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Abstract— Internal Border Gateway Protocol (IBGP) is respon-
sible for distributing external reachability information, obtained
via External-BGP (EBGP) sessions, within an autonomous system
(AS). To avoid a full mesh of IBGP sessions between all the
BGP speakers of an AS, scaling schemes such as route reflection
and AS confederations have been proposed. But it has been
observed that employing these schemes may result in problems
such as routing oscillations and forwarding loops due to Multi-
Exit Discriminator (MED) attribute and path asymmetry in
IBGP. In this paper we study the pathologies observed in IBGP
when route reflection is used. We model the AS using the Interior
Gateway Protocol (IGP) connectivity graphGI and IBGP peering
graph GL. Then we state some simple conditions onGI and
GL and prove that these conditions guarantee the absence of
any persistent routing oscillations and forwarding loops due to
MED attribute and IBGP path asymmetry. We consider the
problem of constructing an IBGP configuration given the IGP
connectivity such that there are no persistent oscillations and
loops, and apply the conditions developed in the paper on this
problem. We prove that solving the problem while minimizing
some appropriate cost function is NP hard. We then give an
Integer Linear Program (ILP) to construct a forwarding loop
and persistent routing oscillation free IBGP configuration, for
an AS with given IGP connectivity graph, which minimizes some
appropriate cost while satisfying the resource constraints on all
the BGP speaking nodes.

I. I NTRODUCTION

At the topmost level, the Internet can be seen as a collection
of a number of large and small Autonomous Systems (AS). An
AS is nothing but a collection of routers managed by a single
organization. The routing of IP datagrams within an AS is
independent of the inter-AS routing and different organizations
are free to deploy different intra-AS routing protocols based on
their needs. But, unlike the intra-AS routing, inter-AS routing
protocol has to be the same throughout the Internet. Border
Gateway Protocol (BGP) [1] is the de-facto standard inter-
domain routing protocol currently used in the Internet.

BGP works in two distinct modes of operation: External-
BGP (EBGP) and Internal-BGP (IBGP) based on whether
the BGP peers1 belong to different ASes or the same AS
respectively. EBGP is responsible for exchanging reachability
information between different ASes whereas IBGP is responsi-
ble for distributing the information gained from EBGP among
all the BGP speakers within the AS.

1BGP peers are BGP speakers (in the same or neighboring ASes) having
direct BGP connection between them.

BGP, or more specifically EBGP, is a path vector protocol in
which loops are detected and avoided by checking for multiple
occurrences of an AS in the AS_PATH list2 at each BGP node.
This scheme cannot be used to detect loops in IBGP since all
the speakers belong to the same AS. So to avoid loops in IBGP,
every BGP speaker is required to maintain an IBGP session
with every other BGP speaker in its AS. Clearly maintaining
a full mesh of IBGP connections is not very scalable. To
overcome this scalability issue, the two widely used IBGP
configuration schemes areAS confederations[2] and route
reflections [3]. But in recent years it has been observed
that there can be persistent route oscillations [4][5][6][7][8]
when these schemes are used in conjunction with Multi-Exit
Discriminator (MULTI_EXIT_DISC or MED)3 path attribute.
Later Griffin et al. [9] showed that even without taking MED
into account there may be route oscillations and loops due to
the path asymmetry in IBGP.

There have been several attempts to study these routing
anomalies. One of the approaches to eliminate MED os-
cillations, taken in [10] and [11], has been to change the
protocol such that the problem vanishes. While Basu et al. [10]
present a counterexample for the solution provided by Walton
et al. [11], their own method is plagued by scaling issues
(as discussed in [9]). In [10], they also prove that checking
for MED oscillations is NP complete. In [12], Griffin et al.
study MED oscillations using the technique employed in [13]
for analyzing oscillations in EBGP due to the path selection
policies employed by various ASes. But the MED oscillations
turn out to be much harder to model. In another paper [9] they
do the static analysis of the oscillations and loops due to path
asymmetry using a graph theoretic approach and prove that
checking for such anomalies is NP hard. They also give some
sufficient conditions for preventing such anomalies. In [14],
Musunuri et al. propose modifications to the IBGP protocol
which, when supplemented with some restrictions on the IBGP
configuration, succeed in suppressing the anomalies. They
assume a full mesh of IBGP sessions among all the border
speakers. But since almost all the BGP speakers are border
speakers, this is essentially the same as assuming a full mesh
of IBGP sessions between all the BGP speakers. So the scheme

2List of all the ASes that a route goes through to reach its destination, kept
at each BGP speaker.

