ding

in (6.7.22) that A(D) has
A(D) in (6.7.25) are un-

(6.7.26)

 the product o(D)S(D) is
.26) is equivalent to the

=0
=0

(6.7.27)

%3
-
H

2—e=0

set of d — 1 — e linear
[from (6.7.21), 0, = 1]. If
sators U, ..., U, can be
71 are the roots of o(D).
yrocedure and, for future

ved sequence y.

locations of the errors.
V,. Notice that, for binary
se, by definition, they are

to discuss the implementa-
7.26) for o (D), the decoder
wing theorem asserts that
sforehand.

ors have occurred and that
ger for which a polynomial
isfying [6(D)S(D)]¢2 = 0.

e rewritten as

-2 (6.7.28)

BCH Codes

From the definition of S;, this becomes

Fyyr+i—i
V;Uj

Mo
M=

-
0y
0 4

Mo

B
6,8, =

T
j
L

1=0

f
M

e
T+ A —1
OVjUJ' ZIGzUj
1=

<.
Il

LY

=SV,sUHYUT =0, é<i<d—2 (6729
. ,

N

Equation 6.7.29 can be regarded as a set of d — 1 — é linear equations in the
e unknowns V,6(U;™) for 1 < j < e. Since ¢ is the smallest integer for which
(6.7.28) can be satisfied and since [6(D)S(D)}¢~? = 0, we must have é < e.
Also, since e < [(d — 1)/2], it follows that e < d — 1 — é. Now consider
only the first e of the equations in (6.7.29), for é < i <é4+e—1 Ase
equations in the e unknowns V,6(U;™Y), these equations are linearly inde-
pendent by the same argument used to establish the linear independence of
(6.7.10) in Theorem 6.7.1. Thus the only solution to these equations is given
by
V,6(U;) =0; 1<j<e (6.7.30)
Since V; # 0,1 < j < e, it follows that U/ lisarootof (D) forl1 <j<L e
Since the degree of ¢(D) is at most e, since 6(D) has the same e roots as
¢(D), and since &, = 0,, it follows that 8(D) = a(D). Since 6(D) has degree
e, we also have é = e, completing the proof. |

We next describe an iterative algorithm for finding o(D) in a particularly

simple way.

Iterative Algorithm* for Finding o(D)

We saw in the previous theorem that if at most [(d — 1)/2] errors occur,
then o(D) is given in terms of the syndrome polynomial S(D) by that solution
to [o(D)S(D)]*2 = 0 for which e is smallest and o(D) has degree at most e
with o, = 1. This problem is most easily visualized in terms of the linear-
feedback shift register (LFSR) shown in Figure 6.7.1.

“The register is initially loaded with a sequence of elements Sy, Sy, . .., 11
from a given field. The register then computes a new element S, given in
terms of the feedback connections —Cy, ..., —C;, by

Sl = —Sl_lcl - Sl—2C2 _c "—S()Cl (6.7-31)

The elements Cj, ..., C, are elements of the same field as the S;. The
register is then shifted to the right one position, S, entering the register from

* This algorithm is due to Berlekamp (1967). We present here a modification of Berlekamp’s
algorithm due to Massey (1968) and follow Massey’s approach closely.

246 Techniques for Coding and Decoding

Roug
, ! ° 0 ° - ® ; gener.
3 gener
; ; : - e e tion |
; .’ 1 e @ Cu(D
1 the al
; Si-1 Si=2 Sp—g F—=-—-—— &1 So
!
Figure 6.7.1. Linear feedback shift register (LFSR). 1
Lettii
| o . . , (6.7.:
T t}}e left. On each successive shift to the right, a new element is computed, : desirt
| given by . : algor
; S;=—8,,C, — S;,Cy — -+ — §,_,Cy; i>1 (6.7.32) ; corre
We define the register length of an LFSR as the number of stages in the shift ‘ Sy c
i Th

register (/ in Figure 6.7.1). We also define the connection polynomial C(D)
| ofanLFSRas C(D) = 1 + C,D + C,D? + -+ - + C,D'where Cy, Gy, ... ,C; [Cos
are the negatives of the feedback connections as shown in Figure 6.7.1. Since ' regis
an LFSR is completely described (apart from the initial loading) by its sivel:
register length and connection polynomial, we shall use the notation register

