6 1 D D+ !

6 |) 0 o (8]

t o0 I D p+ 1
D / (% D) b+ 1 I
b+ 1 / o b+ 1 ! D

dogree Nl oty Bl polleony amoppies

> ~ - D —d g v
X,v___[_xgl ‘ .] X{(D) X, + x,D 74 XNT/D

o Medice_thet _for o, B € GFrg)
L X 4 p g <=—> o X(p) +R Y(p)

T X(p) = X, % X, D9 =24 X D = BXx(p)=- x __Cl?i-_'_L

=7 N & w_’

= [o Xt01] oned (0%-))

e tha %M_AAWJK,M W,____
o degree £ N1 o sediiplbeaBion Mg D owodido bz

-~ 7-

o Mt Lo code pelumawnal fon o &, wec < € GG

b D L cd)gen) i Jdeg eln) ¢ N-ry
N MM
Fon q/\«?_uzﬂ,-ig 4 a (o)
aldl= @cb)grn) + v (b) %J@;I<o&7g,
,____M - pluncrinal -
pguvey Q@ l0) 4o o8 cefe | 7 CQE;_G._,{_N /
AT d,e&;@ < N-r sl @ (0) g(p) Ao o cotononsl .

~ - '-l
- T on
R 4 "V Y. o‘-‘/ M ‘f'u—lﬂl_&a. a/'T?r) ‘ g
__eﬁwa.-n,m.l% /tz'sﬁ TS o ,{ A €b8) D glo)
~r=1 -
e D 9(p) _ane At

K= N-r L N-kKsr= no, cherR sgymbols ,
& ?MZ@,M__#A Lle corle _a
— r —
o G 9 1o 6 .
J e r-¢ a4
r : .
' ',
| 2
{_ o o q 2| l l
o = 4
/

I Of/f-‘ ?[DJ_M_W ﬂbw paw o;f
e egclec codle

___W_'A_En_oyo&&. Linton codpq of RewsTh N g o]
——— i ’ 77
)

Mttt dde D-

-r

v
p"’-rn~+ q D = 1-[D"o')+ r (D)

wle e CD):[j'D-r‘LQ)_jM[J) -1) MH&)___

oV~ r'g cn) , Jsﬁw g.(0) darioles e &D//xs W,ﬁzuee/_
Lottty ren) awd pMof amiit conlacws 5000 ag

«

e Racko

BED
___,fa.wwu J’f 9 €b) e arsy WMW ?’ Aogiee
r oo &E_C?)_M_M p7ol | e code

YAF-QD T+ Kﬁ_b_j_xhﬁ,__dﬂ_a/_e—d&__wxb‘g
3 (D) _ormed Muuat Lro. o Corlon—orgl
. (od =)

-(a-

. Theoww 7T

W%,ZW ﬁF/’J w A
____oAech _W_MM_WMM W_.%L‘
am__r WM“——P‘%@MM—@—Q—M—
__Mg_b_im%_/_m? d.&;ﬁ.u_m
—WMLM_LLgJ_M_M_Q_,}MM
ﬁ'igo&.gwﬁz_%[_ml@m?ym N__uth N-r

Feo o LMW_A%__M__

Alp) = (o%) /gen) = A2 h py- 4 0"
___*I‘ZHV}‘_M%W x(bd) = L[D)c}fb)
%(0)h (b)) = a (D) g(byhid) = grp) §a%1]

- 4
= alp)D - gtt) = £C€o»)
—__M__Peij a (p) .“ A/—-r‘-l/ :f_:o far N-ra}ﬁN-l
4
N=7
— _ J;, - ‘\1\ X),’w by 0 ,fgy J:.: ‘/.-'—7 }N-’
"0
e .
o~ f.= T % Hh o for = N-r M-
J . B 4 v 7 7
L ey p

- 20—

r-1
—l _ /—\M
H = fi h O O 0 7 T
N=v=1 [}]
/ o I h h o o l r
| - |
l ¢ o1 _h = & 4 L
= N-,._’ [4
<= N —>
Tha, o Con At Wu__
Ney-1
7., = - Z '_ ’X 7‘0,— ‘,ZN-V‘ -r‘lN"’l
SN+ rm IR v 7 d

Ny = N-(Nx) T K

— - R.—‘ et r - ’ /’ puat —_
__W TP S alb)g)+ bep) m__a(egia(o)fr-
- r

,Ze/‘t' X¢p) = ITCb) - () = L& DNL--‘f}I_D~I¢D":...'-bﬁ

-t

= acnglp)

