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Y)sin(x+y)+(x-y)(siny-sinx)isalwayszOforxartdy 
in this region. Thusf(x, y) 5 4 and dg I 4 for all h,, h, 5 1.5. 
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Channe l Cod ing with  Mu ltileve l/Phase 
Signals 

GOTTFRIED UNGERBOECK, MEMBER, IEEE 

A bstruct- A coding technique is described which improves error perfor- 
mance of synchronous data links without sacrificing data rate or requiring 
more bandwidth. This is achieved by channel coding with expanded sets of 
multilevel/phase signals in a manner which increases free Euclidean dis- 
tance. Soft maximum-likel ihood (ML) decoding using the Viterbi algo- 
rithm is assumed. Following a discussion of channel capacity, simple 
hand-designed trellis codes are presented for 8 phase-shift keying (PSK) 
and 16 quadrature amplitude-shift keying (QASK) modulation. These 
simple codes achieve coding gains in the order of 3-4 dB. It is then shown 
that the codes can be interpreted as binary convolutional codes with a 
mapping of coded bits into channel signals, which we call “mapping by set 
partitioning.” Based on a new distance measure between binary code 
sequences which efficiently lower-bounds the Euclidean distance between 
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the corresponding channel signal sequences, a search procedure for more 
powerful codes is developed. Codes with coding gains up to 6 dB are 
obtained for a variety of multilevel/phase modulation schemes. Simulation 
results are presented and an example of carrier-phase tracking is discussed. 

I. INTRODUCTION 

I N CHANNEL CODING of the “algebraic” coding 
type, one  is traditionally concerned with a  discrete 

channel  provided by some given modu lation and  hard- 
quantizing demodulat ion technique. Usually, inputs and  
outputs of the channel  are binary. The  ability to detect 
and/or correct errors can only be  provided by the addi- 
tional transmission of redundant bits, and  thus by lowering 
the effective information rate per transmission bandwidth. 
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In addition, hard amplitude or phase decisions made in the 
demodulator prior to final decoding cause an irreversible 
loss of information. In the binary case, this amounts to loss 
equivalent to approximately 2 dB in signal-to-noise ratio 
(SNR). 

In this paper, we take the viewpoint of “probabilistic” 
coding and decoding and regard channel coding and mod- 
ulation as an entity [l]. Comparisons are strictly made on 
the basis of equal data rate and bandwidth. A possibility 
for redundant coding can therefore only be created by 
using larger sets of channel signals than required for nonre- 
dundant (uncoded) transmission. Maximum-likelihood 
(ML) soft decoding of the unquantized demodulator out- 
puts is exclusively assumed, thus avoiding loss of informa- 
tion prior to final decoding. This implies that codes for 
multilevel/phase signals should be designed to achieve 
maximum free Euclidean distance rather than Hamming 
distance. For coded 2-amplitude modulation (AM) and 
4-phase-shift keying (PSK) modulation, this was never a 
problem because in this case, binary Hamming distance 
(HD) and Euclidean distance (ED) are equivalent. The 
situation is different, however, if signal sets are expanded 
beyond two signals in one modulation dimension. 

The investigations leading to this paper started some 
time ago with the heuristic design of simple trellis codes for 
8-PSK modulation conveying two bits of information per 
modulation interval. When soft ML-decoded by the well- 
known Viterbi algorithm (VA) [2], coding gains of 3-4 dB 
were found over conventional uncoded 4-PSK modulation. 
The investigations were then extended to other modulation 
forms. First results were presented in [3]. A much better 
understanding of the subject was later obtained by inter- 
preting the hand-designed codes as binary convolutional 
codes with a mapping of coded bits into multilevel/phase 
channel signals called “mapping by set partitioning.” 

Related work was reported in [4]-[8]. The approaches 
taken in [6]-[8] aim at constant-envelope modulation which 
is in contrast to the present paper. In [9], a comparison of 
various “bandwidth-efficient” modulation techniques by 
computer simulation is presented which includes codes of 
this paper. 

In Section II, we investigate the potential gains in terms 
of channel capacity obtained by introducing more signal 
levels and/or phases. The results are similar to those of 
Wozencraft and Jacobs [IO] on the exponential bound 
parameter R,, and suggest that for coded modulation, it 
will be sufficient to use twice the number of channel 
signals than for uncoded modulation. In Section III, heur- 
istically designed trellis codes for coded 8-PSK and 16- 
QASK modulation are presented and the concept of map- 
ping by set partitioning is introduced. The codes are inter- 
preted in Section IV as binary convolutional codes of rate 
R = m/(m + 1) with the above mapping of coded bits 
into channel signals. Preference is given to realizations in 
the form of systematic encoders with feedback. The map- 
ping rule allows the definition of a new distance measure 
that can easily be applied to binary code sequences and 
efficiently lower-bounds the ED between the correspond- 

ing channel-signal sequences. Based on this distance mea- 
sure, a search procedure for more powerful codes is devel- 
oped in Section V, and codes with coding gains up to 6 dB 
are obtained for a larger variety of coded one- and two- 
dimensional modulation schemes. In Section VI simulation 
results are presented. Finally in Section VII, the problem 
of carrier-phase tracking, which can play an important role 
in the practical application of coded two-dimensional mod- 
ulation schemes, is discussed for one specific case of coded 
8-PSK modulation. 

II. CHANNEL~APACITYOF MULTILEVEL/PHASE 
MODULATIONCHANNELS 

Before addressing the code-design problem with ex- 
panded channel-signal sets, it is appropriate to examine in 
terms of channel capacity the limits to performance gains 
which may thereby be achieved. Because of our intended 
use of soft ML-decoding in the receiver, we must study 
modulation channels with.discrete-valued multilevel/phase 
input and continuous-valued output. One- and two- 
dimensional modulation is considered and intersymbol in- 
terference-free signaling over bandlimited channels with 
additive white Gaussian noise (AWGN) is assumed. With 
perfect timing and carrier-phase synchronization, we sam- 
ple at time nT + rs where T is the modulation interval and 
7s the appropriate sampling phase. The output of the 
modulation channel becomes 

zn = a, + w,, 0) 

where a,, denotes a real- or complex-valued discrete chan- 
nel signal transmitted at modulation time nT, and w, is an 
independent normally distributed noise sample with zero 
mean and variance a* along each dimension. The average 
SNR is defined as 

. (a) one-dimensional modulation 

(b) two-dimensional modulation I 
(2) 

Fig. 1 illustrates the channel-signal sets considered in this 
paper. Normalized average signal power E{ I a,’ I} = 1 is 
assumed. 

