On Degree Constrained Shortest Paths

Samir Khullers, Kwangil Lee**, and Mark Shayman* *

University of Maryland

Abstract. Traditional shortest path problems play a central role ithlibe de-
sign and use of communication networks and have been stediedsively. In
this work, we consider a variant of the shortest path problene network has
two kinds of edges, “actual” edges and “potential” edgesddition, each vertex
has a degree/interface constraint. We wish to compute ¢esthi@ath in the graph
that maintains feasibility when we convert the potentiajesion the shortest
path to actual edges. The central difficulty is when a nodeohfsone free in-
terface, and the unconstrained shortest path chooses tentiad edges incident
on this node. We first show that this problem can be solved iynpmial time
by reducing it to the minimum weighted perfect matching peah The number
of steps taken by this algorithm &(| E|” log | E|) for the single-source single-
destination case. In other words, for eaclhre compute the shortest palth such
that converting the potential edges & to actual edges, does not violate any
degree constraint. We then develop more efficient algosthgnextending Dijk-
stra’s shortest path algorithm. The number of steps takethédatter algorithm
is O(|E||V]), even for the single-source all destination case.

1 Introduction

The shortest path problem is a central problem in the comtegzbmmunication net-
works, and perhaps the most widely studied of all graph Bl In this paper, we
study thedegree constrained shortest path problemthat arises in the context of dynam-
ically reconfigurable networks. The objective is to compsltertest paths in the graph,
where the edge set has been partitioned into two classédsttstdor a specified subset
of vertices, the number of edges on the path that are incidéirftom one of the classes
is constrained to be at most one.

This work is motivated by the following application. Considca free space opti-
cal (FSO) network [14]. Each node has a sefofaser transmitters ant receivers.
If nodesi andj are in transmission range of each other, a transmitter fraan be

* S. Khuller is with Department of Computer Science, Uniwgrsi Maryland, College Park,
MD 20742, USA. Tel: (301) 405-6765, Fax: (301) 314-9658 Binsamir@cs.umd.edu. Re-
search supported by NSF grants CCR-0113192 and CCF-0430650

** K. Lee is with Institute for Advanced Computer Studies, Wmsity of Maryland, College Park,
MD 20742, USA. E-mail: kilee88@yahoo.com
*** M. Shayman is with Department of Electrical and Computerig®ering, University of Mary-
land, College Park, MD 20742, USA. Tel: 301-405-3667, F&xt-314-9281, E-mail: shay-
man@glue.umd.edu
t Research partially supported by AFOSR under contract FA@B217

pointed to a receiver at and a transmitter fromi can be pointed to a receiver at
thereby creating &idirectional optical communication link betweenandj. If i and

Jj are within transmission range of each other, we say thadtential link exists be-
tween them. If there is a potential link betweieand; and they each have an unused
transmitter/receiver pair, then antual link can be formed between them. We will refer
to a transmitter/receiver pair on a node asimaterface. Thus, a potential link can be
converted to an actual link if each of the nodes has an aveilaterface.

We consider a sequential topology control (design) probiena FSO network.
The network initially consists entirely of potential linkRequests arrive for commu-
nication between pairs of nodes. Suppose that shortestrpatimg is used. When a
request arrives for communication between nodeandv,, a current topology exists
that consists of the actual links that have thus far beeneadlealong with the remaining
potential links. We wish to find a shortest path in this toggloonsisting of actual and
potential links with the property that any potential link thre path can be converted to
an actual link. This means that if the path contains a patkliik from nodei to node
j,» 1 andj must each have a free interface. Therefore, when searatimgshortest path,
we can delete all potential links that are incident on a nbdé has no free interfaces.
However, deleting these potential links still does not the routing problem to a
conventional shortest path problem. This is because if #tle pontains a pair of con-
secutive potential link§i, j), (4, k), the intermediate nodemust have at least two free
interfaces[7].