[C(D),]] to denote an LFSR with register length / and connection poly-

nomial C(D). Any or all of the feedback connections —C, . . ., —C, may

be zero so that C(D) may be an arbitrary polynomial with C, =1 and

degree at most /. Finally, if S(D) is a polynomial (either finite or infinite), Con
we shall say that the register [C(D),l] generates [S(D)]L iff, when the

register is initially loaded with Sy, . .., S;1, the remaining elements (if any)

S,, ..., S, are those generated by the register, as given by (6.7.32). Observing

‘ that (6.7.32) is equivalent to the statement that the coefficient of D? in

£ C(D)S(D) is zero, we see that register [C(D),I] generates [S(D)EF iff

[C(D)S(D); =0 (6.7.33)

! The relationship between linear-feedback shift registers and finding o(D) whe
! should now be clear. We want to find the register [o(D),e] of smallest
! register length e that generates [S(D)]¢-2. Notice that the restrictions that
o, = 1 and that the degree of o(D) is at most e are built into the definition
' of register [o(D),e]. The algorithm to be given below finds this shortest
register. We shall show that the algorithm works for an arbitrary poly-
nomial S(D) over an arbitrary field. The algorithm operates by finding a
sequence of registers, first finding the shortest register that generates Sy, then
the shortest register that generates S, + S, D, and so forth. The register [}
produced by the algorithm to generate [S(D))z—* is denoted [CAD),l.]. that

C

R AN it bt s s AR

-

LFSR).

element is computed,

i z I (6.7.32)

r of stages in the shift
stion polynomial C(D)
Y where Cy, Cs, ... ,C,
.in Figure 6.7.1. Since
initial loading) by its
e the notation register
and connection poly-
—Cy, ..., —C, may
aial with C, =1 and
ther finite or infinite),
S(D))F iff, when the
ining elements (if any)
. by (6.7.32). Observing
e coefficient of D? in
ites [S(D))L iff

(6.7.33)

sters and finding o(D)
r [o(D),e] of smallest
at the restrictions that
yuilt into the definition
low finds this shortest
for an arbitrary poly-
operates by finding a
that generates S, then
so forth. The register
is denoted [C,(D),[,].

BCH Codes 247

Roughly, the algorithm works as follows: given a register [C.(D),I,] that
generates [S(D)J;*, the algorithm tests to see whether [C,(D),l,] also
generates [S(D)]7, that is, whether [C.(D)S(D)]? = 0. Since by assump-
tion [C (D)S(D)]7* = 0, the question is whether the coefficient of D™ in
C,(D)S(D) is equal to zero. This sum is called the next discrepancy, d,,, for
the algorithm and expressing C,(D) by 1+ C,, ;D + C,:D*+ ..., wehave

Ly
dy=S,+2C.:Sn (6.7.34)
=1
Letting S, be the coefficient of D" generated by the register, as given by
(6.7.32), we have d, = S, — S, so that d, is the difference between the
desired next output S, and the actual register output S,’. If d, = 0, the
algorithm increases n by one, but keeps the same register. If d, # 0, a
correction term is added to the connection polynomial to make it generate
S, correctly.

