance between points within a subset is twice the
distance between points in the original constellation, and
the distance between certain subsets is at least 2' = times
that in the original constellation.

A rate-1/2, 4-state convolutional encoder 1s used to
encode 1 input bit per svmbol into 2 coded bits, which are
used to select one of the 4 subsets of the signal constel-
lation. An additional R-1 uncoded bits per symbol then
select the actual point to be sent from the selected subset.
Thus the constellation expansion of a factor of 2 is due to
the code redundancy of 1 bit per symbol.

The set of all possible sequences of coded bits mav be
specified by a 4-state trellis diagram for the convolutional
code, with each branch labeled by the corresponding two
coded bits. If each pair of coded bits is replaced by the
corresponding subset, then the trellis diagram specities
the set of all possible subset sequences. The Viterbi
algorithm (VA) is an efficient way of searching such a
trellis, and is commonly used for decoding trellis codes.
The VA complexity is proportional to the number of
states of the convolutional encoder.

Ungerboeck’s 4-state code is arranged so that the
minimum distance between signal point sequences in
different subset sequences—i.e., corresponding to
different trellis paths—is greater than the minimum
within-subset distance. This propertv depends onlv on
subset distance properties, and not on any other teature
of the signal constellation. Therefore the minimum
distance between ditferent possible signal point sequen-
ces is simply that of one within-subset ditference on the
same path (‘parallel transition”), which is a factor ot 2
greater than the distance between signal pomnts in the
original constellation. This gives a pain in SNR maraein ot
6 dB. However, the constellation expansion ot a tactor of 2
costs 3 dB, so the net codimyg gam s 3 dB tor this very
simple code.

Ungerboeck’s two-dimensional codes have nonmunal
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coding gains of 3 dB for 4 states, 4 dB for 8 states, and up
to 6 dB at 256 states. In all cases the code redundancy is 1
bit per svmbol, so the constellation expansion ratio is 2.
For 8 or more states, an 8-way partition of a QAM
constellation is used. Ungerboeck also gives a
comparable set of 1-dimensional codes based on a 4-wav
partition of a PAM signal constellation, which also
achieve from 3 to 6 dB as the number of states goes from
4 t0 256, but these codes have a code redundancy of 2 bits
per two-dimensional symbol, and thus a constellation
expansion ratio of 4.

Wei's multidimensional codes achieve lower constel-
lation expansion ratios by only using one bit of redun-
dancy for everv N dimensions, where N > 2. For example,
if N = 4, then the constellation expansion is onlv about
2'%,and if N = 8, it is only about 2'/*. Wei gives a number
of families of such codes in 4, 8 and 16 dimensions, which
also achieve nominal coding gains up to about 6 dB.
These codes generally have a low number of nearest
neighbors, and are very well suited for implementation.

Figure 2 (from [11]) shows the effective coding gains
versus a normalized measure of decoding complexity for
Ungerboeck’s one-dimensional and two-dimensional
codes, and for Wei’s codes. Wei's 16-state 4-dimensional
code is more than 0.5 dB better than the 8-state 2-
dimensional Ungerboeck-type code used in the V.32 and
V.33 modems, but generally the curves for the various
classes of codes are quite close. The major advantage of
Wei’s codes is their reduced constellation expansion.
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Figure 2: I'criormance vs complexaty for Ungerboeck 1D and 2D codes,
and tor Wer 4D, 5D, and 10D codes.

Calderbank and Sloane {12} have also developed broad
classes ot tredhis codes based on partitions of lattices into
cosets of sublattices. The constellation expansion ratio of
the Calderbank-Sloane codes tends to be higher than that
ot the Wercodes, and the pertormance v, complexity
curve is about the samwe. However, the introduction of the
lattice/coset viewpoint in this work was probably the
most important advance in the theory of trellis codes
after Ungerboeck (2],

6. Conclusion

The performance attainable with practical trellis codes
is now approaching the Shannon limit. Ungerboeck’s
256-state codes obtain effective coding gains of about 5.5
dB, at the cost of high but not unthinkable compiexitv.
With trellis shaping, another 1 dB can be obtained. This is
most of the 7.5 dB of coding gain and 1.5 dB of shaping
gain that is possible in principle. DeBuda’s result shows
that with more complicated codes of the same tvpe, it
should be possible to get as close to the Shannon limit as
desired.