As an example, suppose the current topology is given in Eidi(&) where the solid
lines are actual links and the dotted lines are potenti&kliSuppose each node has a
total of two interfaces. If a request arrives for a shorteshpetween noddsand7, the
degree constraint rules out the path 6 — 7 because nod&has only one free interface.
The degree constrained shortest path fiolm 7is1 —2 -3 -4 -5 -6 — 7.

O, @

(a) Example Network (b) Shortest Path Tree

Fig. 1. Degree Constrained Shortest Path Problem

In addition to showing that the degree constrained shopegst problem cannot be
reduced to a conventional shortest path problem by deletential links incident on
nodes without free interfaces, the example illustratesdther features of this problem.
Firstly, the union of the set of constrained shortest pathigrating at a node need not
form a tree rooted at that node. For all shortest paths frode hoother than to nodg,

we can construct a shortest path tree as shown in FigureH@aever, node 7 cannot
be added to this tree. Secondly, since the constrainedestigrath froml to 6 is the
single hop patil — 6 and notl — 2 — 3 — 4 — 5 — 6, it follows that a sub-path of a
constrained shortest path need not be a (constrainedgshpetth.

The problem is formally described as follows. We have a natwgth two kinds of
edges (links), ‘actual’ and ‘potential’. We refer to thesiyes agreen andred edges
respectively. We denote green edgessbgnd red edges big. Let E = S U R, where
E is the entire edge set of the graph. We are required to findhibeest path from,
to v¢. Edgee;; denotes the edge connectingandwv;. The weight of edge;; is w;.
Green edges represent actual edges, and red ed@eepresent potential edges. We
denote a path from, to v; by P, = {vs,v1,---, v} and its length P, |. The problem
is to find a shortest path,* from a source node; to a destination node;. However,
each vertex has an degree constraint that limits the nunfilbetwal edges incident to it
by D. If there areD green edges already incident to a vertex, then no red edgedein
to it may be chosen, and all such edges can safely be remawadtiie graph. If the
number of green edges 4 D — 2 then we can choose up to two red edges incident to
this vertex. In this case, a shortest path is essentiallpnstcained by this vertex, as it
can choose up to two red edges. The main difficulty arises vahegrtex already has
D —1green edgesincident toit. In this case, at most one red adgkent to this vertex
may be chosen. Hence, if a shortest path were to pass thrbisgbertex, the shortest
path must choose at least one green edge incident to thexvert

In this paper, we study algorithms for tlegree Constrained Shortest Path prob-
lem. We propose two algorithms for finding a shortest path witgrde constraints.
First, we show how to compute a shortest paths between a fpagrtices by employ-
ing a perfect matching algorithm. However, in some cases i8h % compute single
source shortest paths to all vertices. In this case, thehimgtdased algorithm is slow
as we have to run the algorithm for every possible destinatertex. The second al-
gorithm is significantly faster and extends Dijkstra’s ghet path algorithm when all
edge weights are non-negative. The rest of this paper inag@as follows. In Section
2, we show how to use a perfect matching algorithm to comph#teshortest path. The
complexity of this algorithm ig) (| E|? log | E|) from a source to a single destination.
In Section 3 we propose an alternate shortest path algotithextending Dijkstra’s
algorithm. We introduce the degree constrained shortekt glgorithm in Section 4.
Section 5 analyzes and compares the complexity of theseithlgs. Its complexity
is O(|E||V|) from a source not only to one destination but to all destometi Finally,
we conclude the paper in Section\8e would also like to note that even though we
describe the results for the version where all the nodes have the same degree constraint
of D, itistrivial to extend the algorithmto the case when different nodes have different
degree constraints.

While the shortest path problem with degree constrainteibtiseen studied before,
considerable amount of work has been done on the problenmgiuting bounded de-
gree spanning trees for both weighted and unweighted graptiss case, the problems
are N P-hard and thus the focus of the work has been on the desigmpodemation al-
gorithms [4, 10, 3]. In addition, Gabow and Tarjan [6] addeskthe question of finding
a minimum weight spanning tree with one node having a degrestint.

