R.E. Blahut, Theory amd Tractiie of Errer lorfral
codes Addigon Wesleg, 1423,

176 BOSE-CHAUDHURI-HOCQUENGHEM CODES
7.4 SYNTHESIS OF AUTOREGRESSIVE FILTERS

Most of the computations required to decode BCH codes using the algorithm
of Section 7.2 centers on the solution of the matrix equation

—Sl S; S3 e 8, _1 —Av —1 ——Sv+1—
SZ S3 S4 T Sv+1 Av—] —Sv+2
S3 S4 SS cet SV+2 =|

_Sv Svs1 Svsz Sy LAI L_Szv

For moderate v, the obvious method of solution using matrix inversion is not
unreasonable. The number of computations necessary to invert a v by v
matrix is proportional to v3. In many applications, however, one wants to
use codes that correct large numbers of errors. In such cases, one wishes for.
a more efficient method of solution. Berlekamp found such a method. This
method relies on the fact that the above matrix equation is not arbitrary in
its form; rather, the matrix is highly structured. This structure is used to
advantage to obtain the vector A by a method that is conceptually more
intricate than direct matrix inversion, but computationally much simpler.

We will describe a variation of the algorithm by Massey, who recognized
that the best way to derive the algorithm is as a problem in the design of
linear-feedback shift registers. Suppose the vector A is known. Then the first
row of the above matrix equation defines S, ., in terms of Sy,...,S,. The
second row defines S, , , interms of Sz, ..., Sy+ 15 and so forth. This sequential
process is summarized by the equation

Sj'———zAiSj-i j=v+1,...,2v.
i=1
For fixed A, this is the equation of an autoregressive filter. It may be imple-
mented as a linear-feedback shift register with taps given by A.

Seen in this way, the problem becomes one of designing the linear-
feedback shift register shown in Fig. 7.2 that will generate the known sequence
of syndromes. Many such shift registers exist, but we wish to find the smallest
linear-feedback shift register with this property. This gives the least-weight
error pattern that will explain the received data, that is, A(x) of smallest
degree. The polynomial of smallest degree will have degree v, and there is

C v
Si=-.2 A; S,-_,-
5,,5,,8
e o390, 91
T e
Initialize with Sy, Spy, .. -» 51

Error locator polynomial as a shift-register circuit.

Figure 7.2

he algorithm

‘ersion is not
ot avbyv
me wants to
1e wishes for
aethod. This
arbitrary in
‘e is used to
rtually more
h simpler.

3 recognized
he design of
‘hen the first
..., S,. The
is sequential

1y be imple-

. the linear-
w¥n sequence
the smallest
least-weight

of smallest
and there is

7.4 SYNTHESIS OF AUTOREGRESSIVE FILTERS 177

only one of degree v because the v by v matrix of the original problem is
invertible.

Any procedure for designing the autoregressive filter is also a method
for solving the matrix equation for the A vector. We shall develop such a
shift-register design procedure. The procedure applies in any field and does
not assume any special properties for the sequence Sy, S5, .. ., S,,. They need
not be syndromes, but if they are the syndromes of a correctable error pattern,
the procedure always designs a shift register with the rightmost tap nonzero.
For an arbitrary linear-feedback shift register with feedback polynomial
A(x), the length of the shift register might be larger than the degree of A(x),
because some rightmost stages might not be tapped.

To design the required shift register, we must determine two quantities:
the shift register length L, and the feedback-connection polynomial A(x):

AX)=AX"+A, 1 x" P+ -+ Aix+1, 7

where deg A(x) < L. We denote this pair by (L, A(x)). We must find a feedback
shift register of shortest length that will produce the sequence S,,...,S,,
when properly initialized. ’

The design procedure is inductive. For each r, starting with r = 1, we will
design a shift register for generating the first » syndromes. Shift register
(L., A”(x)) is a minimum-length shift register for producing S,, ..., S,. This
shift register need not be unique. Several choices may exist, but all will have
the same length. At the start of iteration r, we will have constructed a list of
shift registers

(Lls A(l)(x))a
(L23 A(Z)(x)),

(Lr -1 A(r -1)(X)).

