
On Degree Constrained Shortest Paths

Samir Khuller?, Kwangil Lee??, and Mark Shayman? ? ? y
University of Maryland

Abstract. Traditional shortest path problems play a central role in both the de-
sign and use of communication networks and have been studiedextensively. In
this work, we consider a variant of the shortest path problem. The network has
two kinds of edges, “actual” edges and “potential” edges. Inaddition, each vertex
has a degree/interface constraint. We wish to compute a shortest path in the graph
that maintains feasibility when we convert the potential edges on the shortest
path to actual edges. The central difficulty is when a node hasonly one free in-
terface, and the unconstrained shortest path chooses two potential edges incident
on this node. We first show that this problem can be solved in polynomial time
by reducing it to the minimum weighted perfect matching problem. The number
of steps taken by this algorithm isO(jEj2 log jEj) for the single-source single-
destination case. In other words, for eachv we compute the shortest pathPv such
that converting the potential edges onPv to actual edges, does not violate any
degree constraint. We then develop more efficient algorithms by extending Dijk-
stra’s shortest path algorithm. The number of steps taken bythe latter algorithm
isO(jEjjV j), even for the single-source all destination case.

1 Introduction

The shortest path problem is a central problem in the contextof communication net-
works, and perhaps the most widely studied of all graph problems. In this paper, we
study thedegree constrained shortest path problem that arises in the context of dynam-
ically reconfigurable networks. The objective is to computeshortest paths in the graph,
where the edge set has been partitioned into two classes, such that for a specified subset
of vertices, the number of edges on the path that are incidentto it from one of the classes
is constrained to be at most one.

This work is motivated by the following application. Consider a free space opti-
cal (FSO) network [14]. Each node has a set ofD laser transmitters andD receivers.
If nodesi andj are in transmission range of each other, a transmitter fromi can be? S. Khuller is with Department of Computer Science, University of Maryland, College Park,

MD 20742, USA. Tel: (301) 405-6765, Fax: (301) 314-9658 E-mail: samir@cs.umd.edu. Re-
search supported by NSF grants CCR-0113192 and CCF-0430650.?? K. Lee is with Institute for Advanced Computer Studies, University of Maryland, College Park,
MD 20742, USA. E-mail: kilee88@yahoo.com? ? ? M. Shayman is with Department of Electrical and Computer Engineering, University of Mary-
land, College Park, MD 20742, USA. Tel: 301-405-3667, Fax: 301-314-9281, E-mail: shay-
man@glue.umd.eduy Research partially supported by AFOSR under contract F496200210217

pointed to a receiver atj and a transmitter fromj can be pointed to a receiver ati,
thereby creating abidirectional optical communication link betweeni andj. If i andj are within transmission range of each other, we say that apotential link exists be-
tween them. If there is a potential link betweeni andj and they each have an unused
transmitter/receiver pair, then anactual link can be formed between them. We will refer
to a transmitter/receiver pair on a node as aninterface. Thus, a potential link can be
converted to an actual link if each of the nodes has an available interface.

We consider a sequential topology control (design) problemfor a FSO network.
The network initially consists entirely of potential links. Requests arrive for commu-
nication between pairs of nodes. Suppose that shortest pathrouting is used. When a
request arrives for communication between nodesvs andvt, a current topology exists
that consists of the actual links that have thus far been created, along with the remaining
potential links. We wish to find a shortest path in this topology consisting of actual and
potential links with the property that any potential link onthe path can be converted to
an actual link. This means that if the path contains a potential link from nodei to nodej, i andj must each have a free interface. Therefore, when searching for a shortest path,
we can delete all potential links that are incident on a node that has no free interfaces.
However, deleting these potential links still does not reduce the routing problem to a
conventional shortest path problem. This is because if the path contains a pair of con-
secutive potential links(i; j), (j; k), the intermediate nodej must have at least two free
interfaces[7].

As an example, suppose the current topology is given in Figure 1(a) where the solid
lines are actual links and the dotted lines are potential links. Suppose each node has a
total of two interfaces. If a request arrives for a shortest path between nodes1 and7, the
degree constraint rules out the path1�6�7 because node6 has only one free interface.
The degree constrained shortest path from1 to 7 is 1� 2� 3� 4� 5� 6� 7.