2 Perfect Matching Approach

One solution for the degree constrained shortest path gmold based on a reduction
to the minimum weight perfect matching problem. We definenataince of a minimum
weight perfect matching problem as follows. Each nod®s a constraint that at most
d, red edges can be incident on it from the path. If nodesD green edges incident
on it, thené, = 0. When nodev hasD — 1 green edges, thek, = 1; otherwise,
4, = 2. Whend, = 0 we can safely delete all red edges incident tdVe now reduce
the problem to the problem of computing a minimum weight @ermatching in a new
graphG’. For each vertex € V — {v,, v: } we create two nodes, andz- in G', and
add a zero weight edge between them. We retaimndv, as they are.

For each edge,, € E we create two new vertices,,, and Ver, (called edge
nodes) and add a zero weight edge between them. We also aes edmgv,,, to z;
andz., each of these has weiglt,, /2. Whenz = v or z = v, we simply add one
edge fromw,,, to z. We also add edges fromlzy to y; andy», with each such edge
having weightw,, /2. Finally, for any red edges:,) and(z, y) with §, = 1 we delete
the edges from., tox; and fromv,,, to ;.

Theorem 1. A minimum weight perfect matching in G’ will yield a shortest pathin G
connecting v, and v; with the property that for any vertex v on the path, no more than
4, red edges are incident on v.

Proof. Suppose we have a valid path in G. There is a minimum weight perfect
matching inG' of the same weight. For all verticasthat are not on the path, we
can matchv; andwv, with zero weight. For all edges not on the path, we match the
corresponding edge nodes with zero weight. For edggen the path, we do not match
ve,, andwv,, but instead match these nodes withandy;. The key point is that if
695 = 1then only one red edge on the path may be incident tAs a result, we can
match the red edge with, and the (adjacent) green edge with

To prove the converse, consider a minimum weight perfecthiag in G’ . Note
that in this matching, nodeg andw, that match together are not on the optimal path.
Similarly edges.., ande,, that match together are not on the path. Construct a sub-
graph of G by “mapping” the minimum weight matching i@’ to GG, by merging the
verticesv; andwvs. Note that each node in the subgraph, other thaandv,, has degree
exactly zero or two. Note that i, = 1 then only one red edge incidenttamay be
chosen in the subgraph, as ombycan match to a “red edge node” and npt Thus we
get a path that satisfies the degree constraints.

The running time of the minimum weight perfect matching aigon isO(|V'|(|E'|+
[V'|log|V'|)) [B][2]. Since|V'|isO(|V| + |E|) and|E'| is O(|E| + |V |) we get a run-
ning time of O(| E|* log | E|) (we assume thdfz| > |V|, otherwise the graph is a forest,
and the problem is trivial).

3 Shortest Path Algorithm

In this section, we develop an algorithm for finding degreest@ined shortest paths
using an approach similar to Dijkstra’s shortest path algor.

3.1 Overview of the Algorithm

In Dijkstra’s algorithm, shortest paths are computed biregetr label at each node. The
algorithm divides the nodes into two groups: those whiclegignates as permanently
labeled and those that it designates as temporarily lab€lezldistance label of any
permanently labeled node represents the shortest didiammeehe source to that node.
At each iteration, the label of nodes its shortest distance from the source node along
a path whose internal nodes are all permanently labeledalffoeithm selects a node
with a minimum temporary label, makes it permanent, andivesout from that node,
i.e., scans all edges of the nod¢o update the distance labels of adjacent nodes. The
algorithm terminates when it has designated all nodes asgrent.