The main trick of the Berlekamp-Massey algorithm is to find a way to com-
pute a new shortest-length shift-register design (L,, A”)(x)) that will generate
the sequence S,,...,S,_y, S,. This will be done by using the most recent
shift register, and if necessary, modifying the length and the tap weights.
At iteration r, compute the next output of the (r — 1)th shift register:

n—1
§,=—Y A¢-Vs,
j=1
Many terms in the sum are equal to zero because n— 1 is larger than the
degree of A“~%), and thus the sum could be written as a sum from 1 to deg
A¥"~1(x). The notation is less cumbersome, however, if we write the sum
extending ton — 1,
Subtract S‘, from the desired output S, to get a quantity A,, known as the
rth discrepancy:
n—1
A,=S-8=8+Y Ar-vs,_,
j=1

j=

178 BOSE-CHAUDHURI-HOCQUENGHEM CODES

Equivalently,

n—1

A,= Z A}r—l)sr_j'
j=0
If A, is zero, then set (L,, AV(x)) = (L, -1, A¥~1(x)), and the rth iteration is
complete. Otherwise, the shift-register taps are modified as follows:

AD(x) = AT~ D(x) + AXA" D (x),

where A is a field element, / is an integer, and A™~)(x) is one of the shift-
register polynomials appearing earlier on the list. Now recompute the dis-
crepancy (call it A}) with this new polynomial:

n—1
A=Y, APS.-;
j=0

n—1 n—1
=Y AYYS,_j+4 Y ArYS, i
j=0 j=0

We are ready to specify m, ;, and A. Choose anm smaller than r for which
A, # 0, choose [=r —m, and choose A= — A;'A,. Then

A;:A,—éiA,,,:O,
An
and thus the new shift register will generate the sequence Sy,..., 8,1, S
We do not want just any such shift register, however, we want one of smallest
length. We still have not specified which m for which A,, # 0 should be chosen.
If we choose m as the most recent iteration at which L,, > L, _,, we will get
a shortest-length shift register at every iteration, but this last refinement will
take some time to develop.

A physical interpretation of the development up to this point is shown in
Fig. 7.3. The two shift registers at iteration m and at iteration r are shown in
Fig. 7.3(a). Iteration m is chosen such that at iteration m, the shift register
(Ly—1, A V(x)) failed to produce syndrome S, and the shortest shift
register that produced the required syndrome at iteration m was longer than
L,,_,. We can also suppose that shift register (L, -1, A"~ V(x)) failed to pro-
duce S, because otherwise, we need not do anything to it.

In Fig. 7.3(b), we show the shift register (L,.—1, A™ (x)) made into an
auxillary shift register by lengthening it, positioning it, and doctoring its
output so that it can compensate for the failure of (L, -, A"~ P(x)) to produce
S,. Notice that the auxillary shift register has an extra tap with weight 1
coming from the term A§"~ . During the first r — 1 iterations, the remaining
taps are producing the negative of the term coming from the tap with weight
1, and thus a string of zeros comes from the auxillary register and does not
affect the generated syndromes. At the rth iteration, the two terms do not
cancel, and a nonzero comes from the auxillary shift register. The coefficient
A is selected to adjust this nonzero value so that it can be added to the rth

1 iteration is
wS:

of the shift-
sute the dis-

1 r for which

e Siog, S,
e of smallest
d be chosen.
, we will get
inement will

.is shown in
ire shown in
hift register
10rtest shift
longer than
liled to pro-

1ade into an
octoring its
) to produce
th weight 1
€ remaining
with weight
nd does not
rms do not
e coefficient
d to-the rth

Sr +Ar, Sr-l. BN Sl

(a)

[

hd

New stages
o :
N R Y [s [s | T+

© I,"-.Sl

Figure 7.3 Berlekamp-Massey construction.

feedback of the main shift register, thereby producing the required syndrome

S,.

In Fig. 7.3(c), we show the two shift registers of part (b) physically merged
into one shift register, which, because of superposition, does not change the
behavior. This gives (L,, A”)(x)). Sometimes L, = L, _,, sometimes L,> L, _ .
When the latter happens, we replace m with r for use in future iterations.

A precise procedure for doing this is given by the following theorem,
which asserts that it does produce a shortest shift register with the desired
property. The proof is lengthy and occupies the remainder of the section.

180 BOSE-CHAUDHURI-HOCQUENGHEM CODES

O Theorem 7.4.1 (The Berlekamp-Massey Algorithm) In any
field, let S,,..., S, be given. Under the initial conditions A®(x)= 1,
B%(x)=1,and L, = 0, let the following set of recursive equations be used
to compute A?Y(x):
n—1
A,.= Z A}r— 1)S,._j

=0

Lr=5r(r_Lr—l)+(1 _6r)Lr—1

AYx)] 1 —Ax A Y(x)
BYx)] | A8, (1-6)x]| B" V(%)
r=1,...,2t where §, =1 if both A, # 0 and 2L, _; <r — 1, and otherwise
J, = 0. Then A®"(x) is the smallest-degree polynomial with the properties
that AZ? =1, and
n-1
Si+ Y, APIS,_;=0 r=L,+1,...,2. 0
j=1

j=

In the theorem, A, may be zero, but only when §, is zero. The term
A 16, is then understood to be zero.