Extension of the well-known formula for the capacity of 
a discrete memoryless channel [ 1 I] to the case of continu- 
ous-valued output yields 

N-l 

‘log2 [ ~~~~(Y~~~f,ai)) dz (3) 
in bit/T. N is the number of discrete channel input signals 
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2.AM 

(4 

32-AMPM 64.QASK 

0’) 

Fig. 1, Channel-signal sets considered in this paper. (a) One-dimensional 
modulation. (b) Two-dimensional modulation. 

c~O...~N-’ } and  Q(k) denotes the a priori probability 
associated with ak. Because of AWGN, we can substitute 
in (3) 

P(z/ak) = exp[-(z - ak(*/2a2] 

. (27ra*)-“* 

1 

..a (a) 

(2na2)-’ 1 es- (b) ’ 
(4) 

W ith the further assumption that only codes with 
equiprobable occurrence of channel  input signals are of 
interest, the maximization over the Q(k) in (3) can be  
om itted. Equation (3) can now be  written in the form 

C&,=,/N = log, (N) - + 

(5) 

In (5) we have integration replaced by expectation over the 
normally distributed noise variable w which is real with 
variance a2  for (a), and  complex with variance 2a2  for (b). 
Using a  Gaussian random number  generator, C* has been  
evaluated by Monte Carlo averaging of (5). In F igs. 2(a) 
and  2(b), C* is plotted as a  function of SNR for the signal 
sets depicted in F ig. 1. The  value of SNR at which in 
uncoded transmission symbol-error probability Pr( e) = 
1  O-’ is achieved is also indicated. 

(b) 

In order to interpret F igs. 2(a) and  2(b), we consider as 
an  example transmission of 2  bit/T by uncoded 4-PSK 
modu lation where Pr(e) = 10e5  occurs at SNR = 12.9 dB. 
If the number  of channel  signals is doubled, e.g., by 
choosing 8-PSK modu lation, error-free transmission of 2  
bit/T is theoretically possible already at SNR = 5.9 dB 
(assuming unlimited coding and  decoding effort). Beyond 
this- with no  constraint on  the number  of signal 
levels/phases except average signal power-only 1.2 dB 
can further. be  gained. Similar proportions hold for the 
other modu lation schemes. It can be  concluded that by 
doubl ing the number  of channel  signals, almost all is 

Fig. 2. Channel capacity C* of bandlimited AWGN channels with 
discrete-valued input and continuous-valued output. a) One-dimensional 
modulation. b) Two-dimensional modulation. 

signal-set expansion if at given SNR satisfactory error 
performance can no  longer be  achieved by uncoded modu-  
lation. 

III. SIMPLETRELLIS CODES 

Coding gains can be  realized either by block coding or 
by state-oriented trellis coding. There exists also the possi- 
bility of concatenation, e.g., by assigning short block-code 
words to state transitions in a  trellis structure. Note that 

gained in terms of channel  capacity that is achievable by the choice of a  signal set for two-dimensional modu lation 

(4 
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Fig. 3. Multilevel/phase encoder structure. 

corresponds already to a simple form of block coding. In 
this paper however we do not further pursue the block 
coding aspect because the richer structure and omission of 
block boundaries together with the availability of Viterbi 
ML-decoding algorithm make trellis codes appear to us 
more attractive for the present coding problem. 

Following the arguments of Section.11, in order to im- 
prove error performance, m bit/T must be transmitted in 
redundantly coded form by a set of 2”+ ’ channel signals. 
The coding expert will easily conclude that this may be 
accomplished by expanding the binary data sequence by 
suitable convolutional encoding with rate R = m/( m + l), 
and subsequent mapping of groups of m + 1 bits into the 
larger set of channel signals. The encoder structure is 
shown in Fig. 3. With d(a,, a;) denoting the ED between 
channel signals a,, and a:, the encoder should be de- 
signed to achieve maximum free ED: 

d free = 
. [ 

xd*(a,, a;) “* 
rd%:,, fi I 

(6) 

between all pairs of channel-signal sequences {a,,} and 
{a;} which the encoder can produce. If soft ML-decoding 
is applied, the error-event probability will approach 
asymptotically at high SNR the lower bound [2] 

Pde) 2 N(dfree) . Q(dfre,P)- (7) 
Here N(d,,,) denotes the (average) multiplicity of error 
events with distance dfree, and Q( *) is the Gaussian error- 
probability function. 

For transmission at 2 bit/T by coded 8-PSK modulation 
it has been suggested [4], [5] to use known R = 2/3 binary 
convolutional codes with maximum free HD for given 
constraint length [12], and Gray coding as a mapping 
function. Yet there are problems with this approach. Firstly, 
the Gray code mapping does not monotonically translate 
larger HD into larger ED and secondly, permutations of 
the binary outputs of the convolutional encoder will have 
an unknown, perhaps significant influence on the ED 
structure of the resulting 8-PSK codes. Neither does the 
approach seem to be extendable to all modulation forms of 
Fig. 1. 

We will therefore pursue a different design method 
which aims more directly at maximizing free ED. The 
approach is based on a mapping rule called “mapping by 
set partitioning.” This mapping follows from successive 
partitioning of a channel-signal set into subsets with in- 
creasing minimum distances A, =C A, -C A, * * . between 
the signals of these subsets. The concept is illustrated in 
Figs. 4 and 5 for 8-PSK and 16-QASK modulation, respec- 
tively, and is applicable to all modulation forms of Fig. 1. 