The detailed rules for the algorithm are as follows: for each 7, the register
[Cpir(D)sl,14] is defined in terms of the register [C,(D),l,] and a prior
register in the sequence [Cy (D).l] where k,, < n. The integer k,, is recur-
sively defined for each n > 0 by

Kpy Af Ly=1ly
k, = . (6.7.35)

n—1 if I,>1,,

C,.1(D) and /,,, are given by
Cria(D) = C(D) = 42 D™C, (D) (67.36)
kn
! {l" » =0 (6.7.37)
" \max [l n = (k, = Bl da#0 o

where d,, and d;,_are given by (6.7.34), or more explicitly,

dk,, = Sk,, + Z Ck,,’iSk,,—i
i=1
The algorithm starts at » =0 with the initial conditions Cy(D) =
CD)=1,1=1,=0,k=-1,d;,=1
The following theorem asserts that C,(D) and /, specify a register [C,(D),
[.] and that that register generates [S(D)]7~*. We show, in a later theorem,
that [C,(D),l,] is the shortest register that generates [S (D).

i B

248 Techniques for Coding and Decoding

Theorem 6.7.3. For each n > 0,

(@) k, <n (6.7.38)
(b) Cpo=1 [where Co(D) = Cpp+ CpnD + -1 (6.7.39) i
(©) deg [C.(D)] <1, (6.7.40)
@ [C,(D)SD)N* =0 (6.7.41)

Proof.

Parta. Forn = 0, k, < 0 from the initial conditions. Forz > 0, the proof
is immediate from (6.7.35) using induction on .

Part b. From the initial conditions Cy o = 1. Now assume that C, o =1
for any given n. Since n — k,, > 0, it follows from (6.7.36) that C, .1 0= 1.
Thus, by induction, C, o = 1 for alln > 0.

Parts ¢ and d. We again use induction on z. From the initial conditions,

(6.7.40) and (6.7.41) are satisfied for n = —1, 0. For any given n, assume if
that for —1 <i<n,
deg [C(D) L, (6.7.42) F
. tl
[CAD)S(D)Y;* =0 (6.7.43)
The proof will be complete if we show that this implies that (6.7.42) and
(6.7.43) are also satisfied for i = n + 1. We consider separately the case in
which d,, = 0 and that in which d,, # 0. For d,, = 0, C,.1(D) = C,(D) and
ly;1 =1, Thus (6.7.42) for i=n implies (6.7.42) for i=n+ 1. Also
(6.7.43) for i = n implies that w
(
[C.a(DYS(D)];T, =0 P
From (6.7.34), wehave [C,,1(D)S(D)]? = d, = 0. Thus [C,,(D)S(D)];,, .=
0, establishing (6.7.43) for i = n + 1. Now, assume that d, # 0. From F

(6.7.36), we have
deg [Cpa(D)] < max {deg [C,(D)], n — k, + deg [Cy, (D)]}
< max{l,n—k,+ lkn} =l
where we have used (6.7.42) for i = n and i = k,, and then used (6.7.37).
Finally, from (6.7.36)
dy

[Ca(D)SDI., = [C(D)S(DIE,., — [d— D"—k"ck,,w)sw)]

kn

n

ln+1

(6.7.44)
Since /., > [, we have

[C.(D)S(D));, ., =4d,D" (6.7.45)

In+1

(6.7.38)

D+ (67.39)
. (6.7.40)
(6.7.41)

ns. For n > 0, the proof

 assume that C, o =1
6.7.36) that Cpia0 = 1.

1 the ‘initial conditions,
‘or any given n, assume

(6.7.42)
(6.7.43)

mplies that (6.7.42) and
er separately the case in
)9 Cn+1(D) = Cn(D) and
2) for i=n+ 1. Also

‘hus [C, 1 (D)S(D)Y;,,, =

lnk1

ime that 4, # 0. From

+ deg [G, (D)}
ln+1

, and then used (6.7.37).

n

‘"—’“"ck,,w)sw)]

ln+1

(6.7.44)

(6.7.45)

BCH Codes

n Sy, L, CuD LFSR dy By h, Cr(D) di,
o 1 0 1 1 -1 0 1 1
1 1T 1 14D E}—-—» o 0 0 1 1
2 1 1 14D o 0 0 1 1
3 06 1 1+D 1 ¢ o 1 1
4 1 3 1+D+D3 [gEE]—» 0 3 1 1+D 1
5 1 3 1+D+D3 1 3 1 14D 1
6 © 3 1+D+D? E%:EI-—D—’ 0 3 1 14D 1
7 1 3 1+D+D? 0 3 1 14D 1
8 3 14D+D?