Notice that the matrix update requires at most 2t multiplications per
iteration, and that the calculation of A, requires no more than ¢ multiplica-
tions per iteration. There are 2t iterations, and thus at most 6t multiplica-
tions. Thus using the algorithm will usually be much better than using a
matrix inversion, which requires on the order of ¢* operations.

The proof of Theorem 7.4.1 is broken into two lemmas. First, in Lemma
7.4.2, we will find an inequality relationship between L, and L,_,. Then in
Lemma 7.4.3, we will use the algorithm of Theorem 7.4.1 for the construction
of a shift register that generates S;,..., S, from the shortest-length shift
register that generates S;,..., S,_;. We will conclude in Lemma 7.4.3 that
the construction of Theorem 7.4.1 is the shortest such shift register because it
satisfies the bound of Lemma 7.4.2.

ULemma 7.4.2 Suppose that (L,_;, A"~ (x)) is a linear-feedback
shift register of shortest length that generates Sy,...,S,_; (L,, A”(x))
is a linear-feedback shift register of shortest length that generates
Si..oy8_1, S,;and A(x)# A~ Y(x). Then

L,zmax[L,_,,r —L,_4].

Proof The inequality to be proved is a combination of two inequalities:
Lr>Lr—l and L,?r—Lr_l-

The first inequality is obvious, because if a linear-feedback shift register
generates a sequence, it must also generate any beginning portion of the

7.4 SYNTHESIS OF AUTOREGRESSIVE FILTERS 181
} In any sequence. The second inequality is obvious if L,_;=r. Hence, assume
A (x)=1, L,y <r. Suppose the second inequality is not satisfied, and look
ns be used for a contradiction. Then L, <r —1 —L,_,. As a temporary shorthand,
fet c(x)= A"~ D(x), let bix)= Ax), let L=L,_,, and let I'— L, By
assumption, we have: r>L+ L +1, and L <. Next, by the assump-
tions of the lemma,
L
Sr# - Z CiSr—i’
i=1
L
S,-=—._Zl ciSi_; J=L+1,...,r—1,
otherwise and
properties L
Si=— bS; & J=L+1,...,r
k=1
] Now establish the contradiction. First,
L L’ L
S,.= - b'S,._ = b C,'S,.._ —is
The term k; Ky —k k; k i; k
tions per where the expansion of S, - is valid because r — k runs from r — 1 down
ulti plica- tor—L’, which is in the range L+ 1,...,r —1 because of the assumption
ultiplica- rzL+L+1. Second,
1 using a L < L
wing Sr% - Z ciSr—i = Z C; Z bksr—i—ks
i=1 i=1 k=1
1 Lemma .
Then in where the expansion of S, - is valid because r —i runs from r — 1 down
struction to r — L, which is in the range L+1,...,r—1 again because of the
gth shift assumption r>L+ L +1. The summations on the right side can be
4.3 that interchanged to agree with the right side of the previous equation. Hence
E': c.aus e it Wwe get a contradiction: S, # S,, and the contradiction proves the lemma.,
O
Ifwecanfind a shift-register design that satisfies the inequality of Lemma
eedback 7.4.2 with equality, then it must be of shortest length. The following lemma
q g g
» A"(x)) shows that Theorem 7.4.1 does this.
cnerates
OLemma 7.4.3 Suppose that (L, A%(x)) with i= L,...,r is a se-
quence of minimum-length linear-feedback shift registers such that
A9(x) generates S, ..., Si If A%(x)# A"~ V(x), then
1alities: L=max[L_,r—L, 1
and any shift register that generates Sy, ..., S, and has length equal to
register the right-hand side is a minimum-length shift register. Theorem 7.4.1
g
10fthe gives such a shift register.

182 BOSE-CHAUDHURI-HOCQUENGHEM CODES

Proof By Lemma 7.4.2, L, cannot be smaller than the right-hand side.
If we can construct any shift register that generates the required sequence
and whose length equals the right-hand side, then this must be a mini-
mum-length shift register. The proof is by induction. We give a construc-
tion for a shift register satisfying the theorem, assuming that we have
iteratively constructed such shift registers for all k<r—1. For each k,
k=1,...,r—1,1let (L, A¥(x)) be the minimum-length shift register that
generates Sy, . . . , Si- Assume for the induction argument that
Lk=max[Lk_1,k—Lk_1] k=1,...,n-1

whenever A®(x)# A%*~(x). This is clearly true for k= 0 because Lo =0
and L, = 1. Let m denote the value k had at the most recent iteration
step that required a length change. That is, at the end of iteration r — 1, m
is that integer such that