__&ma{;c.ée» oo & WM_M

____{Ae}b«_.« :

- l22-

T et Foa reN-K o Tovage elemanta | The
— cotwts of Fha W_WM%
____ML?’MWM,O CCo)= G+ e, pet -4 € D’

The M_O-v’-ﬁ“ﬂ& M_&%MME «D”,

r - -
NO-\U b W‘D‘ % [D) - - qr. D %, P 30 fo
ra i r
: - C
[D C(ol]m«aﬁ g (p) 2D+ C,p* 4 .-t Cr-zD + [- J'Nae%.(bl

= <‘I>+Cn+ i L. FON) - € f‘)*ﬁt)i“'r:br-‘7
= bcco) - ¢, 9(. i
Wit « <o M oo o Ll a4 Aoevw Zp
_*M_A&W P o M [pen)] M?_J)_.__
By hweandy | wdh Mabw A The e

MM W/M [p” +acm1wy?ro
_WQW__Q__MMM are Clo)

———_%—MWM og L DCp)Ifwed gp
Iv [l Dhc_m)l_w_?L)i’;.M“?f A)
= § o lbecp)-c, qca)Y? M‘gcn)
I) Dcco)“s M_g(a)
E_D_'i_c_[_o) :(ek G C0)
- To_caleokore ICD) madg (d) tle cotfficiante
LN SRS SN ¥V AMMMM

.__M_A‘:&&__W*M }{, Clo) =o mw@/@?/_

Yx - Dr} ’\M—nL.?LD)/ M«tnh 2 e—&/.v{g_
{ X %ru +-X Drlw.ml o/D) A G#n»u N-r M

/

Calculating the HDLC Frame Checking Sequence (FCS) and
Error Checking at the Receiver

S.A. Tretter
June 18, 1996

1 Introduction

This report explains in detail how to calculate the HDLC frame checking sequence (FCS) and
how to check for errors in the received frames. The CCITT Recommendation T.30, “Proce-
dures for Document Facsimile Transmission in the General Switched Telephone Network,”
Section 5.3.7, describes the procedure as follows:

The FCS shall be a 16 bit sequence. It shall be the 1s complement of the sum (modulo
2) of:

1. the remainer of z%(z!5 + 2! + 13 + ... + 22 + £ + 1) divided (modulo 2) by the
generator polynomial 216 4+ z'2 + 2% + 1, where k is the number of bits in the frame
existing between, but not including, the final bit of the opening flag and the first bit
of the FCS, excluding bits inserted for transparency, and

2. the remainder after multiplication by z'® and then division (modulo 2) by the gener-
ator polynomial 218 + 12 4+ 25 + 1 of the content of the frame, existing between, but
not including, the final bit of the opening flag and the first bit of the FCS, excluding
bits inserted for transparency.

As a typical implementation, at the transmitter, the initial remainder of the division is
preset to all 1s and is then modified by division by the generator polynomial (as described
above) on the address, control and information fields; the 1s complement of the resulting
remainder is transmitted as the 16-bit FCS sequence.

At the receiver, the initial remainder is preset to all 1s and the serial incoming pro-
tected bits and FCS when divided by the generator polynomial will result in a remainder of
0001110100001111 (z!5 through z°, respectively) in the absence of transmission errors.

The FCS shall be transmitted to the line commencing with the coefficient of the highest
term.

This description is confusing and vague, particularly to those not familiar with the jargon
of error correcting codes. In addition, the next to last paragraph is not entirely correct. This
report will attempt to clarify the procedures.

2 Details of How to Generate the FCS and Check the Received
Word
Let k£ be the number of information bits in the frame. These are the bits between, but

not including, the final bit of the opening flag and the first bit of the FCS, excluding bits
inserted for flag transparency. They include address, control, and information fields. The

block length of the information bits and the FCS is N = k + 16. The information bits can
be represented by the polynomial

[(I) = Ils(ik_lIk—l + ik_g.rk—z + -+ ilI + Zo)

. + . - 17 - 16
= G0 f g oz 2t (1)

Positions 15 down to 0 will be occupied by the 16-bit frame checking sequence.

The polynomial z¥(z'® + 2 + 23 + ... 4+ 22 + z + 1) represents a string of ones in the
16 highest order information positions.