(a) Example Network (b) Shortest Path Tree

Fig. 1. Degree Constrained Shortest Path Problem

In addition to showing that the degree constrained shortestpath problem cannot be
reduced to a conventional shortest path problem by deletingpotential links incident on
nodes without free interfaces, the example illustrates twoother features of this problem.
Firstly, the union of the set of constrained shortest paths originating at a node need not
form a tree rooted at that node. For all shortest paths from node1, other than to node7,

we can construct a shortest path tree as shown in Figure 1(b).However, node 7 cannot
be added to this tree. Secondly, since the constrained shortest path from1 to 6 is the
single hop path1 � 6 and not1 � 2 � 3 � 4 � 5 � 6, it follows that a sub-path of a
constrained shortest path need not be a (constrained) shortest path.

The problem is formally described as follows. We have a network with two kinds of
edges (links), ‘actual’ and ‘potential’. We refer to these edges asgreen andred edges
respectively. We denote green edges byS and red edges byR. LetE = S [R, whereE is the entire edge set of the graph. We are required to find the shortest path fromvs
to vt. Edgeeij denotes the edge connectingvi andvj . The weight of edgeeij is wij .
Green edgesS represent actual edges, and red edgesR represent potential edges. We
denote a path fromvs to vt by Pt = fvs; v1; � � � ; vtg and its lengthj Pt j. The problem
is to find a shortest pathP �t from a source nodevs to a destination nodevt. However,
each vertex has an degree constraint that limits the number of actual edges incident to it
byD. If there areD green edges already incident to a vertex, then no red edges incident
to it may be chosen, and all such edges can safely be removed from the graph. If the
number of green edges is� D � 2 then we can choose up to two red edges incident to
this vertex. In this case, a shortest path is essentially unconstrained by this vertex, as it
can choose up to two red edges. The main difficulty arises whena vertex already hasD�1 green edges incident to it. In this case, at most one red edge incident to this vertex
may be chosen. Hence, if a shortest path were to pass through this vertex, the shortest
path must choose at least one green edge incident to this vertex.

In this paper, we study algorithms for theDegree Constrained Shortest Path prob-
lem. We propose two algorithms for finding a shortest path with degree constraints.
First, we show how to compute a shortest paths between a pair of vertices by employ-
ing a perfect matching algorithm. However, in some cases we wish to compute single
source shortest paths to all vertices. In this case, the matching based algorithm is slow
as we have to run the algorithm for every possible destination vertex. The second al-
gorithm is significantly faster and extends Dijkstra’s shortest path algorithm when all
edge weights are non-negative. The rest of this paper is organized as follows. In Section
2, we show how to use a perfect matching algorithm to compute the shortest path. The
complexity of this algorithm isO(jEj2 log jEj) from a source to a single destination.
In Section 3 we propose an alternate shortest path algorithmby extending Dijkstra’s
algorithm. We introduce the degree constrained shortest path algorithm in Section 4.
Section 5 analyzes and compares the complexity of these algorithms. Its complexity
is O(jEjjV j) from a source not only to one destination but to all destinations. Finally,
we conclude the paper in Section 6.We would also like to note that even though we
describe the results for the version where all the nodes have the same degree constraint
of D, it is trivial to extend the algorithm to the case when different nodes have different
degree constraints.

While the shortest path problem with degree constraints hasnot been studied before,
considerable amount of work has been done on the problems of computing bounded de-
gree spanning trees for both weighted and unweighted graphs. In this case, the problems
areNP -hard and thus the focus of the work has been on the design of approximation al-
gorithms [4, 10, 3]. In addition, Gabow and Tarjan [6] addressed the question of finding
a minimum weight spanning tree with one node having a degree constraint.

2 Perfect Matching Approach

One solution for the degree constrained shortest path problem is based on a reduction
to the minimum weight perfect matching problem. We define an instance of a minimum
weight perfect matching problem as follows. Each nodev has a constraint that at mostÆv red edges can be incident on it from the path. If nodev hasD green edges incident
on it, thenÆv = 0. When nodev hasD � 1 green edges, thenÆv = 1; otherwise,Æv = 2. WhenÆv = 0 we can safely delete all red edges incident tov. We now reduce
the problem to the problem of computing a minimum weight perfect matching in a new
graphG0. For each vertexx 2 V � fvs; vtg we create two nodesx1 andx2 in G0, and
add a zero weight edge between them. We retainvs andvt as they are.