Lr—1=Lm>Lm—1'

We now have

fet Lt 0 =L, _q...,r—1
Sj+ Z Agr—l)sj~i= Z A(ir—l)sj__i: J r—1 r
i=1 i=0 A, =1

If A, =0, then the shift register (L,—1, A"~ 1)(x)) also generates the first
r digits, and thus

L" = Lr -1 and A(r)(x) — A(" - 1)(x)'

If A, # 0, then a new shift register must be designed. Recall that a change
in shift-register length occurred at k=m. Hence

Lo 0 j=L,_1,.--,m—1

S+ X ATTUS= {A,ﬁéo ;=m, 1
and by the induction hypothesis,

L_y=Lp=max[Ly_y,m—Lu,- 1]

=m—L,_,

because L, > L,,_ ;- Now choose the new polynomial

ADG) = AT D(x) — A, Ay 1x ATV (x),
and let L,=deg A"”(x). Then, because deg A U(x)< L, ; and
deg[x" " "A" " V(x)]<r—m+ L1,

L,<max[L,_y, 7 —m+Ly_1]< max[L,_y, 7 —L,-1]}.
Hence. recalling Lefnma 742, if A"(x) generates S,,...,S, then

Ii,=max[L,_1, r—L,_;]. It only remains to prove that the shift
register (L,, A")(x)) generates the required sequence. This is done by

it-hand side.
‘ed sequence
it be a mini-
3 a construc-
hat we have
For each k,
register that
at

cause Lo=0
2nt iteration
wionr—1,m

r—1

-

ates the first

hat a change

SL,_I and

..:,S, then
jat the shift
s is done by

7.4 SYNTHESIS OF AUTOREGRESSIVE FILTERS 183

direct computation of the difference between S; and the shift-register
feedback:

L, L,
S,-‘(‘ 2 A‘.-”Sj-i)=5i+ Y ATUS

i=1 i=1

Lm—y
_ArAn:l[Sj—r+m+ Z Aﬁm_l)sj——r+m—i]
i=1
o j=LoLo+1,...,r—1
A —AAA,=0 j=r

Hence the shift register (L,, A"(x) generates Sy,...,S,. In particular,
(L, A®9(x)) generates S, .. ., S,,, and the lemma is proved. ['

7.5 FAST DECODING OF BCH CODES

Understanding the Peterson-Gorenstein-Zierler decoder is the best way to
understand the decoding of BCH codes. But when building a decoder, one
gives up the conceptually clear in favor of the computationally efficient. The
Peterson-Gorenstein-Zierler decoder, as described in Section 7.2, requires
that two t by t matrices be inverted. Although matrix inverses in a finite field
do not suffer from problems of round-off error, the computational work may
still be excessive, especially for large t. Both of these matrix inversions can be
circumvented. The first matrix inversion is in the computation of the error-
locator polynomial; it can be circumvented by using the Berlekamp-Massey
algorithm. The second matrix inversion is in the computation of the error
magnitudes; it can be circumvented by a procedure known as the Forney
algorithm. We begin this section with a derivation of the Forney algorithm;
then we return to the Berlekamp-Massey algorithm.

The Forney algorithm is derived starting with the error-locator poly-
nomial

AG)=AX"+A,_x* 14+ Aix+1,

which was defined to have zeros at X; ! for I=1,..., v:

v

A= T] (1 - xX).

i=1
Define the syndrome polynomial
2t 2t v

Sx)=Y, Spi=73 Y YXix),

ji=1 j=11i=1
and define the error-evaluator polynomial Q(x) in terms of these known
polynomials:

Q(x)=Sx)A(x) (mod x?).

The error-evaluator polynomial will play a minor role from time to time. It
can be related to the error-locations and error magnitudes as follows.

184 BOSE-CHAUDHURI-HOCQUENGHEM CODES

[(JTheorem 7.5.1 The error-evaluator polynomial can be written

Q(x)= x i Y,~X,-11;1(1 — X x).
i=1 i

Proof By the definition of the terms in Q(x),
2t v v
Qx)= [>y YiX{xj]\: [Ta- X,x):l (mod x*')
j=t1i=1 =1

v 2t
=) YXx [(1 ~Xx)), (Xix)j‘l:\ [Ta—Xx) (modx*).
i=1 ji=1 1#i
The bracketted term is a factorization of (1 — X #'x%"). Therefore

Qx)= i VXl — X*x*) [](1—Xx) (mod x2.
i=1 1#i

Because this is modulo x2, it is the same as the expression to be proved. 1

Now we are ready to give an expression for the error magnitudes that is
much simpler than matrix inversion.