Let Z denote the set of nodes satisfyingzemyes exy = D — 1. In other words,
Z is the set of nodes where there is only one interface avaifabledges in?. Hence
any shortest path passing throughe Z must exit on a green edge if it enters using a
red edge. If the shortest pathidg enters on a green edge, then it can leave on any edge.
We start running the algorithm on the input graph with aed green edges. However,
if a shortest path enters a vertex using a red edge, and tleeisiodZ then we mark it
as a “critical” node. We have to be careful to break ties irofadf using green edges.
In other words, when there are multiple shortest paths, wipto choose the one that
ends with a green edge. So a path terminating with a red edgedonly if it is strictly
better than the shortest known path. A shortest path thatkrdugh this node may not
use two red edges in sequence. Hence, we only follow edg8s(green edges) out
of this critical vertex. In addition, we createshadow nodev!, for each critical node
v,. The shadow node is a vertex that has directed edges to akdheeighbors of,,
other than the ones that have been permanently labeled.lEu®s node’s distance
label records the length of a valid (alternate) shortest fmat,, with the constraint that
it entersv, on a green edge. (Note that the length of this path is strigthater than the
distance label of,, due to the tie breaking rule mentioned earlier.)

Let C denote the set of critical nodes. Whene C, then only edges it§' leaving
v. may be used to get a valid shortest path througfTo reach a neighbar; such that
e.; € R, v, needs an alternate shortest path where parent(.) = v, , v, € p}. and
epc € S . We re-define the degree constraint shortest path problearshertest path
problem which computes shortest valid paths for all nodds,iand alternate shortest
valid paths for nodes iy'.

In fact, the edges from’. to the red neighbors of. are directed edges so they
cannot be used to obtain a shortest patt].td’he corresponding critical node retains
its neighbors with green edges, and the red edge to its parent

The setancestor (v;) is the set of all vertices on a shortest valid path frayrto v;,
including the end-nodes of the path. Iébe the set of vertices in the graph, dritlbe
the set of shadow vertices that were introduced.

Definition 1. Letv;,v; € VUV’ andv, € C with (e;; € S)V (e;; € RAv;,v; € C).
Anodepair (vi,v;) € gateway(c) if v, € ancestor(v;), and v, & ancestor(v;).

In Figure 2,we illustrate an example of a gateway node pa# ofitical nodev..
This means that there always exists a possible alterndtegpatcritical node through a
gateway node pair sinde" (shortest path from source jpdoes notinclude the critical

Uj
Fig. 2. Gateway Example

nodev,. If v;'s neighbory; is a critical node and it is connected to it with a red edge,
then this node pair cannot be a legal gateway node pair. Asgigrioblem occurs when
v; is critical and the edge connecting them is red.

Avirtual link ¢/, = (v;,.) is created for inverse sub-pafht; U {e;;})~", where
(vi,v;) € gateway(c) (p;; is the portion of the shortest paft)*). With shadow nodes
and virtual links, we can maintain the data structure unifigr

When nodes are labeled by the algorithm, it is necessarydokctfi these nodes
form a gateway node pair or not. For this purpose, we defin¢sestiaicture called’L,
the Critical node List. For all nodes, € CL(i) if v. € ancestor(v;) andv, € C. So,
C'L(i) maintains all critical node information along the shorfessth fromov; to v;. By
comparingCL(i) andCL(j), we know a node pair,v;) is a gateway pair foo, if
(v, € CL(i) andv. € CL(3})).

3.2 Algorithm

The degree constrained shortest path algorithm usingalritiode sets is developed in
this sub-section. The algorithm itself is slightly invotijeand the example in the fol-
lowing section will also be useful in understanding the alon. In fact, the algorithm
modifies the graph as it processes it. We also assume thatghegraph is connected.
Step 1 is to initialize the data structure. The differenceéhmiijkstra’s algorithm is that
it maintains information on two shortest paths for eachesegccording to link type.
Step I.1 initializes the data structure for each node. Wepusé to maintain predeces-
sor (parent node) information in the tree. Step 1.2 is forittitgalization of the source.
The label value is set to 0. Step 1.3 is for the initializatafrthe permanently labeled
node set P) and the queue for the shortest path computatign (

Step 2 consists of several sub-steps. First, select a veotdx with minimum label
in @ (Step 2.1) and permanently label it (Step 2.2). The labelamhenoded[y] is
chosen as the minimum of the green edge and red edge labtts.dfeen edge label
is less than or equal to the red edge label, we select the ptitlthe green edge and its
critical node set (Step 2.3.1). Otherwise, we choose a rgd pdth (Step 2.4.1). If the

path with the red edge is shorter than that with the green addehe number of green
edges incidenton, isD — 1 (v, € Z), thenv, becomes a critical node (Step 2.4.2.1).
In Step 2.5, we defin€' L; its initial value is the same as its parent node. After theéeno
is identified as a critical node, thénZ will be changed later (Step 2.6.2).