Figure 6.7.2. Operation of algorithm in GF(2) for S(D) =1+ D + D* + DY +
D3+ D upton =8.

For the final term in (6.7.44), we observe that D"~*» can be moved outside
the brackets if the limits are simultaneously reduced by n — k,. Thus

dn n— " d’n n—]
[— D k"ckn(D)S(D)] = da prtalC, (D)S(DYF, et
ar., R
dn n—k. k
I L (6.7.46)
K

where we have used (6.7.37) to see that /., — n + k, > I . Substituting
(6.7.45) and (6.7.46) into (6.7.44), we have [C(D)S(D)],, = 0, com-
pleting the proof. |

In Figure 6.7.2 we give an example of how the algorithm works, using
polynomials in GF(2) for simplicity. In Figure 6.7.3, 1, and n — I, are

6

i I T I I I I I
51— _

41— _

Figure 6.7.3. Sketch of I, and n — l,, as functions of n.

hi "

250 Techniques for Coding and Decoding

sketched as functions of 7 for this example. There are some important
aspects of this relationship between /, and n — [, that are valid in general.
First, we observe that /, is nondecreasing with 7 and it is obvious from (6.7.37)
that this is valid in general. The next three results are more subtle.

LEMMA. Foreachn > 0,

fy— b, >i—1; —1<i<k, (6.7.47)
L=k, — I +1 (6.7.48)
Lo > 1, iff 1, < —;—and d,#0 (6.7.49)

Proof. We first show that (6.7.48) implies (6.7.49). From (6.7.37), 1,1 > 1

iff both d, % 0 and
n—(k,—0L)>10, (6.7.50)

From (6.7.48), (6.7.50) is equivalent to n > 21, — 1orl, <nf2, establishing
(6.7.49). Equations 6.7.47 and 6.7.48 are clearly valid for n = 0 and we assume ’
them to be valid for any given . Using induction, the proof will be complete
if we can show that the equations are valid for n + 1. If /44 = I,, then
k,, = k,, and (6.7.47) and (6.7.48) are valid for n + 1. If [, > [, then

from (6.7.35), k., = n and
Kpr — b, =1 — I (6.7.51)

n+1
Since k,, is where the most recent register length change occurred prior to #,
I,=1,fork, <i<n,and thus
kppr — b, > 01— 1 k,<i<n= Kag (6.7.52)
Sop 4 = K~
Also, from (6.7.37), n — 1, > k, — I, “so that combining (6.7.51) with

(6747 T <<
kpir — by > i— 1y —1<i<k, (6.7.53)

n+l

1IN
establishing (6.7.47) for n + 1. Still assuming /7, > I,, we can combine

(6.7.50), which is valid fkor n, and (6.7.51) to obtain

'y‘,'(‘\‘{ 2 \Y\ﬂe“il: ,\ﬁ|~Af_“1|TI
a k I o=l +1 (6.7.54)

=R)kn: l"ev\ 1l T Ckppn T

" This establishes (6.7.48) for n + 1, completing the proof. |

From this lemma, we can see thatn — [, as a function of n will have the
appearance of an ascending sequence of peaks and for each n, k, gives the
Jocation of the peak prior to n, which is higher than any of the preceding
peaks (we consider a peak to occur at n ifn—1,>@m+1) =l

Before proving that the algorithm produces the shortest possible register
for each n, we need two lemmas.

the

E(

N

T
se

: some important
2 valid in general.
rious from (6.7.37)
¢ subtle.