1 Theorem 7.5.2 (The Forney Algorithm) The error magnitudes
are given by

g QXTH QXY
CTTa=Xx0 D XiINXTY

j#l
Proof Evaluate Theorem 7.5.1 at X; ' to get
QxH=YT1 1-X;X7"
j#l
which yields the first half of the theorem.
On the other hand, the derivative of A(x) is

Ax)= — Z X, TT (1 —xX).

=1 J#i
Hence
ANXTY=-X, [T -X;X7%,
i#l

from which the theorem follows. [J

The Forney algorithm is a considerable improvement over matrix in-
version but does require division. In Chapter 9, we will give alternative
solutions that do not involve division.

Now we turn to the calculation of the error-locator polynomial using the
Berlekamp-Massey algorithm of Theorem 7.4.1. Massey’s view of the problem

e written

(mod x?).

fore

be proved. [

itudes that is

magnitudes

ver matrix in-
ve alternative

mial using the
of the problem

75 FAST DECODING OF BCH CODES 185

Initialize as shown

s seo

Taps given by A;

— S(x)

Initialize with zeros

o[ofofof~Tofo]

Taps given by A;

(b)
Figure 7.4 Generation of error spectrum. (@) Massey viewpoint. (b) Berlekamp
viewpoint. :

is shown in Fig. 7.4(a). Given S; for j=1,...,2t, find the smallest length
vector A that satisfies the ¢ equations

t
Sj+zsj—kAk=O]=t+1,.,2t
k=1

That is, one is asked to solve a convolution given 2t components of S, and
the a priori knowledge that A;=0 for j greater than t. The vector A that
satisfies this equation gives the coefficients of the error-locator polynomial,

A= ll_v]l (1 =xX))

and X,for/=1,...,vare the error locations. The error-evaluator polynomial
is not computed by the algorithm but can be computed later from A(x) and
S(x) from the definition Q(x) = S(x)A(x) (mod x*').

Berlekamp’s formulation of the problem, shown in Fig. 7.4(b), portrays
the error-evaluator polynomial in a more central role. This formulation
asks for the vectors A and Q, both zero for t<k<n, that satisfy the 2t
equations

t
SJ+Z Sj—kAk=Qj j=1,...,2t,
k=1

where $;=0 for j < 0. Notice that j now runs over 2t values. The solution is
described by two polynomials: the error-locator polynomial and the error-
evaluator polynomial.

186 BOSE-CHAUDHURI-HOCQUENGHEM CODES

The two forms of the problem are equivalent. We have treated Massey’s
form of the problem. If desired, the Berlekamp-Massey algorithm can be
modified to solve the Berlekamp form of the problem directly by introducing
both A”(x) and Q"(x) as iterates:

Figure 7.5 gives the Berlekamp-Massey algorithm graphically in the
form of a flowchart. As shown, the algorithm will compute the error-locator
polynomial from the 2t syndromes Sy, ..., Sy, If the code has some j, other
than 1, simply define S;=Vj jo-1 for j=1,...,2t. These syndromes are

Initialize
Ax)=1 r
L=0 B(x)

|

Compute error in next syndrome

L L
A= S+ Y NS (& X NSy
=1 j=0

=0
=1

Does current shift- Yes (taps are ok)

register design produce
next syndrome?

No (taps must be corrected)

Compute new connection polynomial for
which A, =0
ST (x)= A(x) - D xB(x)

Must shift register be
lengthened?

Ax) < T(x)

Yes

B(x)+< 0L A) Store old shift register

P after normalizing L
Alx) < T(x) Update shift register ‘ B (x):‘—:ij)

. L«r-L Update length

I

Yes r= 20 No
?
deg A(x)=L
?
Halt— Proceed to
more than ¢ next step
errors

Figure 7.5 Berlekamp-Massey algorithm.

:d Massey’s
thm can be
introducing

zally in the
cror-locator
ime j, other
dromes are

75 FAST DECODING OF BCH CODES 187

used just as before. There is no need to rederive the algorithm this is merely
a matter of properly labeling the internal variables of the algorithm.

The algorithm and its proof might be better understood by working
through the details of Fig. 7.5 for specific examples. Table 7.3 gives the
calculation for a (15, 9) Reed-Solomon triple-error-correcting code. These
calculations should be checked by tracing through the six iterations in Fig.
7.5. Table 7.4 gives similar calculations for a (15, 5) BCH triple-error-
correcting code.

The inner workings of the Berlekamp-Massey algorithm can appear
somewhat mysterious. This difficulty might be softened by a few comments.
At some iterations, say the rth, there may be more than one linear-feedback
shift register of the minimum length that generate the required symbols.