Before addressing the systematic search for convolu- 
tional codes for the encoder suggested by Fig. 3, we discuss 

in the remainder of this section the heuristic construction 
of simple but already very effective codes. This does not 
require knowledge of convolutional codes and will estab- 
lish an intuitive basis for the development of more power- 
ful codes later in the paper. Work leading to this paper 
progressed also in this order. 

We regard an encoder simply as a finite-state machine 
with a given number of states and specified state transi- 
tions. If m bits are to be encoded per modulation interval 
T, there must be 2” possible transitions from each state to 
a successor state. More than one transition may occur 
between pairs of states, and for obvious reasons only 
regular structures are of interest. After selecting a suitable 
trellis state-transition diagram, the remaining task consists 
of assigning channel signals from an extended set of 2m+’ 
signals to the transitions such as to achieve maximum free 
ED. For codes with up to eight states, this could be 
accomplished “by hand,” and a 16-state code could still be 
found with the aid of a computer program that checked 
free ED. 

The heuristic design of 8-PSK codes for coded transmis- 
sion of 2 bit/T will be discussed in more detail. Uncoded 
4-PSK modulation is regarded as a reference system. As 
shown in Fig. 6, we can view uncoded 4-PSK as coding 
with a trivial one-state trellis and four “parallel” transi- 
tions, to which are assigned from the 8-PSK signal set four 
signals with largest minimum distance among them, i.e., 
the signals of subset BO (or Sl). Next consider a two-state 
trellis. The first code illustrated in Fig. 7 was easily found. 
Signals of subsets BO and Bl are assigned to the transitions 
originating from the first and the second state, respectively, 
which guarantees that free ED is at least as large as for 
uncoded 4-PSK modulation. However with two states, it is 
not possible to have the same property also for transitions 
joining into one state, and hence the gain in free ED over 
4-PSK remains limited to 1.1 dB. 

The other 8-PSK codes depicted in Fig. 7 with 4, 8, and 
16 states, and gains in free ED of 3 dB, 3.6 dB, and 4.1 dB, 
respectively, required more effort. Nevertheless after con- 
siderable experimentation with various trellis structures 
and channel-signal assignments, we were convinced that 
these codes are optimum for the given number of states. 
The following rules for assigning channel signals were 
applied: 

1) all 8-PSK signals should occur with equal frequency 
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2) 

3) 

4) 

OOOO 1000 0100 1100 0010 1010 0110 1110 DO01 1001 0101 1101 0011 1011 0111 1111 51 

Fig. 5. Partitioning of 16-QASK channel signals into subsets with increasing min imum subset distances (A O  < A, < A z < As; 
E{l4I, = 1). 

, TRELLIS STATE 

Fig. 6. Uncoded 4-PSK modulation, 2 bit/T. 

and with a  fair amount  of regularity and  symmetry, 
transitions originating from the same state receive 
signals either from subset BO or Bl, 
transitions joining in the same state receive signals 
either from subset BO or Bl, 
parallel transitions receive signals either from subset 
CO or Cl or C2 or C3. 

Rule 1) reflects the intuition that good  codes should 
exhibit regular structures, and  rules 2), 3), and  4) guarantee 
that the ED associated with all single and  mu ltiple signal- 
error events exceeds the free ED of uncoded 4-PSK modu-  
lation by at least 3  dB. We  have seen that with only two 
states, rules 2) and  3) cannot be  simultaneously satisfied. 
Since this is not unique to coded %PSK, we shall not be  
further interested in two-state codes. 

Note that parallel transitions imply that single signal- 
error events can occur. This lim its achievable free ED to 
the m inimum distance in the subsets of signals assigned to 
parallel transitions. On  the other hand, parallel transitions 
reduce the “connectivity” in the trellis and  thus allow 
extension of the m inimum length of mu ltiple signal-error 
events. W ith four states, the trade-off still worked in favor 
of parallel transitions; the best 4-state 8-PSK code gains 3  
dB over 4-PSK, with single signal errors being most likely, 
whereas codes with distinct transitions to all successor 
states remained inferior because rules 2) and  3) could not 
be  satisfied simultaneously. W ith eight and  more states, 
only trellis structures with distinct transitions can be  of 
interest because otherwise free ED gains would remain 
lim ited to 3  dB. 

The  ideas can also be  applied to the other modu lation 
forms. As a  further example, we consider transmission of 3  

2 TRELLIS STATES 

dfree = p$ 1.606 

(1.1 dS GAlN OVER 4 -PSK). 

’ ’ Pr(e) E2.0(d,,ee/2e) 

4 TRELLIS STATES 
co c2 g=$* 
Cl c3 

733-i 
2604 

3715 

-“7”, dfree = A2 = 2.000 

a’ 
(3.0 dS GAIN OVER 4-PSK). 

0 
Prk) 2 

0 0 
l.Dtd,,&Zal. 

6 TRELLIS STATES 

0426 

1537 0 
406 2 

7 

dlree =jm = 2.141 
0 (3.6 dS GAIN OVER 4-PSK) 

5173 6 0 
2604 0 

Prk) E  2.D(df,ee/2a). 

3715 0 
6240 0 
7351 0 

16 TRELLIS STATES 

0426 
1537 
4062 
5173 
2604 
3715 
6240 
735 1 
4062 
5173 
0426 
1537 
6 240 
7351 
2604 
3 715 

d ,ree =jm E 2 274 

14.1 dB GAIN OVER 4-PSK). 

