
Decoding BCH Codes Using the Euclidean Algorithm

for Finding Greatest Common Divisors

In 1975 Sugiyama1, et. al., published an article describing how to use Euclid’s gcd algo-
rithm to solve the key equations for decoding BCH codes. A matrix formulation of Euclid’s
algorithm is presented in these notes first. Then the method for solving the key BCH de-
coding equation is presented.

1 A Matrix Formulation of Euclid’s Algorithm for Find-

ing Greatest Common Divisors

Euclid’s algorithm for finding the greatest common divisor (gcd) of two polynomials can be
expressed as a matrix recursion. Suppose we want to find the gcd of s(D) and t(D) where
deg s(D) ≥ deg t(D). Let s(0)(D) = s(D) and t(0)(D) = t(D). As a first step the Euclidean
division algorithm can be used to express s(0)(D) as

s(0)(D) = Q(0)(D)t(0)(D) + t(1)(D) (1)

where Q(0)(D) is the quotient and t(1)(D) is the remainder which has a degree less than the
degree of the divisor t(0)(D). From (1) it is clear that the remainder is

t(1)(D) = s(0)(D)−Q(0)(D)t(0)(D) (2)

The gcd(s(0)(D), t(0)(D)) divides the right-hand side of (2), so it also divides the remainder
t(1)(D). Let s(1)(D) = t(0)(D). Then[

s(1)(D)
t(1)(D)

]
=

[
0 1
1 −Q(0)(D)

] [
s(0)(D)
t(0)(D)

]
= B(1)

[
s(D)
t(D)

]
(3)

Let

G(0) =

[
0 1
1 −Q(0)(D)

]
(4)

and

B(0) =

[
1 0
0 1

]
(5)

Clearly B(1) = G(0)B(0).
If the remainder t(1)(D) is not zero, the division process can be repeated with s(1) and

t(1)(D) to get
s(1)(D) = Q(1)(D)t(1)(D) + t(2)(D) (6)

with deg t(2)(D) < deg t(1)(D). Also,

t(2)(D) = s(1)(D)−Q(1)(D)t(1)(D) (7)

1Sugiyama, Y., M. Kasahara, and T. Namekawa, “A Method for Solving Key Equation for Decoding
Goppa Codes,” Information and Control, Vol. 27, 1975, pp. 87–99.

1



The gcd must also divide t(2)(D). Let s(2)(D) = t(1)(D). In matrix form[
s(2)(D)
t(2)(D)

]
=

[
0 1
1 −Q(1)(D)

] [
s(1)(D)
t(1)(D)

]
= G(1)B(1)

[
s(D)
t(D)

]
= B(2)

[
s(D)
t(D)

]
(8)

where

G(1) =

[
0 1
1 −Q(1)(D)

]
(9)

and
B(2) = G(1)B(1) = G(1)G(0)B(0) (10)

This procedure can be repeated as long as the remainder is not zero. The general form
of the recursion at step r is

Q(r)(D) =

⌊
s(r)(D)

t(r)(D)

⌋
(11)

B(r+1) =

[
0 1
1 −Q(r)(D)

]
B(r) = G(r)B(r) = G(r)G(r−1) · · ·G(0) (12)

[
s(r+1)(D)
t(r+1)(D)

]
=

[
0 1
1 −Q(r)(D)

] [
s(r)(D)
t(r)(D)

]
= B(r+1)

[
s(D)
t(D)

]
(13)

Since the degree of the remainder decreases at each step, the remainder must become
zero at some point, say, r + 1 = R, and (13) becomes[

s(R)(D)
0

]
= B(R)

[
s(D)
t(D)

]
(14)

The first row of (14) is equivalent to

s(R)(D) = B
(R)
11 s(D) + B

(R)
12 t(D) (15)

Since gcd(s, t) divides s(D) and t(D) it also must divide s(R)(D).
The inverse of B(R) exists since detB(R) = ΠR−1

i=0 detG(i) = (−1)R 6= 0. Therefore,[
s(D)
t(D)

]
=

[
B(R)