Table 7.3 Sample Berlekamp-Massey computation

Reed-Solomon (15, 9) t = 3 code:

g(x) = (x + o)(x + &)x + a)x + a*)x+) (x + «®)

= x® + o105 + al4x* 4 oatx® + abx? + o®x + af

i(x)=0
v(x) = ax” + a®x5 + a'tx? = e(x)
S,=a0’ +a’e® +alle® =o'?
S,=aot* + ot +allat = 1
Sy=au?! + e’ +alla® =«
S, =oaa?® +a’a?® +alla® =o'
S5=aa35 +a5a25+a11a10= 1

S = ot? + 5030 + ot ot = o

r A, T(x) B(x) A(x) L
0 1 1 0
1 a2 1+a'?x o3 1+a2x 1
2 o’ 14+a3x adx 14+ox 1
31 l4+adx+a®x? 1+ a3x 1 +a’x+ a®x? 2
4 1 1+alx x+aix? l4al*x 2
5 al! 1+alx+oallx?+al®x® ot +ox T+atx+oalix?+al4x® 3
6 O 1+“14x+a11x2+a14x3 a4x+a3x2 1 +al4x+allx2+al4x3 3

A(x)=1+a*x + ol 1x2 +al4x3 = (1 + a’x)1 + o’ x)(1 + a?x)

188 BOSE-CHAUDHURI-HOCQUENGHEM CODES

Table 7.4 Sample Berlekamp-Massey computation

BCH (15, 5) t = 3 code:
gx)=x"0+x¥+x° +x* +xt+x+1

i(x)=0

o(x)=x" 4+ x> + x* = e(x)

S, =a” 405 +a* =«
1

Sz=0(14+0(’°+a4 —«
Sy=a?' +alS 4o =1
S,=o28 4+ +a® =a
Se=a¥ + o +a'0=0

Se=0*2+a3+al?=1

r oA, T(x) B(x) A(x) L
0 1 1 0
1 al* 14+at*x o 14+at4x |
20 14a'x ox 14+at%x 1
3 al! [+aléx+al?x? ot +ox 1+ot4x+al?x? 2
40 1+a®x+at?x? atx +a®x? 1 +aléx+al?x? 2
5 al] 1+al4x+allx2+(x14x3 a4+a3x+ax2 1+al4x+allx2+al4x3 3
6 0 1+al4x+a11x2+al4x3 a4x+a3x2 +ax3 1+a14x+a11x2+a14x3 3

Ax)=14+ax+a! 12 4 at4x3 =(1+a"x)(1 +x)1 + a?x)

These all produce the same required sequence of r syndromes but differ in
the future syndromes, which are not required of the rth iteration. During
later iterations, whenever possible, another of the linear-feedback shift
registers of this length is selected to produce the next required syndrome. If
none such exists, then the shift register is lengthened. The test to see if length-
ening is required, however, does not involve the next syndrome other than
to determine that A, ., # 0. Hence, whenever one alternative shift register is
available, then there are at least as many alternative shift registers as one
less than the number of values that the (r + 1)th syndrome can assume.

The algorithm can be programmed on a general-purpose computer or
on a special-purpose computer designed for Galois field computations. If
very high decoding speeds are required, one can build special hardware
circuits, possibly using shift registers, to implement the algorithm directly.

NN == O

+at4x® 3
+at4x3 3

t differ in
1. During
ack shift
drome. If
if length-
ther than
register is
IS as one
ume.
aputer or
ations. If
hardware
directly.

75 FAST DECODING OF BCH CODES 189

A shift-register implementation is outlined in Fig. 7.6. Registers are
provided for the three polynomials S(x), A(x), and B(x), and the length of
each register is large enough to hold the largest degree of its polynomial, and
possibly a little larger. Shorter polynomials are stored simply by filling out
the register with zeros. The S(x) and B(x) registers are each one stage longer
than needed to store the largest polynomial; notice the extra symbol in the
syndrome register. This, and the number of clocks applied to each shift
register during an iteration, are set up so that the polynomials will precess
one position during each iteration. This supplies the multiplications of
B(x) by x and also offsets the index of S; by r to provide S;..,, which appears
in the expression for A,. To see this, refer to Fig. 7.6; the syndrome register
is shown as it is initialized. During each iteration, it will be shifted to the right
by one symbol so that it will be timed properly for multiplication with A.
During one iteration, the A register is cycled twice, first to compute A, then
to be updated.