Pr(e)r13?)01d,ree/20) 

Fig. 7. Coded 8-PSK modulation, 2 bit/T. 

bit/T by coded 16-QASK modu lation. Uncoded 8-PSK or 
8-AMPM modu lation is regarded as a  reference system. 
From the preceding discussion and  the partitioning of the 
16-QASK signal set into subsets shown in F ig. 5, codes 
follow easily. In the 8-PSK codes of F ig. 7, the 8-PSK 
signals must only be  replaced by the corresponding 16- 
QASK signal subsets DO-D7 of F ig. 5. An g-state 16-QASK 
code obtained in this manner  is presented in F ig. 8. The  
reader must be  cautioned, however, about this approach. A 
similarly obtained 16-state 16-QASK code turned out to 
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8 TRELLIS STATES 

0, De 4 DC 

0, ‘J,D,DI 

“4 Do % 02 

D,D, D,D, 

D,D,DoD, 

DO-DO 
d ,ree=~A~+A:,+A~=1414 

4.0 dB GAIN OVER 8 -AMPM 

( 5 3 dB GAIN OVER ZI-PSK 
d ) 

Pr,e) 5 ,?I 0 (dlree/2n) 

Fig. 8. Coded I6-QASK modulation, 3 bit/T. 

have only the same free ED as the 8-state 16-QASK codes.’ 
Partitioning of the one-dimensional N-AM signal sets 

results in minimum subset distances A,,, = 2 . A,, i = 
O,l, ..* (6 dB steps), whereas for two-dimensional N- 
AMPM and N-QASK signal sets we have Ai+, = fi * Ai . 
j XI (),I . . . (3 dB steps). Numerical values are given in the 
code tables of Section V for all signal sets of Fig. 1 and 
normalized signal power. Partitioning of larger signal sets 
will soon lead to values of Ai that exceed the free ED that 
one can ever expect to achieve at given code complexity. 
Therefore it will usually be sufficient-even for very com- 
plex codes-to partition a signal set two or three times, 
and‘ associate the signals of the subsets not further parti- 
tioned with parallel transitions in the code trellis. 

One further remark is necessary. The specific mapping 
of coded bits into channel signals indicated in Figs. 4 and 5 
-which in the case of Fig. 4 leads to a straight binary 
numbering of the 8-PSK signals-is not important. By 
permuting subsets, other mappings can be obtained with 
the same pattern of increasing minimum subset distances. 
Only this latter property is significant. 

IV. MULTILEVEL/PHASE CODES VIEWED AS 
BINARY CONVOLUTIONAL CODES WITH 

MAPPING BY SET PARTITIONING 

The codes presented in Figs. 7 and 8 have been selected 
among equivalent codes because with some effort they can 
be identified as binary convolutional codes of rate R = 
m/( m + 1) generated by feedback-free encoders in cascade 
with the mapping by set partitioning illustrated by Figs. 4 
and 5. Fig. 9 shows the encoders in this form of implemen- 
tation for constraint lengths v = 2,3,4, corresponding to 
4,8, 16 states. 

Using polynomial notation, the binary output sequence 
y(D) must satisfy the parity check equation: 

[y”‘(D) . . . Y’(D)> Y’(D)] 
-[H”(D) ... H’(D), H’(D)]‘= 0. (8) 

For the encoders of Fig. 9, the parity check matrices are 
v = 2: H(D) = [(0), 0, D, D2+ 1 12 
v = 3: H(D) = [(0), D, D*, D3 + 1 1, 
v=4: H(D)=[ D, D3 + D2, D4 + D3 + 11, 

(9) 
‘Among the codes presented in Section V, there will be a better 16-state 

16-QASK code. 

L2 

Fig. 9. Realization of I-PSK and 16.QASK codes by means of minimal 
convolutional encoders. 

where the trivial entry (0) accounts for the additional 
unchecked bit in coded 16-QASK modulation. Note that 
the encoders are minimal [ 131 since Y = maximum degree 
of H’(D), 0 I j 5 m. Considering (9), we observe that the 
parity-check polynomials have the form (v 1 2): 

H’(D) = 0, ticjIm, (104 

Hi(D) = 0 + h;-,D”-’ + 0.. h{D + 0, 1 <jIr$i, 

(lob) 
Ho(D) = D” + h;-,D”-’ + . . . h:D + 1. VW 

Equation (10a) means that there can be m - & unchecked 
bits at the binary encoder output. This leads to 2”-’ 
parallel transitions between states and hence allows single 
errors to occur. Note further the difference between (lob) 
and (10~): 

hjo=h;= {;: :‘;}, (V22). (11) 

The significance of this condition will be explained below. 
Instead of generating code sequences y(D) by minimal 

encoders, one can also envisage their generation by equiva- 
lent systematic encoders with feedback which represent the 
second canonical form of convolutional encoders [ 131. Code 
sequences y(D) are then generated by 

[Y”(D) . . . Y”(D)] 
I 0 I 

I+“‘(D). . . i’(D)] . 1, ; H&;H”(D) , 
I . . . 
[ H’( D)/H’(D) 

(12) 
where i(D) represents a scrambled version of the input 
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Fig. 10. Systematic convolutional encoder structure with feedback 
satisfying condition (I 1). 

x(D) to the feedback-free encoders. Because of [l 11, the 
rational functions in (12) are realizable. A general  realiza- 
tion of (12) with v delay elements is depicted in F ig. 10, 
and  the specific systematic encoders corresponding to the 
m inimal encoders of F ig. 9  are shown in F ig. 11. 

Let y(D) and  y’(D) = y(D) @  e(D) be  two similar bi- 
nary code sequences where @  denotes modu lo 2  addition. 
Since we deal with linear codes, the binary error sequence 

e(D) = e,Dk + ek+,Dk+’ + -. . ek+LDkfL, 

ek,ek+L#O, L 20 (13) 

belongs to the set of code sequences. In order to lower- 
bound  the ED between the channel-signal sequences a(D) 
and  a’(D) obtained from y(D) and  y’(D), we define the 
Euclidean weights w(e,) = m in d[a(z), a(z @  e;)], where 
m inimization goes over all z = [z” . . . zl, z’], and  d[ . . . ] 
is the ED between the channel  signals specified. For the 
squared ED between a(D) and  u’(D), we then obtain 

kfL kfL 

izk d2[u( Yi>, a( S: @  et)] 2  jzk W ’(ei> ’ w2[e(D)]. 

(14) 

Theorem: For each e(D) there exists a  pair u(D) and 
u’(D) for which (14) is satisfied with equality. 

