PROBLEMS

Basic Problems with Answers

4.1. The signal

\[x_c(t) = \sin(2\pi(100)t) \]

was sampled with sampling period \(T = 1/400 \) second to obtain a discrete-time signal \(x[n] \).
What is the resulting signal \(x[n] \)?

4.2. The sequence

\[x[n] = \cos \left(\frac{\pi n}{4} \right), \quad -\infty < n < \infty. \]

was obtained by sampling a continuous-time signal

\[x_c(t) = \cos (\Omega_0 t), \quad -\infty < t < \infty. \]

at a sampling rate of 1000 samples/s. What are two possible positive values of \(\Omega_0 \) that could have resulted in the sequence \(x[n] \)?

4.3. The continuous-time signal

\[x_c(t) = \cos (4000\pi t) \]

is sampled with a sampling period \(T \) to obtain a discrete-time signal

\[x[n] = \cos \left(\frac{\pi n}{3} \right). \]

(a) Determine a choice for \(T \) consistent with this information.
(b) Is your choice for \(T \) in Part (a) unique? If so, explain why. If not, specify another choice of \(T \) consistent with the information given.

4.4. The continuous-time signal

\[x_c(t) = \sin (20\pi t) + \cos (40\pi t) \]

is sampled with a sampling period \(T \) to obtain the discrete-time signal

\[x[n] = \sin \left(\frac{\pi n}{5} \right) + \cos \left(\frac{2\pi n}{5} \right). \]

(a) Determine a choice for \(T \) consistent with this information.
(b) Is your choice for \(T \) in Part (a) unique? If so, explain why. If not, specify another choice of \(T \) consistent with the information given.

4.5. Consider the system of Figure 4.11, with the discrete-time system an ideal lowpass filter with cutoff frequency \(\pi/8 \) radians/s.

(a) If \(x_c(t) \) is bandlimited to 5 kHz, what is the maximum value of \(T \) that will avoid aliasing in the C/D converter?
(b) If \(1/T = 10 \) kHz, what will the cutoff frequency of the effective continuous-time filter be?
(c) Repeat Part (b) for \(1/T = 20 \) kHz.

4.6. Let \(h_c(t) \) denote the impulse response of a linear time-invariant continuous-time filter and \(h_d[n] \) the impulse response of a linear time-invariant discrete-time filter.