In Fig. 7.7, we show all of the computations involved in a decoder that
uses the Berlekamp-Massey algorithm and the Forney algorithm. This
decoder will produce the correct error-locator polynomial as long as at most
t errors occur. If more than t errors occur, the algorithm will fail, either by

Switch control and
—» clock pulses to
each shift register

Timing and
control logic

}

4

r

BoBB. ..

—4-[7 B register (¢ + 2 stages) b;‘j\ 3
Clock only during last ¢ + 1

clock times of each iteration I

/
m’ 4.
/\0/\1 /\2. .. Al
'-4-{ A register (¢ + 1 stages)

\-— A"?'ll A

X 5, y:
i m

819821521+ - - . .8584538;
v—nr Syndrome register (2¢ + 1 stages) }n—l

Vi
7/

m

Figure 7.6 Outline of circuit for Berlekamp-Massey algorithm.
Notes: 2t iterations required. 2(t + 1) clocks per iterations. All data paths are m
bits wide.

190 BOSE-CHAUDHURI-HOCQUENGHEM CODES

Enter v(x)

Compute syndromes

S,=vdtmly j=1,...,2

!

Find A (x) using the Berlekamp-Massey algorithm

i

Find error locations X;
by finding zeros of A(x)

Forney algorithm
Q(x)=S(x)A(x) (modx?)

N =E (A
p:
Y, = QY

o ~Yo-b I=1,...,»
XU A'(xqh

!

Figure 7.7 Fast decoding of BCH codes.

producing a polynomial that does not fit the requirements of an error-locator
polynomial or by producing a legitimate, but incorrect, error-locator poly-
nomial. We can recognize when the first case occurs, and thus the decoder can
flag the message as uncorrectable. The tests that can be used to flag an un-
correctable error pattern are the following:

Number of distinct zeros of A(x) in GF(q™) different from L.
Error symbols not in the symbol field.

The error-locator polynomial is tested first. If the error-locator poly-
nomial is legitimate, the decoder proceeds to compute the error polynomial.
If the symbol field is smaller than the error-locator field, it is possible that the
decoder will find some error symbols outside of the symbol field. Such a
symbol could not come through the channel, and hence this indicates a
pattern of more than ¢ errors has occurred.

In Section 9.6 we will discuss ways in which to decode BCH codes for
some of the patterns of more than ¢ errors. To end this section we will discuss
the opposite situation—decoders that intentionally stop short of the designed
distance. In practice, such decoders are used to greatly reduce the probability
of decoding error, but the penalty is a greater probability of decoding
failure.

To reduce the chance of a false decoding, a decoder may be designed to
correct only up to t errors where 2t + 1 is strictly smaller than d* (this must

ror-locator
cator poly-
lecoder can
flag an un-

zator poly-
olynomial.
ble that the
:ld. Such a
indicates a

1 codes for
will discuss
1e designed
probability
f decoding

Jesigned to
¥ (this must

7.5 FAST DECODING OF BCH CODES 191

always happen if d* is even). The decoder will then be sure to detect an un-
correctable error pattern if v, the number of errors that actually occur,

satisfies
t+v<d¥,

because at least d* —t errors are needed to move any codeword into an
incorrect decoding sphere.

The Berlekamp-Massey algorithm nicely fits into such a decoder. The
procedure is to make 2t passes through the algorithm to generate A(x). An
additional 1 —¢ iterations are then made to check if the discrepancy A, is
zero for each of these additional iterations where 7 equals d* — 1 —t. If A, is
nonzero for any of these iterations, the received word is flagged as having
more than t errors.

The following theorem provides the justification for this procedure.

O Theorem 7.5.3 Given S;for j=1,...,1+ 1, where 1> ¢, and that
at most t errors occur, let (L, A?Y(x)) describe a linear-feedback shift
register that will produce S; for j=1,..., 2, and let

n-1

Ar= Z A}ZI)S,._J'.

j=0
Suppose that A, equals zero forr =2t +1,...,7and Ly, <t. Then at most
¢ errors have occurred, and A'?"(x) is the correct error-locator poly-

nomial.