Pro08 Because of symmetry in the channel  signal sets 
w(ei) = m in d[a(z), u(z @  ej)] is already achieved by let- 
ting the last element z ’ in z be  arbitrarily 0  or 1, and  
carrying out the m inimization only over [z* . . * z’]. Since 
encoding at rate R = m/(m + 1) allows any succession of 
elements [ yj* . . . v,‘] to occur (best seen from F ig. lo), 
there exists for each e(D) a  code sequence y( D) that leads 
in (14) to equality for each individual term of i. 

The  risk taken in setting d, = Afree is very small be- 
cause the m inimum in (15b) is usually achieved by more 
than one  e( 0). This is especially true if fi =C m, i.e., higher 
order bits of e, are not involved in the parity-check opera- 
tion. We  could never find a  code where dfree was not equal  
to A fr& Therefore we adopt this latter definition of free 
ED in terms of m inimum subset distances, which makes 
the calculation independent of the exact mapp ing of coded 
bits into channel  signals as long as the same pattern of 
these m inimum distances results. 

Free ED between channel-signal sequences can therefore 
be  determined in an  analogous manner  to finding free HD 
between the binary code sequences y(D). In the ap- 
propriate search algorithm that examines all nonzero code 
sequences e(D) [or y(D)], the Hamming weights of e, must 
only be  replaced by the squared Euclidean weights w2(ei). 
Hence 

To  conclude this section, we note another important 
property of condition (11). From F ig. 10, one  can see that 
mu ltiple signal errors (L > 0) must start with ek = 
[er**. eL,O] and  with ektL = [er+L.. . eL+,,O]. The  
squared ED associated with these errors is therefore at 
least 2  . A:. In other words, the condition guarantees that 
transitions originating from one  state or joining in one  
state can have signals only from subset BO or. Bl (cf. 
Section-III, conditions 2) and  3)). We  note further that 
fi -C m implies dfree 5 A,, since then single-signal errors 
(L = 0) with ED equal  to An are possible. 

d&, = m inw2[e(D)] (154 
over all code sequences e(D) # 0. 

Fig. 1 I. Equivalent realization of 8-PSK and I6-QASK codes by means 
of systematic convolutional encoders with feedback. 

Let q(ei) be the number  of trailing zeros in ei, e.g., for 
e, = [e,” . - . e?, l,O , 0] we have q(e,) = 2. From the map-  
ping by set partitioning, one  can see that w(e,) L  AqCe,), 
and  that equality holds for almost all ej. In the 8-PSK 
mapp ing illustrated by F ig. 4, we have only found that 
w([lOl]) > A,, and  that in the 16-QASK mapp ing in F ig. 
5, only w([ lOOl]), w([ 1  loll), and  w([ 11111)  exceed A,. In all 
other cases, w(ej) = AqCe,) (note w(0) = A4(s) = 0). This 
motivates us to write 

k+L 

over all code sequences e(D) #  0. 
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V. SY~TJ~MATIC SEARCH FOR MORE POWERFUL 
CODES 

The problem to be solved is to find for given constraint 
length v and given m inimum subset distances A0 c A, 
< . * . Am, the systematic encoder with feedback that maxi- 
m izes d, = Arm. Considering (lo), there are (& + 1) - (Y 
- 1) coefficients in the parity-check polynomials to be 
determined. For a feedback-free encoder with a restriction 
equivalent to (1 l), one can show that there would be 
(tfl+ 1) - (v - 1) + ti2 + 1 generator-polynomial coeffi- 
cients to decide on. The difference of fi2 + 1 accounts for 
the fact that with the systematic encoder structure, 
catastrophic encoders are automatically excluded. Another 
advantage of the systematic encoder structure is that no 
prior assumptions are necessary on the individual degrees 
9 of the generator polynomials, which for a m inimal en- 
‘coder must satisfy ZT!,vj = v. 

The first step is to determine the value of 6~. From 
knowledge of d, already achieved by simpler codes, and 
from the lim itation d, I A,, the appropriate value fol- 
lows easily. In fact, we shall see fi = 1 or 2 only. 

The search procedure developed below is basically an 
exhaustive search with a number of rejection rules. We 
assume that for good codes (11) is always satisfied. The 
Y - 1 remaining coefficients in each parity-check poly- 
nomial (lob) and (10~) are represented in the‘ form of 
binary integers 

0 s ih’ = (hi-,2’-* + h!-,Y3 + * *. h{ZO) 

12’-’ - 1, OIjSt?i. (16) 
Definition: An incomplete code at level I, 1 5 I < fi is 

specified by I%’ = [ih’, ihI-‘, * * . iho]. We let this be equiva- 
lent to setting encoder inputs x’+‘(D), . . * ~~(0) to zero 
for a complete code specified by a”. 

In the search program, we increment in the outermost 
loop iho from 0 to 2’-’ - 1, in the next inner loop ih’ from 
0 to 2’-’ - 1, etc. Whenever at level I a code is rejected by 
one of the following rules, we skip inner loops at levels 
1+ 1 to&. 

Rule 1: Reversing time. does not change the distance 
properties of a code. Let ih&, be the bit-reversed binary 
integer ihj, e.g., (01 ll), e, (11 lo),. It follows from the 
order in which the ihj are varied in the search program that 
a code can be rejected at level 1 if ih’,,, < ih* and ihie, = ihj 
forOsj<l. 

Rule 2: Let H’(D) be derived from H(D) by 

Get “,r;i;8,,...6~;;d,,,(=O); 

Fig. 12. Block diagram of code search program. 

satisfies e(D) . HT( D) = 0, then 

0) 
=[e”(D), .a - e’(D) CB e’(D), *** e’(D), n** e’(D)] 

’ (19) 
satisfies e’(D) . ITT(D) = 0. Since the element vectors e, 
and e; of (18) and (19) exhibit the same number of trailing 
zeros, the same lower bound on ED expressed in subset 
distances AqceiJ pp a lies. We conclude that the codes defined 
by H(D) and H’(D) have identical free ED. Again taking 
into account the order in which the ihj are varied in the 
search program, a code can be rejected at level I if one of 
the following‘conditions is satisfied: 

I> 1. ih’$ ih-’ < ih’-’ 
152; ih’ ~ih/-2’ < ihI- 

ih’~ ihI- ~ih’-2 < ihI- 2 
(20) 

123: ih’ ~ih’-3 < ihI- 

ih’ ~ihI’2 $ihI-3 < ihI- 

ih’ G3 ih’-’ $ihI-2 < ihI- 
ih’ CB ih’-’ $ih’-* @ ihIm < ihle3, etc. 