;&6.7.47)
(6.7.48)

(6.7.49)

W(6.7.3D), 1,z > I,

¥

(6.7.50)
< nf2, establishing

= 0 and we assume

»f will be complete
if 7,4 = I,, then
If [, > [,, then

(6.7.51)

ccurred prior to #,

: Knar (6752

ning (6.7.51) with

(6.7.53)

, we can combine

(6.7.54)

_of n will have the
ich #, k,, gives the
1y of the preceding
1) - ln+1)'

st possible register

BCH Codes 251

LEMMA 2. Suppose that [4(D),/] and [B(D),l] are two registers satisfying

[AD)S(D)]p = aD"; a#0 (6.7.55)
[B(D)S(D)]} = (6.7.56)
then for some j, 0 < j < /, there is a register [F(D), / — j] satisfying
[F(D)S(D)lj=f = fD"%; f#0 (6.7.57)
Proof.
{14(D) — B(D))S(D)}} = aD" (6.7.58)

Let j be the smallest integer for which 4; % B; and let y = 4; — B,. Let
F(D) be defined by

A(D) — B(D) = yD'F(D) (6.7.59)
Now F, =1 and

M 075('

deg F(D) < min [deg A(D),deg B(D)] —j<I—j

Thus [F(D), I — j] is a register. Substituting (6.7.59) into (6.7.58) and ob-
serving that we can remove D’ from the brackets if we reduce the limits by j,
we have

y[F(D)S(D))}= = aD™*
Since a/y 3 0, this completes the proof. |

LEMMA 3. Assume that for a given S(D) and a given =, the register
[C/(D),l;]] is the shortest register that generates [S(D)J;~* for each i < n.
Then there exists no register [4(D),L4] such that, for some n, < n, both

g — Ly >k, — 1, (6.7.60)
and
[A(D)S(D)];4 = aD"4; a#0 (6.7.61)
Proof. We shall assume that the lemma is false and exhibit a contradiction.
Let [A4(D),l,] be the shortest register for which (6.7.60) and (6.7.61) are
satisfied with n, < n. p P

Case a. Assume that n, > n: We have seen that /, = [, for n'; <i<n

and thus’ [C,(D),l,] is the shortest register that generates [S(D)Ji for
w, < i < n. Taking i = n4, this shows that /, < /,. Thus, since n, < n, the
register {C,(D),l,] satisfies

[C.(D)S(D)j4 =0 (6.7.62)

From the previous lemma, (6.7.61) and (6.7.62) assert the existence of a
register [F(D), [, — j] for some j > 0O satisfying

[F(D)S(D)Ii=) = fD™7%; f#0

14a—7

e o RN B SO 5 e it S AR e

252 Techniques for Coding and Decoding

This register is shorter than [A(D),l] and satisfies (6.7.60) and (6.7.61),
establishing a contradiction.

Case b. Assume ny < :l;: The register [C, (D).l] is by hypothesis the
shortest register generating [S(D)]z+~1, and thus L, < l,. Thus, using
(6.7.47),

kn_lannA—lnAZnA—lA

contradicting (6.7.60). |

Theorem 6.7.4. For any S(D) and each n > 0, no register that generates
[S(D)]z* has a smaller register length than the register [C,(D),/,] produced
by the algorithm. -

Proof. We use induction on 7. The theorem is clearly valid for n = 0.
Assume that, for any given S(D), it is valid for a given n. If [, = I, then
clearly [Cpi1(D)slnial is the shortest register generating [S(D)]g‘éince it is
the shortest register generating [S (D)]*® and any register generating
[S(D)]r also generates [S(D)]z~*. Now assume .1 > I, so that

[C.D)SD), = d, D" dn #0

in

Let [B(D),/p] be any register generating [S(D)]y. We must have g > .,
and, from Lemma 2, the registers [C,(D),lg] and [B(D),lg] imply the
existence of a register [F(D),lz —J] for some j > 0 so that

' [F(D)S(D); = fD™% f#0

ip—7

From Lemma3, (n —j) — (g —) L kn — I, Thuslp > n — (k, — L) =
I,.,- Thus register [B(D),l] is no shorter than [Cria(D), Lnials completing
the proof. |