]−1
[

s(R)(D)
0

]
=

[
G(0)

]−1 [
G(1)

]−1
· · ·

[
G(R−1)

]−1
[

s(R)(D)
0

]
(16)

with [
G(r)

]−1
=

[
Q(r) 1
1 0

]
(17)

So
s(D) =

[
B(R)

]−1

11
s(R)(D) and t(D) =

[
B(R)

]−1

21
s(R)(D) (18)

Since s(R)(D) divides both s(D) and t(D), it is a common divisor of s(D) and t(D). However,
it was demonstrated in the previous paragraph the gcd(s(D), t(D)) divides s(R). Therefore,

gcd(s(D), t(D)) = αs(R)(D) (19)

2



where α is some scale factor. In other words, the last non-zero remainder is proportional to
the gcd.

Finally, the terms in (18) will be expressed directly in terms of the elements of B(R).
Since detB(R) = (−1)R

[
B(R)

]−1
=

1

detB(R)
adj B(R) = (−1)R

 B
(R)
22 −B

(R)
12

−B
(R)
21 B

(R)
11

 (20)

Therefore,
s(D) = (−1)RB

(R)
22 s(R)(D) and t(D) = (−1)R+1B

(R)
21 s(R)(D) (21)

2 Using Euclid’s Algorithm to Decode BCH Codes

Suppose the design distance for a BCH code is d = 2t0 + 1. The generator polynomial
for the code is the smallest degree polynomial over the symbol field with roots αm0+i for
i = 0, . . . , d− 2 and the syndromes for the received word y(D) were defined to be

si = y(αm0+i) for i = 0, . . . , d− 2 (22)

which is a sequence of d− 1 = 2t0 field elements. The syndrome polynomial was defined as

S(D) =
d−2∑
i=0

siD
i (23)

If t errors occur in positions n1, . . . , nt, the error locators were defined as

Uk = αnk for k = 1, . . . , t (24)

and the error locator polynomial was defined to be

σ(D) =
t∏

k=1

(1− UkD) = 1 + σ1D + · · ·+ σtD
t (25)

The error evaluator polynomial was defined as

A(D) = [σ(D)S(D)]d−2
0 (26)

and it was shown that deg A(D) ≤ t − 1 ≤ t0 − 1. Therefore, we concluded that S(D) can
be found by solving the key equation

[σ(D)S(D)]d−2
t = 0 (27)

which is a set of d− t− 1 = 2t0 − t ≥ t0 equations in t unknowns. Of course, this assumes
that no more than the guaranteed number of correctable errors occurred, that is, t ≤ t0.

Since d− 2 = 2t0 − 1, the formula for A(D) can also be written as

A(D) = σ(D)S(D) mod D2t0 (28)

3



with deg σ(D) ≤ t0 and deg A(D) ≤ t0 − 1. The mod operation deletes all powers of D
greater than or equal to 2t0 in the product which is what the bracket operation does. The
solution for A(D) and σ(D) is unique for a correctable number of errors.

From (13) for the Euclid gcd recursion, it follows that

[
s(r)(D)
t(r)(D)

]
=

 B
(r)
11 B

(r)
12

B
(r)
21 B

(r)
22

 [
s(D)
t(D)

]
(29)

so that

t(r)(D) = B
(r)
22 t(D) + B

(r)
21 s(D)

= B
(r)
22 t(D) mod s(D) (30)

This has the form of (28), the equation we wish to solve, if we let s(D) = D2t0 and t(D) =

S(D). Then it will be shown that A(D) = t(r)(D) and σ(D) = B
(r)
22 for a specific value of r,

say, r′, found in the recursion. To solve the key equation, we must find the integer r′ such

that deg B
(r′)
22 ≤ t0 and deg t(r

′)(D) ≤ t0 − 1. Since t(r)(D) is the remainder at each step, its
degree starts at deg S(D) = 2t0 − 1 for r = 0 and decreases as r increases. As the recursion
progresses, let r′ be the value of r such that

deg t(r
′−1)(D) ≥ t0 and deg t(r

′)(D) ≤ t0 − 1 (31)