For each edgeexy 2 E we create two new verticesvexy andve0xy (called edge
nodes) and add a zero weight edge between them. We also add edges fromvexy to x1
andx2, each of these has weightwxy=2. Whenx = vs or x = vt, we simply add one
edge fromvexy to x. We also add edges fromve0xy to y1 andy2, with each such edge
having weightwxy=2. Finally, for any red edges(u; x) and(x; y) with Æx = 1 we delete
the edges fromve0ux to x1 and fromvexy to x1.
Theorem 1. A minimum weight perfect matching in G0 will yield a shortest path in G
connecting vs and vt with the property that for any vertex v on the path, no more thanÆv red edges are incident on v.

Proof. Suppose we have a valid pathPt in G. There is a minimum weight perfect
matching inG0 of the same weight. For all verticesv that are not on the path, we
can matchv1 andv2 with zero weight. For all edges not on the path, we match the
corresponding edge nodes with zero weight. For edgesexy on the path, we do not matchvexy andve0xy but instead match these nodes withxi andyj . The key point is that ifÆx = 1 then only one red edge on the path may be incident tox. As a result, we can
match the red edge withx2 and the (adjacent) green edge withx1.

To prove the converse, consider a minimum weight perfect matching inG0 . Note
that in this matching, nodesv1 andv2 that match together are not on the optimal path.
Similarly edgesexy ande0xy that match together are not on the path. Construct a sub-
graph ofG by “mapping” the minimum weight matching inG0 to G, by merging the
verticesv1 andv2. Note that each node in the subgraph, other thanvs andvt, has degree
exactly zero or two. Note that ifÆv = 1 then only one red edge incident tov may be
chosen in the subgraph, as onlyv2 can match to a “red edge node” and notv1. Thus we
get a path that satisfies the degree constraints.

The running time of the minimum weight perfect matching algorithm isO(jV 0j(jE0j+jV 0j log jV 0j)) [5][2]. SincejV 0j isO(jV j+ jEj) andjE0j isO(jEj+ jV j) we get a run-
ning time ofO(jEj2 log jEj) (we assume thatjEj � jV j, otherwise the graph is a forest,
and the problem is trivial).

3 Shortest Path Algorithm

In this section, we develop an algorithm for finding degree constrained shortest paths
using an approach similar to Dijkstra’s shortest path algorithm.

3.1 Overview of the Algorithm

In Dijkstra’s algorithm, shortest paths are computed by setting a label at each node. The
algorithm divides the nodes into two groups: those which it designates as permanently
labeled and those that it designates as temporarily labeled. The distance labeld of any
permanently labeled node represents the shortest distancefrom the source to that node.
At each iteration, the label of nodev is its shortest distance from the source node along
a path whose internal nodes are all permanently labeled. Thealgorithm selects a nodev
with a minimum temporary label, makes it permanent, and reaches out from that node,
i.e., scans all edges of the nodev to update the distance labels of adjacent nodes. The
algorithm terminates when it has designated all nodes as permanent.

Let Z denote the set of nodesvx satisfying
Pexy2S exy = D � 1. In other words,Z is the set of nodes where there is only one interface available for edges inR. Hence

any shortest path passing throughvx 2 Z must exit on a green edge if it enters using a
red edge. If the shortest path tovx enters on a green edge, then it can leave on any edge.
We start running the algorithm on the input graph with redand green edges. However,
if a shortest path enters a vertex using a red edge, and the node is inZ then we mark it
as a “critical” node. We have to be careful to break ties in favor of using green edges.
In other words, when there are multiple shortest paths, we prefer to choose the one that
ends with a green edge. So a path terminating with a red edge isused only if it is strictly
better than the shortest known path. A shortest path that cuts through this node may not
use two red edges in sequence. Hence, we only follow edges inS (green edges) out
of this critical vertex. In addition, we create ashadow nodev0x for each critical nodevx. The shadow node is a vertex that has directed edges to all thered neighbors ofvx,
other than the ones that have been permanently labeled. The shadow node’s distance
label records the length of a valid (alternate) shortest path tovx with the constraint that
it entersvx on a green edge. (Note that the length of this path is strictlygreater than the
distance label ofvx, due to the tie breaking rule mentioned earlier.)