The block diagram of a circuit for computing the remainder of a polynomial z!®P(z)
when divided by the generator polynomial g(z) = z'¢ + z!2 + z° + 1 is shown in Figure 1.
The adders perform GF(2), also called modulo 2, addition which is the logical exclusive-or
function. A box labelled D¢ in the figure represents an array of ¢ one-bit storage elements
connected serially as a shift register. Notice that there are a total of 16 storage elements in
the circuit. These will be referred to as a register and their contents represent the state of the
circuit. The storage element contents or state variables are labelled Sp(n) up to Si5(n) going
from left to right. The register contents at time n can be represented by the polynomial

S(z) = > Sn(n)z™ - (2)

The remainder when z'® is divided by g(z) using GF(2) arithmetic and polynomial long
division is found to be
' mod g(z) =z +2° + 1 (3)
Notice that if the register is initially cleared to all 0’s and a 1 is entered into the right-hand
side through the adder where i;_; is shown, the contents of the register will be z!2 4+ z° + 1.
Clearly, the register remains cleared if a 0 is entered. The signal S;5(n) is treated exactly
the same way. Shifting the register one position to the right with the feedback disabled is
equivalent to multiplying the state polynomial by z and discarding the z'® term. With the
feedback enabled, the Si5(n)z'® term is flopped back into the register as S;5(n)z'® mod g(z).
Thus, the register state after a shift starting with the initial state, S(n) and input i, is

{zS(z) + 2'%,} mod g¢(z) (4)

Combining the operations described in the previous paragraph and assuming all 0’s as
the initial state, it follows that the register contents after the highest order information bit,

ix—1, 1S entered are
- 16
ik—12"° mod g(z)

After the next information bit, 2;_», is entered the contents are
{ix—17"" +4r_22'®} mod g(x)

and so on until the contents after the last bit, iy, is entered becomes

[S1}

{fls(ik—lfk—l gz R4+ i)} mod g(z) (5)

2

Setting the initial state of the register to a nonzero value has the effect of adding that 16-
bit sequence to the highest order 16 information bits. The CCITT Recommendation specifies
the initial state of all 1’s corresponding to the state polynomial 2>+ 2 +z+. . . 4224+ 4+1.
Thus, the resulting state after the lowest order information bit is shifted in is

Rz)={z*@B + 2" +2%+ - +2°+ 2+ 1)+ I(z)} mod g¢(z) (6)

Remember that this is a polynomial of degree 15. Let Q(x) be the quotient that would occur
when R(z) is computed. Then, according to the Euclidean division algorithm

Clz)=2z@® +z" +2%+ - 422+ 24+ 1)+ I(z) + R(z) = Q(z)g(x) (7)

(Remember that “+” is the same as “—” using modulo 2 arithmetic.) Notice that C(z) is
divisible by g(z) so C(z) mod g(z) = 0.

The FCS specifed by the recommendation is the logical complement of the sequence
corresponding to R(z). Thus, the polynomial representation for the FCS is

Al@)=R(@)+ 2P + 2" + 283+ + P+ + 1 (8)
The sequence actually transmitted over the channel has the polynomial representation
Tx)y=I{z)+ Alx) =I(z)+R(@)+z¥ + 2" + 28+ -+ 2+ +1 (9)

The receiver contains a shift register identical to the one in the transmitter. According
to the Recommendation, the initial register state is set to all 1’'s. Then the entire received
word (excluding the bits stuffed in for flag transparency) including the 16 FCS bits is shifted
into the adder on the right-hand side of the register. The Recommendation is confusing in
that it neglects to specify the pre-multiplication by z!® caused by entering the data into the
right-hand side of the register. The register state after the last FCS bit is entered is

P(z) = {z¥z*(+2" +2® + -+ 2%+ 24+ 1) + I(2) + R(z)
+zB 2 4B+ 422+ 24+ 1]} mod g(z)

= {2®[C(z)+z¥ + 2"+ 2%+ + 12+ 2+ 1]} mod g(x) (10)

Remember that C(z) is divisible by g(z). Therefore, if no channel errors occur, the final
remainder should be

P(z) = {Ilﬁ[x15+xl4+x13+-~-+x2+$+1]} mod g¢(x)
R A AR LG Ly T | (11)

This polynomial is equivalent to the vector [0001110100001111] specified in the Recommen-
dation where the elements represent the coefficients of the powers of z starting with z!° on
the left down to z° on the right.

The frame is checked at the receiver by comparing the actual computed remainder with
the known remainder for no errors.

3 Error Detection Properties

The generator polvnomial can be factored into
gla)=(x+)@ +a" + 28+ 22 42t 4+ B3+ 2% 42 4+1) (12)

The second factor is a primitive polynomial. Thus, a cyclic code with this generator poly-
nomial has a natural block length of N = 2! — 1. Some of the error detection properties of
this code are:

1. Any odd number of errors is detected.
All codewords are a multiple of g(x) and must have z 4+ 1 as a factor and 1 as a root.
Thus the modulo 2 sum of all the code bits must be 0. Therefore, all codewords must
have an even number of 1's.