The block diagram in Figure 6.7.4, from Massey (1968), suggests a way
of implementing the algorithm. Notice that it uses (6.7.49) as a test for when
1, and k,, change. The length of the registers, j, in Figure 6.7.4, must be long
enough to store the connection polynomial of the longest register expected.
For decoding BCH codes, we choose L = d — 2 and o(D), except for the
o, = 1 term, is left in R1. We can choose j = |(d — 1)/2] and be guaranteed
of correcting all combinations of at most |(d — 1)/2] errors. For binary BCH
codes, the elements {S;} and {C;} are elements of GF(2™), and each of the
registers in Figure 6.7.4 can be implemented by m binary registers. The
GF(2™) multipliers can be implemented as in Figure 6.6.5. It can be seen that
the equipment required for the registers and multipliers is proportional to
m d. It can also be seen that the time required to find o(D) is proportional
to m d [or slightly more, depending on how (d*)~! is calculated]. There are,
of course, a number of detailed design questions to be answered in building

Ss -

60) and (6.7.61),

by hypothesis the
l4. Thus, using

ter that generates
2(D),1,] produced

' validﬁfor n=0.
If I,,5 = I,, then
S(D)]z"Since it is
igister generating
i0 that

ust have I > [,
D),Ig] imply the
t

n—(k,—)=
I,+1], completing

), suggests a way
as a test for when
.7.4, must be long
register expected.
J), except for the
ind be guaranteed
. For binary BCH
, and each of the
ury registers. The
1 can be seen that
s proportional to
J) is proportional
lated]. There are,
wered in building

S5 —> Ss | S3| Sz

Cn,1(Cn,2 Cn,j
CL .
U
0
| i
S1 | So
Fi | Fy F;

Notes: For each n, Rl contains C,(D), except for C,, o=1
R2 contains [S(D)]g

R3 contains F(D)=D"_k"Ckn(D) (note that Fy = 0)
d* is a memory cell containing dy,,

n=l,+1>1,
dp—>d*
Interchange R1, R3

Multiply R1 by—%

Add Rj into Ry
Shift R3 right,
loading “1” into
leftmost stage

Control Functions

00. . O0>R1

Se0. . O0>R2

10. . .O>R3

0->n0>1,;
1> d*

Stati

¢ register R1

dp

Shift register R2

Shift register R3

Add~32 times
R3into R1

Shift R3 right

e—

Shift R2 right
loading Sp+41
n+l>n

Figure 6.7.4. Implementation of LFSR algorithm to generate [S(D)]({:.

254 Techniques for Coding and Decoding

such a device and the only point to be made here is that such a device requires
surprisingly little hardware and surprisingly little computing time. Berlekamp
(1967) has also shown that, for binary codes with r = 1, d, is always zero
for n odd. Making use of this fact essentially cuts the computation time to
find o(D) in half. This completes our discussion of step 2 in the BCH decoding
procedure.

We now briefly discuss the implementation of steps 1, 3, and 4 in a BCH
decoder. For step 1, the elements of the syndrome can be calculated by

S, =3 g = (o (Y™ YD Yn)d T)

n==0
Thus S, can be calculated by adding each successive received digit into an
initially empty register, the sum to be multiplied by o’+* and returned to the
register awaiting the next received digit.

Step 3 is most easily implemented by a procedure due to Chien (1964). If
at most |(d — 1)/2] errors have occurred, then o(D), as calculated in step 2,
will be given by (6.7.21) and an error will have occurred in position # (that is,
z, # 0) iff o(a™") = 0, or equivalently iff

€

Sooa =0 (6.7.63)
=0
If we define
Opp = O™ (6.7.64)
then
O N1 = 0,0~ NV = g0 (6.7.65)
and for each n
Oiim1 = O’ (6.7.66)

This suggests using the implementation in Figure 6.7.5 to perform the test
in (6.7.63), first forn = N — 1, then for n = N — 2, and so forth.