Proof We are given syndromes S; for j=1,...,t+7. If we had 7—1¢
more syndromes, S; for j=t+1+1,. .., 27, then we could correct
errors; that is, we could correct every error pattern assumed to occur.
Suppose we are given these extra syndromes by a genie or an imaginary
side channel. Then by the Berlekamp-Massey algorithm, we could
compute an error-locator polynomial whose degree equals the number of
errors. But at iteration 2t, L,, <t, and by assumption A, equals zero for
r=2t+1,...,t+1,and thus L is not updated before iteration ¢ + 7+ 1.
Hence, by the rule for updating L,

L2t>(t+f+1)—L2,
Z(t+t+) —t=1+1,

contrary to the assumption that there are at most t errors. O

7.6 DECODING OF BINARY BCH CODES

The theory developed in this chapter holds for codes over any finite field.
When the field is GF(2), however, one can make some additional simplifica-
tions. An obvious simplification is that it only is necessary to find the error

192 BOSE-CHAUDHURI-HOCQUENGHEM CODES

location; the error magnitude is always one (but the decoder might compute

the error magnitude as a check). :

Further simplification is less obvious, but a clue suggesting a possibility
occurs in the example of Table 7.4. Notice that A, is always zero on even-
numbered iterations. If this is always the case for binary codes, then even-
numbered iterations can be skipped..

We shall prove in this section that this is so. The proof is based on the
fact that over GF(2) the even-numbered syndromes are easily determined

from the odd-numbered syndromes by the formula

n 2
= § =] 5 v | =57

j=1

as follows from Theorem 5.3.3. Let us calculate algebraic expressions for the
coefficients of A”(x) for the first several values of r. Tracing through the
algorithm of Fig. 7.5 and using the fact that S, = S3 = S for all binary codes

gives

A1=Sl A“)(x):SIX'*'l
A,=S,+52=0 A®(x)=Syx+ 1
A3=S3+8152 A(a)(x)=(S;IS3+Sz)x2+slx+1-

A4=S4+Sls3+SIISZS3+S%=0

For any binary BCH code, this shows that A, and A, are always zero, but it
is impractical to continue indefinitely in this explicit way to find other even-
numbered syndromes. We will formulate instead a general argument to

show that A, =0 for all even r.

[0 Theorem 7.6.1 In GF(2), for any linear-feedback shift register
A(x)and any sequence Sy, Sz, - - +» S,,_ satisfying S, ;= S?for2j<2v— 1,
suppose that . g

-1

S;=— lAiSj_i j=v,...,2v—1L

i=

If the next member of the sequence is given by

n—1
Slv= - Z Ai52v—i’
i=1

then
S2v= S%

Proof The proof consists of giving identical expressions for 52 and
S,,. First, we have

n—1 2 n-1 n
S%=<Z Aisv—i> = 2 Ai253—1 =
i=1 i

i=1

1
2
Ai SZv—Zia
1

it compute

1 possibility
r0 On even-
, then even-

ased on the
determined

sions for the
through the
sinary codes

52+Slx+1.

s zero, but it
| other even-
irgument to

shift register
r2j<2v—1,

. for §% and

76 DECODING OF BINARY BCH CODES 193

and also
n—1n-1

n—1
Szv=kz,1 AkSZv—k= Z Z AkAiSZv—k—i‘

k=1 i=1
By symmetry, every term in the double sum with i+ k appears
twice, and in GF(2) the two terms add to zero. Hence, only the diagonal
terms with i = k contribute:

n—1

Szv= Z Ai2S2v—2ia
i=1

i=

which agrees with the expression for S2 and thus proves the theorem. O

Thus by induction, A, is zero for evenr, and we can analytically combine

two iterations to give for odd r:

AV(x) = A~ D(x) — A,x*B" " H(x),

B(x)=08,A7 A" "D (x)+ (1 — 8,)x2B"~ H(x).
Using these formulas, iterations with r even can be skipped. This gives a faster
decoder for binary codes. Notice that this improvement can be used even
though the error pattern might contain more than t errors, because only the
conjugacy relations of the syndromes were used in the proof of the theorem;
nothing was assumed about the binary error pattern. Therefore subsequent
tests for more than t errors are still valid.

7.7 DECODING WITH THE EUCLIDEAN ALGORITHM

The Euclidean algorithm can be used to develop alternative decoders to
those we have discussed already. These decoders are a little easier to under-
stand but have the reputation of being somewhat less efficient in practice.
This latter observation, however, probably depends strongly on the applica-

tion.
In Chapter 4 we gave the Euclidean algorithm as a recursive procedure

for calculating the greatest common divisor of two polynomials. In a slightly
expanded version the algorithm will also produce the polynomials a(x)

and b(x) satisfying
GCD[s(x), #x)] = a(x)s(x) + b(x)t(x).

For any polynomials s(x) and t(x), we repeat the algorithm in a convenient

s(x
matrix form using the notation s(x)= —(—) t(x) + r(x) to represent the divi-

t(x)

sion algorithm.

[] Theorem 7.7.1. (Euclidean Algorithm for Polynomials)
Given two polynomials s(x) and ¢(x) with deg s(x) = deg t(x), let s9(x) =

1 0
s(x) and t©(x)=t(x), and let AO(x)= \:0 1]. The following recursive