By the rule for finding r′, we have guaranteed that deg t(r
′) ≤ t0−1. It will now be shown

that deg B
(r′)
22 ≤ t0. According to (12),

B(r′) =
0∏

r=r′−1

[
0 1
1 −Q(r)(D)

]
(32)

with the factor for r = r′ − 1 on the left and the factor for r = 0 on the right. Since the
degrees of successive remainders decrease, the quotients, Q(r)(D), have a degree of at least

1. Forming the products, starting from the left, it can be seen that deg B
(r′)
22 > deg B

(r′)
12 . In

addition, we can conclude that deg B
(r)
22 increases with r starting with degree 1 for r = 1.

Also remember that s(r′)(D) = t(r
′−1)(D) so deg s(r′)(D) > deg t(r

′)(D). Using the inverse
formula (20) to solve for s(D) and t(D) gives[

s(D)
t(D)

]
= (−1)r′

[
B

(r′)
22 −B

(r′)
12

−B
(r′)
21 B

(r′)
11

] [
s(r′)(D)
t(r

′)(D)

]
(33)

Therefore,

s(D) = (−1)r′ [
B

(r′)
22 s(r′)(D)−B

(r′)
12 t(r

′)(D)
]

(34)

From the degree inequalities stated just before these equations, it follows that

deg s(D) = deg
[
B

(r′)
22 s(r′)(D)

]
= deg B

(r′)
22 + deg s(r′)(D) (35)

4



Rearranging gives

deg B
(r′)
22 = deg s(D)− deg s(r′)(D) = deg D2t0 − deg t(r

′−1)(D)

≤ 2t0 − t0 = t0 (36)

For a binary symmetric channel with cross-over probability less than 0.5, error patterns
with lower weight are more likely than ones with higher weight. Thus no errors are most
likely, then single errors, etc. If the syndromes are all 0, then either no error or an unde-
tectable error occurred. If the syndromes are not all 0, this decoding algorithm has the nice
property that it tries to correct the most likely single error patterns first and successively
proceeds to higher weight patterns. This follows from the fact that deg B

(r)
22 starts at 1 for

r = 1 and increases with r. Remember that when r′ is reached, deg B
(r)
22 is equal to the

number of errors if a correctable error occurred.
In summary, the steps for solving the key equation using Euclid’s gcd algorithm are:

1. Compute the syndrome polynomial S(D).

2. Initialize to s(0)(D) = D2t0 , t(0)(D) = S(D), and B(0) = I2×2.

3. Solve the following recursive formulas until deg t(r
′)(D) ≤ t0 − 1:

Q(r)(D) =

⌊
s(r)(D)

t(r)(D)

⌋
(37)

B(r+1) =

[
0 1
1 −Q(r)(D)

]
B(r) (38)

[
s(r+1)(D)
t(r+1)(D)

]
=

[
0 1
1 −Q(r)(D)

] [
s(r)(D)
t(r)(D)

]
(39)

4. Let ∆ = B
(r′)
22 |D=0. Then the solutions are:

A(D) = ∆−1t(r
′)(D) (40)

σ(D) = ∆−1B
(r′)
22 (41)

The normalization by ∆−1 is required to make σ0 = 1. A flowchart for this algorithm is
shown at the end of this document.

A Very Simple Example

As a very simple example, consider the single error correcting Reed-Solomon code with d = 3,
t0 = 1, and α a primitive element of GF(pm). Then d − 2 = 1 so αm0 and αm0+1 are roots
of g(D). Suppose the received word contains a single error of value V in position n so

y(D) = x(D) + V Dn (42)

5



The required syndromes are

s0 = y(αm0) = V αm0n and s1 = y(αm0+1) = V α(m0+1)n (43)

Of course, V and n are unknown and must be found. The syndrome polynomial is

S(D) = s0 + s1D (44)

The key equation is
A(D) = [(1 + σ1D)(s0 + s1D)]10 (45)