LetC denote the set of critical nodes. Whenv
 2 C, then only edges inS leavingv
 may be used to get a valid shortest path throughv
. To reach a neighborvj such thate
j 2 R, v
 needs an alternate shortest pathp+s
, where parent(v
) = vp0 ; vp0 2 p+s
 andep0
 2 S . We re-define the degree constraint shortest path problem asa shortest path
problem which computes shortest valid paths for all nodes inV , and alternate shortest
valid paths for nodes inC.

In fact, the edges fromv0
 to the red neighbors ofv
 are directed edges so they
cannot be used to obtain a shortest path tov0
. The corresponding critical nodev
 retains
its neighbors with green edges, and the red edge to its parent.

The setancestor(vi) is the set of all vertices on a shortest valid path fromvs to vi,
including the end-nodes of the path. LetV be the set of vertices in the graph, andV 0 be
the set of shadow vertices that were introduced.

Definition 1. Let vi; vj 2 V [V 0 and v
 2 C with (eij 2 S)_ (eij 2 R^ vi; vj 62 C).
A node pair (vi; vj) 2 gateway(
) if v
 2 an
estor(vi), and v
 62 an
estor(vj).

In Figure 2,we illustrate an example of a gateway node pair ofa critical nodev
.
This means that there always exists a possible alternate path to a critical node through a
gateway node pair sinceP �j (shortest path from source toj) does not include the critical

vs
v
 vjvi

Fig. 2. Gateway Example

nodev
. If vi’s neighborvj is a critical node and it is connected to it with a red edge,
then this node pair cannot be a legal gateway node pair. A similar problem occurs whenvi is critical and the edge connecting them is red.

A virtual link e0j
 = (vj ; v0
) is created for inverse sub-path(p�
i [feijg)�1, where(vi; vj) 2 gateway(
) (p�
i is the portion of the shortest pathP �i). With shadow nodes
and virtual links, we can maintain the data structure uniformly.

When nodes are labeled by the algorithm, it is necessary to check if these nodes
form a gateway node pair or not. For this purpose, we define a data structure calledCL,
the Critical node List. For all nodes,v
 2 CL(i) if v
 2 an
estor(vi) andv
 2 C. So,CL(i) maintains all critical node information along the shortestpath fromvs to vi. By
comparingCL(i) andCL(j), we know a node pair (vi,vj) is a gateway pair forv
 if
(v
 2 CL(i) andv
 62 CL(j)).
3.2 Algorithm

The degree constrained shortest path algorithm using critical node sets is developed in
this sub-section. The algorithm itself is slightly involved, and the example in the fol-
lowing section will also be useful in understanding the algorithm. In fact, the algorithm
modifies the graph as it processes it. We also assume that the input graph is connected.
Step 1 is to initialize the data structure. The difference with Dijkstra’s algorithm is that
it maintains information on two shortest paths for each vertex according to link type.
Step I.1 initializes the data structure for each node. We usepred to maintain predeces-
sor (parent node) information in the tree. Step I.2 is for theinitialization of the source.
The label value is set to 0. Step I.3 is for the initializationof the permanently labeled
node set (P) and the queue for the shortest path computation (Q).

Step 2 consists of several sub-steps. First, select a vertexnode with minimum label
in Q (Step 2.1) and permanently label it (Step 2.2). The label of each noded[y℄ is
chosen as the minimum of the green edge and red edge labels. Ifthe green edge label
is less than or equal to the red edge label, we select the path with the green edge and its
critical node set (Step 2.3.1). Otherwise, we choose a red edge path (Step 2.4.1). If the

path with the red edge is shorter than that with the green edgeand the number of green
edges incident onvy isD� 1 (vy 2 Z), thenvy becomes a critical node (Step 2.4.2.1).
In Step 2.5, we defineCL; its initial value is the same as its parent node. After the node
is identified as a critical node, thenCL will be changed later (Step 2.6.2).