The decision of whether a node is a critical node or not is nvelden a node is
permanently labeled. When a nodgis identified as a critical node, a shadow node
v, is created as shown in Steps 2.6.3 through 2.6.6. In Step @.6lse choose the
neighbors according to the node type. A critical node haghimirs with green edges
and its shadow node has directed edges to the neighbors th whe critical node
had red edges, if the neighbor has not been permanenthethlsl yet (Step 2.6.7).
Otherwise, the node can have neighbors with any type of g@®jep 2.7.1). However,
Step 2.7.1 specifies an exception to not add neighbors tdwthéze is a red edge if the
neighbor is a critical node. Consider a situation when a critical nodev; has a red
edge to a critical node,. Sinceu,. is a critical nodey.. is already permanently labeled.
Note thatv; cannot be a neighbor of,, but a neighbor of’,, by definition. Later, when
v; is permanently labeled and is a non-critical node, we do nst wo havev. in v;’'s
list. For this reason, we check if a neighbor node with a regkdd a critical node or
not. Sincev; is permanently labeled, there is no shorter path in the ghaghding
path throughv’.. All legal neighbor information is maintained by data sture adj.
Note that the graph we construct is actualiyiaed graph with directed and undirected
edges, even though the input graph was undirected.

Step 2.8 examines the neighbors of a permanently labeleel ftocbnsists of two
parts. Step 2.8.3 updates labels for all neighbor noded;inThis procedure is similar
to Dijkstra’s algorithm. The only difference is that labgldate is performed based on
link type. Step 2.8.4 is the update for shadow nodes by usinggolurdJpdateSNode.

If v, cannot be a part of the shortest path for its neighlothen we should check if it
can be a gateway node pair or not. If so, we should updateslalball possible shadow
nodes. Step P.1 considers only permanently labeled noaedén to check if it can be
a gateway node pair. The reason is that we cannot guaramtadéhcomputed path for
shadow nodes through its (temporarily labeled) neighbatddvbe shortest path since
the path for temporarily labeled node could be changed atiamgy So, shadow nodes
in two different sub-trees are considered at the same titeps2.8.4.1.1and 2.8.4.1.2
compute the path for shadow nodes for all critical nodesgthe pathP; andP;. We
finally deletev, from the@ (Step 2.9).

Comments:

d[z] = min(d[z][green], d[z][red])

dly'][red] = oc for all shadow nodes,,

Z is the set of nodes with only one free interface

P is the set of permanently labeled nodes

@ is a Priority Queue with vertices and distance labels
C is the set of critical nodes

V' is the set of shadow nodes

Degree Constrained Shortest Path Algorithm

INPUT : G = (V, E) and source; andE = SU R

OUTPUT:G' = (V U V', E") with pred giving shortest path information
1 callInitialize

2 while NotEmpty(Q)

21 vy < arg, o mind[z] Exitif dfy] = co

2.2 P+ PU{v,}

2.3 if d[y][green] < d[y][red] then /lv,’s shortest path enters on a green edge//
231 pred|y] < pred[y][green]

2.4 else #,’s shortest path enters using a red edge //

24.1 pred|y] < pred[y][red)

242 ifv, € Z then /by has only one free interface //

2421 C + CU{vy}

242 endif

2.3 endif

25 if pred[y] is not null then

251 CLly] < CLpred[y]] l/copy critical list from parent //
25 endif

2.6 if v, € C then // processing a critical node //

26.1 adjly] < vz, Vg, ezy € S /ladd green neighbors //
26.2 CL[y] + CL[y] U {vy}

26.3 V' < V' U {v, } Il create a shadow node //
264 Q<+ QU {v,}

2.6.5 dly'] < d[y'][green] < d[y'][red] + co
2.6.6 pred[y'][green] < pred|y'][red] < null
2.6.7 adjly'] < vz, Vs, €4 € RAv, ¢ P