H’(D) Here, ih’ @  ih” denotes the integer obtained by modulo2 
=[Nm(D);..H’(D);..H’(D)~HS(D);.. ~a( D)] , addition of ih’ and ih’ bit by bit. 

Ols<tlm. (17) Rule 3: A code is rejected at level I if its free ED, d$Le, 
does not exceed the largest value djz = d, found among 

If previously inspected complete codes. Initially, d, can be 

e(D)=[e”(D);~~et(D),~~~es(D);~~eo(D)] set to zero, or in order to save time, to the free ED of the 
best code previously found with smaller constraint length 

(18) v. 
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TABLE 1 
CODESFORAMPLITUDEMODULATION 

m= 1 In=2 m=3 

" Fi Ho(D) t+(D) H2(D) d;ree/b; G4m,2AM %An/m G16AM/aAM 

2 1 58 28 - 2.25 -2.5 dB -3.3 dB -3.5 dB 

3  1  13  04 - 2.50 3.0 3.8 3.9 

4 1 23  04 - 2.75 3.4 4.2 4.3 

5 1  45 10 - 3.25 4.2 s.0 5.1 

6 1 103 024 - 3.50 4.5 5.2 5.4 

7 1  235 126 - 4.00 5.1 5.8 6.0 

8  1  515 262 - 4.25 5.3 

9 1  1017 0342 - 4.50 5.6 

* 10  1  2051 1536 - 

* 11  1  4017 1602 - 5.00 6.0 

A;@AM)/A;(4AM) = 20/21 (-0.21 dB) 

*Search not completed. 
~NO improvement obtained. 

Further rules are conceivable; for example, a  code is 
rejected if 

GCD{Hfi(D);--H’(D)} #  1. (21) 

This latter rule was not implemented. 
A block diagram of the code-search program is pre- 

sented in F ig. 12. For the calculation of d$Le, the bidirec- 
tional search algorithm in the form discussed by Larsen 
[ 141  was adopted. For computing in this algorithm distance 
increments of state extensions; the systematic encoder  
structure offers the same computational advantages which 
Paaske [12] obtained by regarding the syndrome former 
states instead of the ordinary states of feedback-free en- 
coders. 

The  codes obtained by the program are listed in Tables 
I-III. For each constraint length v, a  lim it of 30  m in CPU 
time  was set, and  no  particular effort for program optimi- 
zation was made  (IBM/370-158, PL/I program without 
special assembler written routines). Parity check polynomi- 
als are presented in the Tables in octal form, e.g., Ho(O) 
= D6 + D2 + 1 4  (001000 lOl), g  (105)s. Free ED is 
first given in the normalized form d&/A:(coded). Note 
that for normalized signal power E{ ( u,’ I} = 1, we have 
A,(coded) = A,(uncoded). The  asymptotic coding gain for 
each specific coded/uncoded comparison is then computed 
by replacing A,(coded) by the appropriate A,(uncoded) 

TABLE II 
CODESFOR&PSKMODULATION 

v ;;; Ho(D) H1 K') H'(D) 
m=2 

%SK/4PSK 

2  1  58  20  - 2.000 - 3.0 dB 

3  2  11  02  04  2.293 3.6 

4  2  23  04  16  2.586 4.1 

5  2  45  16  34  2.879 4.6 

6  2  105  036 074 3.000 4.8 

7  2  203  014 016 3.172 5.0 

a  2  405  250 176 3.465 5.4 

9  2  1007 0164 0260 3.758 5.7 

210  2  2003 0164 0770 3.758 5.7 

E(/afjl - 1: 

A0(4PSK) =  5, A,(SPSK) =  2sin(rr/S), 

Al (BPSK) =  fi, A2(8PSK) =  2  

A; (SPSK) /A; (4PSK) 

=  1  (0 dB) 

*Search not completed. 
~NO improvement obtained. 

and expressing the above ratio in decibels. For example, 

= 10  * log,, (&,( N - AM)/Ai[( N/2) - AM]}. 

(24 

The  tables show that increasing v does not always lead to 
a  code with larger dmree, especially if coding gains are 
already in the order of 6  dB. The  code search could have 
been  extended to larger values of v by optimizing critical 
program sections, allowing longer program runs, and  per- 
haps by including additional rejection rules. In view of the 
exponential increase in code complexity and  the small 
additional gains in free ED to be  expected, we were con- 
tent with the codes already found. 

VI. SIMULATION RESULTS 

Coding gains have so far been  expressed in terms of 
larger free ED, which is adequate for high SNR. In this 
section, we show simulation results obtained at moderate 
SNR. We  concentrate ma inly on  error-event probability 
which is relevant for most blockwise data communication. 
This makes the result independent of the specific mapp ing 
of information bit sequences into channel  signal sequences. 
In a  practical system, several factors can influence this 
mapp ing: the particular bit labeling of branches in signal- 
set partitioning, the realization of the encoder  in the form 
of a  feedback-free m inimal encoder  or a  systematic encoder  
with feedback, phase-differential coding in order to resolve 
phase amb iguity, and  scrambling! Results on  bit-error 
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TABLE III 
CODESFORAMPLITUDE/PHASEMODIJLATION 