Does this mean that now there is nothing more to be
done in coded modulation? Not in our opinion.
Ungerboeck (2] speculated that there was little to be
gained by going to multidimensional codes, but \Wei [3]
showed that there was a gain, not in performance but in
constellation expansion (and rotational invariance). The
concept of shaping gain, and practical techmiques tor
obtaining most of the possible shaping cain. have been
developed since Wei.

On band-limited channels, such as the telephone
channel, it is important to be able to combme coding with
equalization. Very recently, with a techniquc cailed trellis
precoding {13}, it has been shown that coding, shaping,
and equalization can all be combined in such a wav that
one can get as close to capacity on ISl channels as on
ideal channels. (Another way of doing this is by multi-
channel techniques, such as are used in Telebit's
modems.) This development, in combination with line
probing techniques that determine the optimum trans-
mission rate and frequency band, will make possible the
achievement of data rates up to 24 Kbps on good enough
channels.

The question of how to obtain even higher coding
gains is still open. Multi-stage codes look promising from
the point of view of performance vs. complexity, but their
promise has not yet been proved. Sequential decoding is
another technique capable of high performance. The
theory of trellis codes is still in a very formative stage,
with attention now turning to geometric theories. It has
always been the case in the past that advances in the
theory have led to practical improvements.

Finally, these codes are just beginning to be considered
for application to other band-limited channels, such as
radio channels, satellite channels, or the high-rate digital
subscriber loop (HDSL) channel. Each one ot these
applications will present its own problems, mcluding
that of high-speed VLSI implementation, and mav
require the development of new tvpes ot codes m
response. In summary, there will be room tor workin
trellis codes tfor some time to come
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ISIT'?1 Update

The next IEEE International
Symposium on Information
Theory will take place, of course,
in Budapest, Hungary next June
from the 23rd to the 28th as most
of us already know. By now, it is
of course too late to send in a
paper, since the deadline for
submissions is already past. The
Program Committee is working
diligently and hard to sort out the
final program based on the large
number of submissions it has
received. However, it is not too
late to contemplate attending the
Symposium if you haven’t done
so already. Not only is it the first
time that a major IEEE Society
Symposium is taking place in
what used to be Eastern Europe,
but, in addition, the exciting
changes taking place in that part
of the world promise to make the
visit to Budapest next year a most

interesting affair from many
points of view.

An interesting related develop-
ment is that the annual Commu-
nication Theory Workshop that is
sponsored by the IEEE Communi-
cation Society has been planned
to take place during the week
immediately following our
Symposium on the Greek island
of Rhodes. Those who wish to
attend both meetings can
schedule their trip conveniently
so as to include both places.

The Organizing Committee is
in the process of seeking funds to
support a small number of atten-
dants with travel expenses. When
the available amount is finalized,
there will be an announcement
and solicitation for application
from interested parties. As usual,
the expected limited funds will be
used to assist authors who are

Anthony Ephremides

either students or young
researchers who do not have
other means of supporting their
travel.

Budapest, as many of you
know, is a beautiful city with rich
historical heritage and many
points of interest. It can be
reached by air or rail or car easily
from most cities in Europe. When
the program is finalized, there
will be detailed additional infor-
mation that will facilitate your
travel plans. There is a new, very
up-to-date Conference Center in
Budapest that will host our
Symposium. It is conveniently
located in a nice part of the town
near many hotels and restaurants
and adjacent to a beautiful park.
Start planning now for an
unforgettable experience next
June.
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