We have already pointed out that, for a binary BCH code, step 4 in the
decoding procedure is unnecessary. Thus the received digits can be fed out
of the decoder synchronously with the operation of the circuit in Figure
6.7.5, simply adding y,, to z,,, modulo 2, as n gocs from N — 1 to 0, yielding
‘the transmitted code word if at most [(d — 1)/2] errors have occurred.

If more than |(d — 1)/2] errors have occurred for a binary code, any one
of the following three events might occur. First, the register [o(D),/] generated
in step 2 might have / > L(d — D2} Ifj = l(d — 1)/2] in the block diagram
of Figure 6.7.4, o(D) will not be found in this case, but it is trivial to detect
the event. It is also possible for /, as found in step 2, to not exceed |(d — 1)/2],
but for ¢(D) not to have /roots in GF (2™). In this case, fewer than / corrections
will be made in step 3, but the decoded sequence will not be a code word. This

Fi
lot

ZA

r

at such a device requires
puting time. Berlekamp

=1, d, is always zero
1e computation time to
>2 in the BCH decoding

8 1,3, and 4 in a BCH
in be calculated by

Yn—a)& T ygy)

¢ received digit into an

«"+* and returned to the
§

due to Chien (1964). If

as calculated in step 2,

¢d in position # (that is,

(6.7.63)

(6.7.64)
(6.7.65)

(6.7.66)

1.5 to perform the test
, and so forth.

CH code, step 4 in the
d digits can be fed out
f the circuit in Figure
m N — 1 to 0, yielding
irs have occurred.

a binary code, any one
dster [o(D),/] generated
2] in the block diagram
»ut it is trivial to detect
not exceed | (d — 1)/2],
fewer than / corrections
ot be a code word. This

BCH Codes 255

il

zn 0

Figure 6.7.5. Step 3 of BCH decoding: finding error locations. Register initially
loaded with oy, . .., 0\ _ 1y Then multiplication takes place, and then test for
2y_q = 0; then multiplication and test for z)_, = 0; and so on to zy, = 0.

again can be easily detected, either by counting the number of corrections or
by checking whether the decoded sequence is a code word. Finally, it is
possible that the register [o(D),/] has / < [(d — 1)/2] and that [errors are
found in decoding. In this case, the decoded sequence will be a code word
and differ from the received sequence in at most [(d — 1)/2] positions. The
decoding error cannot be detected in this case, but at least we know that the
decoder has made the maximum-likelihood decision for a binary symmetric
channel.

We next turn to finding the error values (step 4) in the decoding process
for nonbinary BCH codes. We defined the polynomial 4(D) in (6.7.22) as

A(D) =S V,urTI (1 — U,D) (6.7.67)
j=1 137

Also A(D) is determined in terms of ¢(D) by (6.7.25),
' A(D) = [o(D)S(D)I-? (6.7.68)

A(D) can be calculated directly from (6.7.68) or, more elegantly, it can be
incorporated as part of the iterative algorithm for finding (D). In particular,
we use the initial conditions 4_,;(D) = — D~ and A,(D) = 0 and for each
n > 0, calculate 4, (D) from

ApaD) = 4,(D) = <2 D™+, (D) (6.7.69)

kn

e —————

256 Techniques for Coding and Decoding

where d,, and k,, are given by (6.7.34) and (6.7.35). This requires two extra
registers in the block diagram of Figure 6.7.4 and virtually no extra control
logic since the operations on the registers for A,(D) and D" *4, (D) are
the same as those on the registers for C,(D) and D" *:C, (D). The proof
that [C,(D)S(D)]z* = A,(D) for each n > 0 is almost the same as the proof
of Theorem 6.7.3 and is treated in Problem 6.35.
After A(D) has been found, we see from (6.7.67) that
AU =V,Uu;T1Q - U,U;™ (6.7.70)
1#35

The term on the right can be simplified if we define the derivative of ¢(D) =
6o +0o, D4+ 0,D°as

o' (D) = 0y + 26,0 + - -+ + ec, D (6.7.71)

This calculation of ¢’(D) can be easily instrumented from o(D), and if q is
a power of 2, it is simply the odd power terms of ¢(D) divided by D. Since

o(D) =TI (1 — U,D)

we also have (see Problem 6.36):