2. All double errors are detected as long as the block length is no greater than
215 — 1.
A double error has the polynomial representation r*(x™ — 1), where i is an arbitrarv
integer and m is the distance between the two errors. The primitive factor of ¢(r)
divides 2" — 1 for n = N but for no smaller n. Thus g(r) cannot divide 2*(+™ — 1)
and it is not a codeword.

3. All bursts of length 16 or less are detected.
A burst of length 16 or less has the form x*(by52' +- - - + b1+ by). This is not divisible
bv ¢g(x) which has degree 16.

4. The minimum Hamming distance between codewords is 4.
Codes generated by a primitive polvnomial are Hamming single-error correcting codes
with minimum distance 3. Thus the HDLC codewords are a subset of even weight
codewords from a single-error correcting Hamming code and must have weight at least
4. The generator polynomial g(x) is a codeword with weight 1.

5. The probability of an undetected error is 276,

Let A" be the number of information symbols in the code. There are N — k' = 16
check symbols. Then there are 2% codewords. Any error pattern equal to a codeword
is undetected. There are 2V possible binary N-tuples. Thus, the undetected error
probability is 2/ /2% = 2=(N=K) = 216

4 Programs for Computing the FCS

Two FORTRAN programs for computing the FCS are listed at the end of this report. In
both programs, the shift register state is set to all 1's and then the register is shifted 16
times. The final shift register state is the value computed at the receiver when the entire
information block and FCS are shifted into the register and there are no channel errors.

The first program, HDLC.F, uses a separate array element for each state variable. This
makes they algorithm structure simple and clear. However, it is not efficient for practical
implementation.

The second program. HDLC1.F, saves the state variables as individual bits in a single
word. The feedback shift register is implemented by shifting this word and exclusive-oring
the the feedback into the word. This would be an efficient implementation with a typical

microprocessor or DSP.

Sy(n)

\d
2

D'/'

Sii(n)

Y

D4

S15(n)

G

A

F(n)

)

Figure 1: Feedback Shift Register to Calculate HDLC Frame Check Sequence (FCS)

Program HDLC.F

5 Program Listings
C Implement HDLC encoder to compute FCS using generator
o g(x) = xx*15 + x*x12 + x*x5 + 1
C
INTEGER S(0:15), F, DIN/O/
C FCS for no channel errors
INTEGER SDESIRE(0:15)/4%1,4%0,1,0,3%1,3%0/
C SET INITIAL STATE TO ALL 1’S
DO 10 I=0,15
10 S(I) =1
o
DO 20 I=1,16
F = MOD(S(15) + DIN, 2)
s(15) = 5(14)
S(14) = S(13)
S(13) = s(12)
S(12) = mod(S(11) + F, 2)
s(11) = 5(10)
S(10) = sS(9)
S(9) = 5(8)
S(8) = s(7)
S(7) = s(6)
S(6) = 5(5)
S(5) = mod(S(4) + F, 2)
S(4) = 5(3)
S(3) = 5(2)
S(2) = s(1)
S(1) = s(0)
S(0) = F
WRITE(*,"(1x,16I2)") (S(II),II=15,0,-1)
20 CONTINUE
C

C Check for no channel error
DO 30 I=0,15

30

IF(S(I) .NE.SDESIRE(I)) WRITE(*,x*)

CONTINUE
WRITE(*,"(1x,16I2)") (S(I),I=15,0,-1)

END

' S(’,I,’) INCORRECT’

Q QO

OO0 aan

10

Program HDLC1.F
Microsoft FORTRAN 5.01
A more efficient implementation of the HDLC FCS computation

INTEGER*2 STATE/16#FFFF/, MASK/16#1021/, SDESIRE/16#1DOF/
INTEGER*2 DIN, F

STATE = [S(15),S(14), ..., S(1), S(0)]
STATE 1s preset to all 1’s
MASK = [0001 00001 0010 0001]
SDESIRE = [0001 1101 0000 1111]
This should be the FCS with no channel errors

Assume the input data is all O’s
DIN = 0O

DO 10 I = 1,16
First check S(15)
IF (IAND(STATE, 16#8000) .EQ.0) THEN
F=20
ELSE
F=1
ENDIF
Add in the input data
F = MOD(F+DIN,2)
Update the state
STATE = ISHFT(STATE,1)
IF(F.EQ.1) STATE = IEOR(STATE, MASK)

WRITE(*,’ (1X,Z)’) STATE
CONTINUE
IF(SDESIRE - STATE .EQ. 0) THEN
WRITE(*,*) ’ CORRECT FINAL STATE’
ELSE
WRITE(*,*) ’> INCORRECT FINAL STATE’
ENDIF
END