Y ii H’(D) H1(D) H'(D) d;&A; $I = 2 3 
'Y.~~ASK/ 

m=4 
G32AMpM/ 

m=5 
MMPMI G64QASK/ 
4PSK BAM~M(SPSK) 16QASK 32AtE'M 

2 1 %  
3 2 11 

4 2 23 

A5 2 41 

6 2 ,101 

7 2 203 

A8 2 401 

9 2 1001 

*10 2 2003 

2a 
02 

04 

06 

016 

014 

056 

0346 

0164 

04 

16 

10 

064 

042 

354 

0510 

0770 

2.0 

2.5 

3.0 

3.0 

3.5 

4.0 

4.0 

4.5 

5.0 

-2.0 dB 

3.0 

3.8 

3.8 

4.5 

5.1 

5.1 

5.6 

6.0 

-3.OC4.4) dB -2.8 dB -3.0 dB 

4.OC5.3) 3.8 4.0 

4.8C6.1) 4.6 4.8 

4.8C6.1) 4.6 4.8 

5.4C6.8) 5.2 5.4 

6.OC7.4) 5.8 6.0 

6.OC7.4) 5.8 6.0 

E(lap= 1: A;(BAMPM)/A;(4pSK) = 415 (- 0.97 dB) 

A0C3AMPM) = 2/h, A0(16QASK) = h/5, A;(lCQASK)/A;(L)AMPM) = 1 ( 0.0 dB) 

A0(32AMPM) = 2/&,A0(64QASK) = J2/21, Af(16QASK)/Af(8PSK) - l/(5sin2(n18)) (+ 1.35 dB) 

Ai = fi.Ai-l(x), i = 1, 2, . . A;(32AMi'M)/A;(16QASK) = 20/21 (- 0.21 dB) 

A;(64QASK)/A;(32AMPM) = 1 ( 0.0 dB) 

*Search not completed. 
ANo improvement obtained. 

SNR [dB] SNR [da] 

5 6 7 6 9 IO II 12 (3 

Fig. 13. Error-event performance of coded &AM versus uncoded 4-AM, 
2 bit/T. 

probability are therefore given only for one particular 
example. 

In the simulation programs, the length of the path 
histories in the Viterbi decoding algorithms was M = 6v 
(decision delay). An error event was counted when a false 
channel signal was decoded following a state that still 
belonged to the correct path through the code trellis. Figs. 
13-15 show error-event frequency versus SNR for coded 
8-AM, 8-PSK, and 16-QASK in comparison with com- 
puted error-event probability of 4-AM, 4-PSK, and 8-PSK 

COOED II-P% ’ 

SlMULATlON -’ SlMULATlON -’ \ 
\ \ 

Fig. 14. Error-event performance of coded 8-PSK versus uncoded 4-PSK 
2 bit/T. 

or 8-AMPM, respectively. The simulation results are given 
with 90 percent confidence intervals. Systematic encoders 
with the parity-check polynomials given in Tables I-III for 
v = 2, 3, and 4 were used. For the simpler codes, where 
iV(d,,) could still be determined by inspection of the 
trellis diagrams, lower bounds on error-event ,probability 
are included. Also indicated in Figs. 13-15 is the SNR at 
which ,channel capacity of the expanded signal sets (cf; 
Figs. 2(a) and (b)) equals the transmission rate in bit/T. 
This illustrates that by simple 4-state codes a significant 
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- SNR=9.3dE: v=Z: Nldfree)‘2 
C’CR -PAW = 3 ElllT 

d 

Fig. 15. Error-event performance of coded I4-QASK versus uncoded 
8-PSK and 8-AMPM, 3 bit/T. 

UNCOOEO 4-P% 

(EVENT 6 BIT) 

E 
COOED I-P% \ \‘t\ 

Fig. 16. Error-event and bit-error performance of coded 8-PSK (v = 2, 
minimal encoder) and uncoded 4-PSK, 2 bit/T. 

portion of the totally possible improvement of performance 
is already achieved, and  that further improvements by 
using more complex codes (v = 3,4, * * . ) tend to be  rela- 
tively expensive. 

F ig. 16  shows -error-event and  bit-error frequency of 
coded 8-PSK using the 4-state m inimal encoder  depicted in 
F ig. 9. The  simplicity of this code permitted the calculation 
of lower and  appropriate upper  bounds on  error-event and  

Fig. 17. Coded 8-PSK transmission system with carrier-phase tracking 
loop and differential coding/decoding to resolve 180” phase ambiguity. 

bit-error probabilities (upper-bounds will not be  discussed). 
It can be  observed that the two error probabilities become 
identical for high SNR because in this particular case, the 
free ED occurs for single-signal error events with only one  
wrong bit per event, and  because no  differential coding 
and  scrambling is used. 

VII. CARRIER-PHASE TRACKING 

In the preceding sections, ideal tim ing and  carrier-phase 
tracking were assumed to be  available in the receiver. 
Whereas tim ing synchronization can be  accomplished in 
the usual manner  by signal squaring and  filtering with a  
narrow bandpass filter tuned to l/T Hz, carrier-phase 
synchronization can pose a  somewhat harder problem. In 
this section, we restrict attention to coded 8-PSK modu la- 
tion using the 4-state encoder  shown in F ig. 9, and  measure 
the phase tracking performance of a  simulated receiver. 
The  problems encountered may be  regarded as typical of 
other cases of coded carrier modu lation. Instead of (l), we 
assume that the receiver deals with 

z, = a, . ,A + w n (23) 
where ‘p, is a  slowly varying carrier phase a priori unknown 
in the receiver. F ig. 17  illustrates the tracking of ‘p, by a  
decision-directed carrier-phase loop that uses tentative de- 
cisions of the Viterbi decoding algorithm: $J~ represents an  
estimate of ‘p,, and  Li,-, denotes a  tentative signal deci- 
sion that is obtained bi backtracking in the decoding 
algorithm the survivor path from the most likely survivor 
state at time  n, Mp  I M  times. The  input to the decoding 
algorithm becomes ’ 

z; = a, * e  j(lp,-tL) + w;. (24) 
A measured phase error 

Aq+, = L  (z& . a,-,) r= h( z& . cinlMp), 

(I a, I= 1) (25) 
is used to predict QJ,+, by a  first-order filter 

&+, = % , + Y . A’p,, O<y<l. (26) 
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Fig. 18. Carrier-phase tracking loop characteristics: S-curve and stan- 
dard deviation of loop noise in the case of 4-state coded 8-PSK 
modulation. 

Several questions arise: 

1) How should the tentative decision delay +$ be cho- 
sen? Larger MP lead to more reliable decisions, but 
also increase loop delay. 