LY

c'(Dy=—->U,TI1 — U,D]
j=1 t#F7
JU N =~U,T[(= UU™ (6.7.72)
1#3
Substituting (6.7.72) into (6.7.70),

—1
v, = —yrr AU (6.7.73)

a'(U;™)

Recalling the definitions of U; and V; in (6.7.16), each nonzero noise digit
z, is given by
n(l—r ~n
oy = — LA (6.7.74)
o'(e™™)

Each of the three terms on the right-hand side of (6.7.74) can be calculated
successively for # going from N — 1 to 0 by the same type of circuit as in
Figure 6.7.5.

This concludes our discussion of decoding for BCH codes. The major
point to be remembered is that, although the decoding is conceptually
complicated, it is very simple in terms of decoding time and required circuitry.
Apart from storage of the received word and a circuit to take the inverse of
elements in GF(g™), the amount of hardware required is proportional to

md. Th
4 is pro

Let u
the lim:
estimate

where J
fixed K
numbe!
drops 1
has ca’
binary
does d«
occurs
import

The
BCH «
field ir
In this

Thus
to see
of che
tion ¢
d nor
Sin
of g -
sizes.
input
used
symt
code
arbit
decr:
pror
also

1is requires two extra
aally no extra control
and D"*i4, (D) are
“#»Cy (D). The proof
the same as the proof

it .
D, (6.7.70)

derivative of ¢(D) =

2 (6.7.71)

rom agD), and if g is
) divided by D. Since

(6.7.72)

(6.7.73)

1 nonzero noise digit

(6.7.74)

74) can be calculated
type of circuit as in

H codes. The major
ling is conceptually
nd required circuitry.
o take the inverse of
d is proportional to

BCH Codes 257

m d. The decoding time in step 2 is proportional to m d and that in steps 3 and

4 is proportional to mN.
Let us see what can be said about the behavior of binary BCH codes in

the limit as N — co. Assume for the moment that m(d — 1)/2 is a good
estimate of the number of check digits in the code so that

md—1 _,
2N

—R

where R is the rate in binary digits. Since m > log, (N + 1), we see that for
fixed R, (d — 1)/2N must approach 0 as N approaches infinity. Thus the
number of errors that can be corrected by the decoding algorithm eventually
drops below the expected number of errors on the channel. Peterson (1961)
has calculated the exact number of check digits required in a variety of
binary BCH codes, and his results indicate that, for fixed R, (d — 1)/2N
does decrease toward zero with increasing N. On the other hand, this decrease
occurs at such large values of N that this limitation is of little practical
importance.

The Reed Solomon (1960) codes are a particularly interesting class of
BCH codes in which the parameter m is 1; that is, in which the extension
field in which « is defined is the same as the symbol field for the code letters.
In this case, the minimal polynomial of of is simply D — &, so we have

r+d—2

gD) =TI (0 —a')

Thus this code has d — 1 check digits and a minimum distance of d. It is easy
to see that no group code with this alphabet size, block length and number
of check digits can have a larger minimum distance, since if all the informa-
tion digits but 1 are chosen to be zero, the resulting code word has at most
d nonzero digits. :

Since the block length N of a Reed-Solomon code is ¢ — 1 or a divisor
of ¢ — 1, it can be seen that these codes are useful only for larger alphabet
sizes. They can be used effectively on continuous time channels where the
input alphabet is chosen as a large set of waveforms. They have also been
used effectively by Forney (1965) in a concatenation scheme where the
symbols in the Reed-Solomon code are code words in a smaller, imbedded
code. Forney has shown that such codes can be used at transmission rates
arbitrarily close to capacity. The error probability is an exponentially
decreasing function of the block length, and the decoding complexity is
proportional to a small power of the block length. Reed-Solomon codes can
also be used directly on a channel with a small input alphabet by representing
each letter in a code word by a sequence of channel letters. Such a technique