The decision of whether a node is a critical node or not is madewhen a node is
permanently labeled. When a nodevy is identified as a critical node, a shadow nodev0y is created as shown in Steps 2.6.3 through 2.6.6. In Step 2.6 we also choose the
neighbors according to the node type. A critical node has neighbors with green edges
and its shadow node has directed edges to the neighbors to which the critical node
had red edges, if the neighbor has not been permanently labeled as yet (Step 2.6.7).
Otherwise, the node can have neighbors with any type of edges(Step 2.7.1). However,
Step 2.7.1 specifies an exception to not add neighbors to which there is a red edge if the
neighbor is a critical node. Consider a situation when a non-critical nodevi has a red
edge to a critical nodev
. Sincev
 is a critical node,v
 is already permanently labeled.
Note thatvi cannot be a neighbor ofv
, but a neighbor ofv0
, by definition. Later, whenvi is permanently labeled and is a non-critical node, we do not wish to havev
 in vi’s
list. For this reason, we check if a neighbor node with a red edge is a critical node or
not. Sincevi is permanently labeled, there is no shorter path in the graphincluding
path throughv0
. All legal neighbor information is maintained by data structure adj.
Note that the graph we construct is actually amixed graph with directed and undirected
edges, even though the input graph was undirected.

Step 2.8 examines the neighbors of a permanently labeled node. It consists of two
parts. Step 2.8.3 updates labels for all neighbor nodes inadj. This procedure is similar
to Dijkstra’s algorithm. The only difference is that label update is performed based on
link type. Step 2.8.4 is the update for shadow nodes by using procedureUpdateSNode.
If vy cannot be a part of the shortest path for its neighborvx, then we should check if it
can be a gateway node pair or not. If so, we should update labels of all possible shadow
nodes. Step P.1 considers only permanently labeled nodes inorder to check if it can be
a gateway node pair. The reason is that we cannot guarantee that the computed path for
shadow nodes through its (temporarily labeled) neighbors would be shortest path since
the path for temporarily labeled node could be changed at anytime. So, shadow nodes
in two different sub-trees are considered at the same time. Steps 2.8.4.1.1 and 2.8.4.1.2
compute the path for shadow nodes for all critical nodes along the pathP �x andP �y . We
finally deletevy from theQ (Step 2.9).

Comments:d[x℄ = min(d[x℄[green℄; d[x℄[red℄)d[y0℄[red℄ =1 for all shadow nodesvy0Z is the set of nodes with only one free interfaceP is the set of permanently labeled nodesQ is a Priority Queue with vertices and distance labelsC is the set of critical nodesV 0 is the set of shadow nodes

Degree Constrained Shortest Path Algorithm
INPUT :G = (V;E) and sourcevs andE = S [R
OUTPUT:G0 = (V [V 0; E0) with pred giving shortest path information
1 call Initialize
2 while NotEmpty(Q)
2.1 vy argvx2Qmind[x℄ Exit if d[y℄ =1
2.2 P P [fvyg
2.3 if d[y℄[green℄ � d[y℄[red℄ then //vy ’s shortest path enters on a green edge//
2.3.1 pred[y℄ pred[y℄[green℄
2.4 else //vy ’s shortest path enters using a red edge //
2.4.1 pred[y℄ pred[y℄[red℄
2.4.2 ifvy 2 Z then //vy has only one free interface //
2.4.2.1 C C [fvyg
2.4.2 endif
2.3 endif
2.5 if pred[y℄ is not null then
2.5.1 CL[y℄ CL[pred[y℄℄ //copy critical list from parent //
2.5 endif
2.6 if vy 2 C then // processing a critical node //
2.6.1 adj[y℄ vx; 8vx; exy 2 S //add green neighbors //
2.6.2 CL[y℄ CL[y℄ [fvyg
2.6.3 V 0 V 0 [fv0yg // create a shadow node //
2.6.4 Q Q [fv0yg
2.6.5 d[y0℄ d[y0℄[green℄ d[y0℄[red℄ 1
2.6.6 pred[y0℄[green℄ pred[y0℄[red℄ null
2.6.7 adj[y0℄ vx; 8vx; eyx 2 R ^ vx =2 P
2.7 else ifvy 2 V then // processing a non-critical node //
2.7.1 adj[y℄ fvxj(eyx 2 S) _ (eyx 2 R ^ vx 62 C)g
2.7.2 adj[y℄ adj[y℄ [fv0xj(eyx 2 R ^ vx 2 C ^ v0x 2 P)g
2.6 endif
2.8 for8vx 2 adj[y℄
2.8.1 ifeyx 2 S then index green
2.8.2 else ifeyx 2 R then index red
2.8.1 endif
2.8.3 ifd[x℄[index℄ > d[y℄ + wyx, vx 62 P then
2.8.3.1 d[x℄[index℄ d[y℄ +wyx
2.8.3.2 pred[x℄[index℄ fvyg
2.8.3.3 d[x℄ min(d[x℄[green℄; d[x℄[red℄)
2.8.4 else
2.8.4.1 ifvx 2 P then
2.8.4.1.1 callUpdateSNode(vy; vx)
2.8.4.1.2 callUpdateSNode(vx; vy)
2.8.4.1 endif
2.8.1 endif
2.8 endfor
2.9 Delete[Q; vy℄
2 endwhile