2) Which value should be used for the loop gain y? 
3) How can phase ambiguity be dealt with? 

In simulating the arrangement of Fig. 17, {TV} has been 
modeled as a process with independent Gaussian incre- 
ments. For MP we found that shorter loop delay is prefer- 
able to having more reliable tentative decisions, hence 
MP = 0 is a good choice. Further insight in the tracking 
behavior was obtained by measuring the mean value S& = 
E( AT,,) and the standard deviation Nay = ( E( Acp, - S,,)* 
I’/* as a function of ‘p, - +,,, by setting in the simulation 
program @,, = y = 0 and varying q,,. The so-called S-curve 
of the loop, S+ and Naq are presented in Fig. 18; these 
indicate normal tracking behavior within the range 1 QZJ,, - 
r& ) < a/8. Outside this range, the loop performs a random 
walk driven by loop noise. With an appropriate value of y, 
locking into the normal tracking range was consistently 
observed after some random delay. 

The curves depicted in Fig. 18 are periodic with period 
r, which results in a 180” phase ambiguity. In this particu- 
lar case, phase ambiguity can be resolved by differential- 
encoding/decoding of the most significant bit as indicated 
in Fig. 17. Different approaches may be required for other 
codes. 

VIII. CONCLUSION 

By computing the channel capacity of multilevel/phase 
modulation schemes, we found that doubling the number 
of channel-signals makes most of the theoretically possible 
improvement accessible. From simple hand-designed codes, 
we deduced a general structure of multilevel/phase en- 
coders as binary convolutional encoders of rate R = m/( m 
+ 1) followed by mapping of coded bits into channel 

signals by “set partitioning.” This mapping allowed the 
derivation of an efficient lower-bound on Euclidean dis- 
tance between resulting channel-signal sequences. The 
bound was applied in a search program for codes that 
achieve maximum free Euclidean distance for given con- 
straint length of the convolutional encoder. 

The general finding of this paper is that compared with 
uncoded modulation, the same amount of information can 
be transmitted within the same bandwidth with coding 
gains of 3-4 dB by simple hand-designed codes with four 
to eight states. Improvements in the order of 6 dB require 
codes with about 2” states. No significant difference was 
found between the performance gains achievable with one- 
and two-dimensional coded modulation. It appears un- 
likely therefore that using signal sets defined in more than 
two dimensions could have advantages. We have only 
studied R = m/(m + 1) codes. It could be that by expan- 
ding channel-signal sets more than twice, codes could be 
found with better free ED for given constraint length than 
the codes presented in this paper, although little increase in 
channel capacity would occur. We leave this as an open 
problem for further investigations. 

Coding usually leads to an additional synchronization 
problem. We have demonstrated how to perform carrier- 
phase tracking for one particular example. 
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F inite Sampling  Approximations for 
Non-Band-Limited Signals 

STAMATIS CAMBANIS MEMBER, IEEE, AND MUHAMMAD K. HABIB 

Abstract-Finite sampling approximations, along with bounds on the 
approximation error, are derived for certain deterministic and random 
signals which are not band-limited. 

I. STATEMENT AND DISCUSSION OF RESULTS 

T HIS PAPER derives finite sampling approximations 
and  their rates of convergence for deterministic and  

random signals which are not band-limited. The  merit of 
these results lies in the fact that in many practical situa- 
tions the signals under  consideration are not band-limited, 
and  only a  finite number  of samples are available. We  thus 
study conditions under  which a  finite sum of the form 

NF) f(sj si;$;;L--;) 
(1) 

n= -N(W) 
converges to the non-band-l imited function f(t) as the 
sampling rate W  tends to infinity, and  as the number  
2N(W) + 1  of samples used, which depends on  the sam- 
pling rate W , also tends to infinity with W . We also 
determine the speed of the convergence. 

The  problem of approximating a  non-band-l imited sig- 
nal by an  infinite series of the form (I), i.e., N(W) = 00, 
has been  considered for deterministic signals in [2], for 
random stationary signals in [5], for time-limited determin- 
istic signals in [6], and  for certain analytic signals in [21] 
and  [14]. 
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There is, of course, extensive literature on  bounds for the 
truncation error in the approximation of a  band-limited 
signal by a  finite sum of the form (l), in chronological 
order [22], [lo], 1181, [3], [4], [17], [l]. In this case, W  is 
fixed, and  N is independent of Wand tends to infinity. For 
a  review of the sampling theorem, see [ 111. 

Here we consider the approximation of non-band-l imited 
signals by finite sums of the form (1). This problem has 
been  considered for certain analytic deterministic signals in 
[21], [14]; for certain deterministic as well as random 
signals which have at least two derivatives in [13]; for 
certain deterministic signals whose derivatives satisfy a  
Lipschitz condition in [7]; for certain deterministic signals 
with mu ltidimensional parameter which have m ixed partial 
derivatives in [19]; and  for deterministic signals which are 
integrable, have integrable Fourier transform, and  fall off 
faster than const. ] t ]-a, (Y > 2, in [9]. The  deterministic 
and  random signals considered in this paper  satisfy much 
less stringent conditions. Although we consider only signals 
with a  one-dimensional parameter, generalization to mu lti- 
dimensional parameter signals should be  feasible. 

The  results for deterministic signals are stated in Theo-  
rem 1  and  Theorem 2  and  its corollary. The  results for 
random signals are stated in Theorems 3-5. The  deriva- 
tions of the results are given in Section II. 

We  begin by considering a  (Cezaro) version of (I), given 
by (4) (see also [16]). The  (CezBro) coefficients ensure that 
(4) converges to f(t), provided a  sufficient number  of 
samples is used (Theorem 1). In contrast to this general  
and  simple result, the convergence of (1) to f(t) is a  more 
complicated matter requiring additional assumptions on  
the signal and  the number  of samples required. The  dif- 
ference between (1) and  (4) is that while (4) leads to the 
nonnegat ive Fejer kernel, (1) leads to the more intractable 
Dirichlet kernel (cf. (19) (20) and  (28), (29)). 
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