2.7 else ifv, € V then // processing a non-critical node //
271 adjly] < {vz|(eya € S)V (eya € RA v, & C)}

2.7.2 adjly] + adj[y] U {v|(eye € RAv, € C Av, € P)}
2.6 endif

2.8 forVu, € adjly]

28.1 ifey. € Sthen index- green

2.8.2 else ik,, € Rthen index red

2.8.1 endif

283 ifd[z][index] > dly] + wy., v. ¢ P then
2831 d[z][indez] + d[y] + wya

2.8.3.2 pred|z][index] + {vy}

2.8.33 d[z] « min(d[z][green], d[z][red])
2.8.4 else

2841 ifv, € P then

284.11 calUpdateSNode(vy, vg)
2.84.1.2 calUpdateSNode(vs, vy)

2.8.4.1 endif

28.1 endif

2.8 endfor

2.9 Deletd@, vy]
2 endwhile

1.0 Procedurdnitialize

1.1 for eachw, € V

1.1.1 d[z] « d[z][green] « d[z][red] < oo

1.1.2 pred[z] < pred[z][green] < pred[z][red] < null
113 CL[z] < 0

1.1 endfor

1.2 d[s] < d[s][green] < d[s][red] « 0

.3 PV C+D Q<+V

1.0 End Procedure

P.0 Procedur&pdateSNode(vm, vn)

P.1 for eachy; € CL[m] — C'L[n] andv; ¢ P

P.1.1 ifd[i'][green] > d[n] + wnm + d[m] — d[i] then
P.1.11 d[i'|[green] + d[n] + wnm + d[m] — d[i] //encodes a path from, to v;//
P.1.1.2 pred[i'|[green] < {v,}

P113 CL[i'] « CL[n]

P.1.1.4 d[i'] < d[i'][green]

P.1.1.5 d[i'][red] + oo

P116 E « E U{c,,}

P.1.1 endif

P.1 endfor

P.0 End Procedure

4 Detailed example

Consider the graph shown in Figure 3. The source vertex.i©ur goal is to compute shortest
valid paths from the source to all vertices in the graph. We filustrate how the algorithm
computes shortest valid paths and shortest alternate (fathsritical nodes). Suppose that the
nodes inZ = {v., vy, vs,vq }, and we can pick at most one red edge incident to any of these
nodes in a shortest path.

Initially, we have@ = {vs, vc, Vs, va, vf, Va, ve }. The first row of the table shows the dis-
tance labels of each vertex i when we start the while loop in Step 2. In fact, we show the
status of the queue and the distance labels each time we stawt iteration of the while loop. In
the table, for each node we denote the shortest path lengtisgewith a green/red edge agy.
Iteration Vs |Ue p V4 vy Va Ve v v v}
1 (vy = vs) |0/0|oc0/00|00/o0|o0/00]00/oo|oo/oo|oo /0o
2 (vy = v.) |0/0]oo/5 |00/9 |T/oo |oo/oo|oo/oo|oo/oco
3 (vy =wvq) [0/0|c0/5 [55/9 |7/00 |00/o0|15/00|00/00|00/00
4 (vy = ve) [0/0jco/b [55/9 |7/00 |o0/o0|15/00|8/0c0 |o0/00
5wy = w) |0/0{co/b |11/9 |T/oc |oo/oo|15/c0|8/c0 |oo/oo
6 (vy = v,) [0/0]oo/5 [11/9 |7/oo |0o/oc|15/cc[8/00 [59/c0|11/00
7 (vy = vq) |0/0{co/b [11/9 |T/oc |00/o0|15/16(8/c0 |59/00|11/00
8 (vy =wvg) |0/0{co/5 [11/9 |7/00 |oo/o0|15/16|8/c0 [26/00|11/00
9 (vy = vy) (0/0]oo/b |11/9 |7/oo |00/31|15/16|8/c0 [26/00|11/00
10 (v, = v})[0/0]oo/5 |11/9 |7/oc |00/31{15/16]8/00 |26/00[11/00|00 /00

-- EdgesinR
— EdgesinS

(b) Alternate path tay,

Vg ;
15 @® Critical nodes
: , e Shadow nodes
¢ v,
5
v,

(© shortest path tree i@

Fig. 3. Example to illustrate algorithm.