I.0 ProcedureInitialize
I.1 for eachvx 2 V
I.1.1 d[x℄ d[x℄[green℄ d[x℄[red℄ 1
I.1.2 pred[x℄ pred[x℄[green℄ pred[x℄[red℄ null
I.1.3 CL[x℄ ;
I.1 endfor
I.2 d[s℄ d[s℄[green℄ d[s℄[red℄ 0
I.3 P; V 0; C ; Q V
I.0 End Procedure

P.0 ProcedureUpdateSNode(vm; vn)
P.1 for eachvi 2 CL[m℄� CL[n℄ andv0i 62 P
P.1.1 ifd[i0℄[green℄ > d[n℄ + wnm + d[m℄� d[i℄ then
P.1.1.1 d[i0℄[green℄ d[n℄ +wnm + d[m℄� d[i℄ //encodes a path fromvn to vi//
P.1.1.2 pred[i0℄[green℄ fvng
P.1.1.3 CL[i0℄ CL[n℄
P.1.1.4 d[i0℄ d[i0℄[green℄
P.1.1.5 d[i0℄[red℄ 1
P.1.1.6 E0 E0 [fe0ni0g
P.1.1 endif
P.1 endfor
P.0 End Procedure

4 Detailed example

Consider the graph shown in Figure 3. The source vertex isvs. Our goal is to compute shortest
valid paths from the source to all vertices in the graph. We now illustrate how the algorithm
computes shortest valid paths and shortest alternate paths(for critical nodes). Suppose that the
nodes inZ = fv
; vf ; vb; vag, and we can pick at most one red edge incident to any of these
nodes in a shortest path.

Initially, we haveQ = fvs; v
; vb; vd; vf ; va; veg. The first row of the table shows the dis-
tance labels of each vertex inV when we start the while loop in Step 2. In fact, we show the
status of the queue and the distance labels each time we starta new iteration of the while loop. In
the table, for each node we denote the shortest path lengths ending with a green/red edge asx=y.

Iteration vs v
 vb vd vf va ve v0
 v0b v0f
1 (vy = vs) 0/0 1=1 1=11=11=11=11=1
2 (vy = v
) 0/0 1=5 1=9 7=1 1=11=11=1
3 (vy = vd) 0/0 1=5 55=9 7=1 1=1 15=1 1=1 1=1
4 (vy = ve) 0=0 1=5 55=9 7=1 1=1 15=1 8=1 1=1
5 (vy = vb) 0=0 1=5 11=9 7=1 1=1 15=1 8=1 1=1
6 (vy = v0b) 0=0 1=5 11=9 7=1 1=1 15=1 8=1 59=1 11=1
7 (vy = va) 0=0 1=5 11=9 7=1 1=1 15=16 8=1 59=1 11=1
8 (vy = v0
) 0=0 1=5 11=9 7=1 1=1 15=16 8=1 26=1 11=1
9 (vy = vf) 0=0 1=5 11=9 7=1 1=31 15=16 8=1 26=1 11=1
10 (vy = v0f) 0=0 1=5 11=9 7=1 1=31 15=16 8=1 26=1 11=1 1=1

5 7

9 1

3

15

10

5

(c)

Input Graph

Critical nodes

Shadow nodes

5 7

1

3

50

10
5

5

9

Edges in R

Edges in S

(a) 5 7

1

3

50

10
5

5

9

(b)

vb vdvev0bv0

v

va

vf

vs

Shortest path tree inG0

vs vdvevbv
vf va vs vdvevbv
vf va
Alternate path tovb

Fig. 3. Example to illustrate algorithm.