In this case, deg A(D) ≤ t0 − 1 = 0, so

A(D) = [(1 + σ1D)(s0 + s1D)]00 = s0 (46)

and
[(1 + σ1D)(s0 + s1D)]11 = 0 (47)

or
σ1s0 + s1 = 0 (48)

so
σ1 = −s1s

−1
0 (49)

Therefore, the error locator polynomial is

σ(D) = 1− s1s
−1
0 D (50)

In this simple example, it is clear that the single error locator is

U = s1s
−1
0 = V α(m0+1)nV −1α−m0n = αn (51)

The error value is

V = −U1−m0A(U−1)/σ′(U−1) = −
(
s1s

−1
0

)1−m0

s0

(
−s1s

−1
0

)−1
= s0U

−m0 (52)

Since s0 = V αm0n and U = αn, this formula gives the correct value for V.
Now the Euclidean algorithm will be used to find A(D) and σ(D). The initial values are

s(0)(D) = D2t0 = D2 and t(0)(D) = S(D) = σ0 + σ1D. Dividing s(0)(D) by t(0)(D) we find
that quotient is

Q(0)(D) = s−1
1 D − s−2

1 s0 (53)

and the remainder is
t(1)(D) = s−2

1 s2
0 (54)

Notice that deg t(1)(D) = 0 which is equal to t0 − 1 = 0, so we have determined that r′ = 1.
The required transformation matrix is

B(1) =

[
0 1
1 −Q(0)(D)

]
(55)

6



Thus
B

(1)
22 = −Q(0)(D) and ∆ = s−2

1 s0 (56)

According to (40) and (41)
A(D) = ∆−1t(1)(D) = s0 (57)

and
σ(D) = ∆−1B

(1)
22 = 1− s1s

−1
0 D (58)

exactly as determined previously by direct solution of the key equations.

A Slightly More Complicated Example

Now assume the code is a t0-error correcting Reed-Solomon code corresponding to the root
sequence αm0+i for i = 0, . . . , 2t − 1. Suppose a genie tells us that the single error pattern
E(D) = V Dn occurred. Then the syndromes are

si = V αn(m0+i) for i = 0, · · · , 2t0 − 1 (59)

Then s(0)(D) = D2t0 and t0(D) =
∑2t0−1

i=0 V αm0+iDi. Dividing t(0)(D) into s(0)(D) gives the
quotient

Q(0)(D) = V −1α−n(m0+2t0−1)D − V −1α−n(m0+2t0) (60)

and remainder
t(1)(D) = −α−n2t0 (61)

Therefore, in the very first iteration, we have determined that r′ = 1 since deg t(1)(D) = 0 ≤
t0 − 1. Since B

(1)
22 = −Q(0)(D), it follows that ∆ = V −1α−n(m0+2t0) and

σ(D) = −∆−1Q(0)(D) = 1− αnD (62)

and
A(D) = ∆−1t(1)(D) = V αm0n (63)

Therefore, the error locator is U = αn. It is readily verified that V = −U1−m0A(U−1)/σ′(U−1).

7



∆ = B22(0)
σ(D) = ∆−1B22

A(D) = ∆−1t(D)

Find error locators
U1, . . . , Ut

from roots of σ(D)

Compute Error Values

Vi = −U1−m0
i

A(U−1
i )

σ′(U−1
i )

for i = 1, . . . , t

��
����

HHH
HHH��

����
HHH

HHH

?

?

?

?

?

?

?

?

?

�

Compute Syndromes

si = y(αm0+i) i = 0, . . . , 2t0 − 1

Initialize

B =

[
1 0
0 1

]
s(D) = D2t0

t(D) =
2t0−1∑
i=0

siD
i

deg t(D) ≤ t0−1

Q(D) =

⌊
s(D)

t(D)

⌋

[
s(D)
t(D)

]
←

[
0 1
1 −Q(D)

] [
s(D)
t(D)

]

B←
[

0 1
1 −Q(D)

]
B

NoYes

Figure 1: Flowchart for Solving the Key Equation Using the Euclid’s GCD Algorithm

8