BN

(Iteration 1):QQ = {vs, ve, Vb, Va, Uf, Va, Ve }

vy = wvs. Add vs to P. Sincew; is not critical, we sepred[s] = null in Step 2.3.1.
CLlv] = 0. We defineadj[s] = {va,ve,vs } in Step 2.7.1. In Step 2.8 we now update the
distance labels o4, v., vy. Since none of these nodes areRnhwe do not call procedure
UpdateSNode. The updated distance labels are shown in the second row.

. (lteration 2):Q = {vc, Vs, Va, Uy, Va, Ve }

vy = ve. Add v, to P. Sincew, is critical (shortest path enters using a red edgear@ 2)
we addv. to C. We definepred|c] = v,. We also defin€ L[c] = {v.}. Sinceu. is critical,
in Step 2.6 we definadj[c] = {va.,vs}. Note that we do not add; to adj[c] since the
edge(v., vs) is in R. We also create a shadow nodeand add it toQ andV'. We define
adj[c'] = {vs}. We now update the distance labelsvgfandv, in Step 2.8. The updated
distance labels are shown in the third row.

. (Iteration 3):Q = {vs,va, vy, Va, Ve, Ve }

vy = vq. Add v, to P. Definepred[d] = v,. CL[d] = (. In Step 2.7.1 we definedj[d] =
{ve}. We update the distance label«®fin Step 2.8 The updated distance labels are shown
in the fourth row.

. (Iteration 4):Q = {vb, vy, va, Ve, Ve }

vy = ve. Add v to P. We definepredle] = vq. CL[e] = 0. In Step 2.7.1 we define
adjle] = {vs}. We update the distance label®fin Step 2.8. The updated distance labels
are shown in the fifth row.

. (Iteration 5):Q = {vs, vy, va, v}

vy = vp. Add v, t0 P. Sincew, is critical (shortest path enters using a red edgearé 2)
we addv, to C. We defingpred[b] = vs. CL[b] = {vs}. Sincew is critical, in Step 2.6 we
defineadj[b] = {v., v }. We also create a shadow nageand add it tap andV’. We define
adj[b’] = {va}. In Step 2.8, since both. andv. are inP we callUpdateSNode(vy, vc),
UpdateSNode(v., vy) andUpdateSNode(vy, ve) Update S Node(ve, vy). Consider what
happens when we cadllpdateSNode(vy, v.), UpdateSNode(v., vy). We update the dis-
tance label ofv;, to 55. We also defingred[b’] = v.. At the same time we update the
distance label o), to 59 and definered|c’'| = v,. Consider what happens when we call
UpdateS Node(vy, ve) UpdateSNode(ve, vp).

We update the distance labeldfto 11 and re-defingred[b’] = v.. The updated distance
labels are shown in the sixth row.

. (Iteration 6):Q = {vy, va, ve, vy}

vy = vp. Add v;, to P. We definepred[t’] = v.. CL[b'] = 0. Recall thatadj[b'] = {va.}.
(Since this is a shadow node, note that it is not processeteim 56 or Step 2.7). In Step
2.8 we letv, = v,. However, this does not affed{a] which has value 15, even though it
updatesi[a][red]. The updated distance labels are shown in the seventh row.

. (Iteration 7):Q = {vf,va, v}

vy = vq. Add v, to P. Definepred[a] = v. andCL[a] = {v.}. Sincev, € V and is not
critical, in Step 2.7.1 we definelj[a] = {v.}.In Step 2.7.2, we add, to adj[a]. In Step 2.8,
we make calls t&/pdateSNode(va, ve), UpdateSNode(ve, va) andUpdateSNode(va, vy),
UpdateSNode(vy, va). The first two calls do not do anything. The second two caltiaie
d[c']tobell + 5+ 15 — 5 = 26 (Step P.1.1.1). We also defipeed[c'][green] = v,. The
updated distance labels are shown in the eighth row.