1. (Iteration 1):Q = fvs; v
; vb; vd; vf ; va; vegvy = vs. Add vs to P . Sincevs is not critical, we setpred[s℄ = null in Step 2.3.1.CL[vs℄ = ;. We defineadj[s℄ = fvd; v
; vbg in Step 2.7.1. In Step 2.8 we now update the
distance labels ofvd; v
; vb. Since none of these nodes are inP , we do not call procedureUpdateSNode. The updated distance labels are shown in the second row.

2. (Iteration 2):Q = fv
; vb; vd; vf ; va; vegvy = v
. Addv
 toP . Sincev
 is critical (shortest path enters using a red edge, andv
 2 Z)
we addv
 toC. We definepred[
℄ = vs. We also defineCL[
℄ = fv
g. Sincev
 is critical,
in Step 2.6 we defineadj[
℄ = fva; vbg. Note that we do not addvf to adj[
℄ since the
edge(v
; vf) is in R. We also create a shadow nodev0
 and add it toQ andV 0. We defineadj[
0℄ = fvfg. We now update the distance labels ofva andvb in Step 2.8. The updated
distance labels are shown in the third row.

3. (Iteration 3):Q = fvb; vd; vf ; va; ve; v0
gvy = vd. Add vd to P . Definepred[d℄ = vs. CL[d℄ = ;. In Step 2.7.1 we defineadj[d℄ =fveg. We update the distance label ofve in Step 2.8 The updated distance labels are shown
in the fourth row.

4. (Iteration 4):Q = fvb; vf ; va; ve; v0
gvy = ve. Add ve to P . We definepred[e℄ = vd. CL[e℄ = ;. In Step 2.7.1 we defineadj[e℄ = fvbg. We update the distance label ofvb in Step 2.8. The updated distance labels
are shown in the fifth row.

5. (Iteration 5):Q = fvb; vf ; va; v0
gvy = vb. Add vb toP . Sincevb is critical (shortest path enters using a red edge, andvb 2 Z)
we addvb toC. We definepred[b℄ = vs. CL[b℄ = fvbg. Sincevb is critical, in Step 2.6 we
defineadj[b℄ = fv
; veg. We also create a shadow nodev0b and add it toQ andV 0. We defineadj[b0℄ = fvag. In Step 2.8, since bothv
 andve are inP we callUpdateSNode(vb; v
),UpdateSNode(v
; vb) andUpdateSNode(vb; ve)UpdateSNode(ve; vb). Consider what
happens when we callUpdateSNode(vb; v
), UpdateSNode(v
; vb). We update the dis-
tance label ofv0b to 55. We also definepred[b0℄ = v
. At the same time we update the
distance label ofv0
 to 59 and definepred[
0℄ = vb. Consider what happens when we callUpdateSNode(vb; ve) UpdateSNode(ve; vb).
We update the distance label ofv0b to 11 and re-definepred[b0℄ = ve. The updated distance
labels are shown in the sixth row.

6. (Iteration 6):Q = fvf ; va; v0
; v0bgvy = v0b. Add v0b to P . We definepred[b0℄ = ve. CL[b0℄ = ;. Recall thatadj[b0℄ = fvag.
(Since this is a shadow node, note that it is not processed in Step 2.6 or Step 2.7). In Step
2.8 we letvx = va. However, this does not affectd[a℄ which has value 15, even though it
updatesd[a℄[red℄. The updated distance labels are shown in the seventh row.

7. (Iteration 7):Q = fvf ; va; v0
gvy = va. Add va to P . Definepred[a℄ = v
 andCL[a℄ = fv
g. Sinceva 2 V and is not
critical, in Step 2.7.1 we defineadj[a℄ = fv
g. In Step 2.7.2, we addv0b toadj[a℄. In Step 2.8,
we make calls toUpdateSNode(va; v
),UpdateSNode(v
; va) andUpdateSNode(va; v0b),UpdateSNode(v0b; va). The first two calls do not do anything. The second two calls updated[
0℄ to be11 + 5 + 15� 5 = 26 (Step P.1.1.1). We also definepred[
0℄[green℄ = v0b. The
updated distance labels are shown in the eighth row.

8. (Iteration 8):Q = fvf ; v0
gvy = v0
. We addv0
 to P and this node is not critical. We definepred[
0℄ = v0b. We also
defineCL[
0℄ = ;. Recall thatadj[
0℄ = fvfg. (Since this is a shadow node, note that it
is not processed in Step 2.6 or Step 2.7). In Step 2.8 we updated[f ℄ = 31. The updated
distance labels are shown in the ninth row.

9. (Iteration 9):Q = fvfgvy = vf . We addvf to P . This node is identified as critical since it is inZ. We also
defineCL[f ℄ = ;. We create a shadow nodev0f . However,vf has no green neighbors soadj[f ℄ = ;. We addv0f toV 0 andadj[f 0℄ = ;. The updated distance labels are shown in the
tenth row.

10. (Iteration 10):Q = fv0fg
We exit the loop sinced[f 0℄ =1.

Due to space limitations, we omit the proof of the algorithm and the complexity analysis
completely.

Acknowledgments

We thank Julian Mestre and Azarakhsh Malekian for useful comments on an earlier draft of the
paper.

References

1. Ravindra K. Ahuja , Thomas L. Magnanti, James B. Orlin, “Network Flows: Theory, Algo-
rithms and Applications”,Prentice Hall, 1993.

2. W. Cook, A. Rohe, “Computing Minimum Weight Perfect Matchings”, INFORMS Journal of
Computing, 1998.

3. S. Fekete, S. Khuller, M. Klemmstein, B. Raghavachari andN. Young, “A Network-Flow
technique for finding low-weight bounded-degree spanning trees”,Journal of Algorithms, Vol
24, pp 310–324 (1997).

4. M. Fürer and B. Raghavachari, “Approximating the minimum degree Steiner tree to within
one of optimal”,Journal of Algorithms, Vol 17, pp 409–423 (1994).

5. H. N. Gabow, “Data structures for weighted matching and nearest common ancestors with
linking”, Proc. of the ACM-SIAM Symp. on Discrete Algorithms, pages 434–443, 1990.

6. H. N. Gabow and R. E. Tarjan, “Efficient algorithms for a family of matroid intersection
problems”,Journal of Algorithms, Vol 5, pp 80-131 (1984).

7. P. Gurumohan, J. Hui “Topology Design for Free Space Optical Network”, ICCCN ’2003,
Oct. 2003

8. Z. Huang, C-C. Shen, C. Srisathapornphat and C. Jaikaeo, “Topology Control for Ad Hoc
Networks with Directional Antennas”,ICCCN ’2002, Miami, Florida, October 2002.

9. A. Kashyap, K. Lee, M. Shayman “Rollout Algorithms for Integrated Topology Control and
Routing in Wireless Optical Backbone Networks”Technical Report, Institute for System
Research, University of Maryland, 2003.

10. J. Könemann and R. Ravi, “Primal-dual algorithms come of age: approximating MST’s with
non-uniform degree bounds”,Proc. of the 35th Annual Symp. on Theory of Computing, pages
389–395, 2003.

11. S. Koo, G. Sahin, S. Subramaniam, “Dynamic LSP Provisioning in Overlay, Augmented,
and Peer Architectures for IP/MPLS over WDM Networks”,IEEE INFOCOM , Mar. 2004.

12. K. Lee, M. Shayman, “Optical Network Design with OpticalConstraints in Multi-hop WDM
Mesh Networks”,ICCCN’04, Oct. 2004.

13. E. Leonardi, M. Mellia, M. A. Marsan, “Algorithms for theLogical Topology Design in
WDM All-Optical Networks”, Optical Networks Magazine, Jan. 2000, pp. 35- 46.

14. N.A.Riza, “Reconfigurable Optical Wireless”,LEOS ’99 , Vol.1, Nov. 1999, pp. 8-11.