. (Iteration 8):Q = {vy,v.}

vy = wv,.. We addv, to P and this node is not critical. We defipeed|c'] = v;. We also
defineCL[c'] = 0. Recall thatadj[c'] = {vs}. (Since this is a shadow node, note that it
is not processed in Step 2.6 or Step 2.7). In Step 2.8 we upifiAte= 31. The updated
distance labels are shown in the ninth row.

9. (lteration 9):Q = {vs}
vy = vy. We addwvy to P. This node is identified as critical since it is #. We also
defineCL[f] = 0. We create a shadow nodé. However,u; has no green neighbors so
adj[f] = 0. We addv; to V' andadj[f'] = 0. The updated distance labels are shown in the
tenth row.
10. (Iteration 10)Q) = {v}}
We exit the loop sincéd[f'] = cc.

Due to space limitations, we omit the proof of the algorithnt ahe complexity analysis
completely.

Acknowledgments

We thank Julian Mestre and Azarakhsh Malekian for usefulroemts on an earlier draft of the
paper.

References

1. Ravindra K. Ahuja , Thomas L. Magnanti, James B. Orlin, tiNek Flows: Theory, Algo-
rithms and Applications”Prentice Hall, 1993.

2. W. Cook, A. Rohe, “Computing Minimum Weight Perfect Matas”, INFORMS Journal of
Computing, 1998.

3. S. Fekete, S. Khuller, M. Klemmstein, B. Raghavachari lndroung, “A Network-Flow
technique for finding low-weight bounded-degree spanmieed’,Journal of Algorithms, Vol
24, pp 310-324 (1997).

4. M. Furer and B. Raghavachari, “Approximating the minimdegree Steiner tree to within
one of optimal”,Journal of Algorithms, Vol 17, pp 409-423 (1994).

5. H. N. Gabow, “Data structures for weighted matching anarest common ancestors with
linking”, Proc. of the ACM-SAM Symp. on Discrete Algorithms, pages 434—443, 1990.

6. H. N. Gabow and R. E. Tarjan, “Efficient algorithms for a fgrmof matroid intersection
problems”,Journal of Algorithms, Vol 5, pp 80-131 (1984).

7. P. Gurumohan, J. Hui “Topology Design for Free Space @phetwork”, ICCCN '2003,
Oct. 2003

8. Z. Huang, C-C. Shen, C. Srisathapornphat and C. JaikaBapofogy Control for Ad Hoc
Networks with Directional Antennas’lCCCN ' 2002, Miami, Florida, October 2002.

9. A. Kashyap, K. Lee, M. Shayman “Rollout Algorithms forégrated Topology Control and
Routing in Wireless Optical Backbone NetworksTechnical Report, Institute for System
Research, University of Maryland, 2003.

10. J. Kdnemann and R. Ravi, “Primal-dual algorithms coirege: approximating MST's with
non-uniform degree boundsProc. of the 35th Annual Symp. on Theory of Computing, pages
389-395, 2003.

11. S. Koo, G. Sahin, S. Subramaniam, “Dynamic LSP Provisgpm Overlay, Augmented,
and Peer Architectures for IP/MPLS over WDM Network8ZEE INFOCOM , Mar. 2004.
12. K. Lee, M. Shayman, “Optical Network Design with Opti€ainstraints in Multi-hop WDM

Mesh Networks”,|CCCN’' 04, Oct. 2004.

13. E. Leonardi, M. Mellia, M. A. Marsan, “Algorithms for theogical Topology Design in
WDM All-Optical Networks”, Optical Networks Magazine, Jan. 2000, pp. 35- 46.

14. N.A.Riza, “Reconfigurable Optical Wireles€’EOS’99, Vol.1, Nov. 1999, pp. 8-11.