3MED value of a BGP route is a non-negative integer used to compare two
routes passing through the same next-hop AS. The route having lower MED
value has higher preference.



2

is not very useful in practice. Gobjuka [15] finds conditions
on graphs to suppress loops due to path asymmetries in IBGP
with route reflection. In [16] Musunuri et al. propose changes
to IBGP which solve the problems due to both MED and
path asymmetry. But, until now there has been no attempt
at the static analysis of anomalies due to MED attribute,
IBGP path asymmetry and their interactions. In this paper
we model the AS using graphs and then we state and prove
conditions on these graphs which guarantee the absence of all
these anomalies in IBGP configurations with route reflections,
without requiring any changes to the protocol.

The rest of the paper is organized as follows. Section II pro-
vides a brief overview of the route reflection mechanism and
the route selection procedure employed by IBGP. In section III,
we present a simple model for AS. Section IV formally defines
the problem and explains why routing oscillations and loops
occur in IBGP. In section V, we state our main theorem which
gives conditions on the IBGP configuration guaranteeing the
absence of persistent oscillation and looping problems. In this
section we also give some intuition for why these conditions
should work and discuss how our conditions are tighter than
the conditions specified by Griffin et al. in [9] so that they
take into account both path asymmetries and MED at the same
time. Sections VI and VII contain the proof of the theorem.
Section VIII looks at the time complexity of the problem
of constructing an IBGP configuration based on the theorem
from section V (while satisfying some other constraints and
minimizing some appropriate cost function), when the IGP
connectivity is given. In section IX we give an algorithm based
on Integer Linear Programming to solve the problem set up
in section VIII. Finally section X concludes the paper.

II. IBGP OVERVIEW

We start with a brief overview of the route reflection
mechanism and the IBGP route selection criteria.

A. Route Reflection

As stated earlier, route reflection is a scheme devised to
avoid maintaining a full mesh of IBGP sessions between the
BGP speakers of an AS. The basic idea is to use a hierarchical
tree like structure. The AS is partitioned into sets of nodes
calledclusters. Each cluster must have one (or more) special
node(s) calledroute reflector(s). All the other nodes in the
cluster are calledclientsof the route reflectors of that cluster.
The reflectors of an AS maintain a full mesh of IBGP sessions
among themselves and IBGP connections with every client in
their own cluster. A client cannot have an IBGP session with
any node not in its own cluster. IBGP sessions between clients
of the same cluster are permitted but not required. Now each
cluster may have its own sub-clusters and so on, i.e., clustering
can be as deep as required.

The rules of route reflection are that whenever a reflector
receives a route from an IBGP peer, it selects the best path
based on its path selection rule. After the best path is selected,
it must do the following depending on the type of peer it is
receiving the best path from.

(i) from another reflector: reflect the path to all its clients.

(ii ) from a client: reflect the path to all its IBGP peers,
except the originator.

The rest of the operating rules remain the same, i.e., whenever
a node receives a route from an EBGP peer and selects it as
its best path, then it must announce this to all its IBGP peers.
Also, the clients do not re-advertise IBGP learned routes to
other IBGP peers.

B. Route Selection in IBGP

On receiving a route update, a BGP speaker employs the
following procedure to ascertain the best route.

(i) The route having the highestdegree of preferenceis
selected.

(ii ) If there are multiple routes having highest degree of
preference, then the route having the minimum AS_PATH
length is selected.4

(iii ) If there are multiple such paths, then for each neigh-
boring AS, the path having the least MED value among
all the paths going through that AS is considered. If there
is only one such route, then that route is selected.

(iv) If there are multiple routes after step (iii ) then among
these, all the routes learned through EBGP peers only are
considered. And if there are no routes learned via EBGP
sessions, then all the routes learned via IBGP sessions
(i.e., all the routes obtained after step (iii )) are considered.
If there is only one route left then that route is selected.5

(v) If there are still multiple routes in contention, then
the route having minimum IGP cost to the NEXT_HOP6

node is selected.
(vi) If there are multiple such routes, then some determin-
istic tie-breaking criteria is used.

Since the IBGP path selection process is independent for
two distinct external nodes, it is sufficient to consider only
one destination node for analyzing the IBGP routing issues.
In this work we will assume this external destination to
be noded. Also, for ease of discussion, unless otherwise
stated, we will assume that all the paths to destinationd are
ranked equally according to the rules (i) and (ii ) of the path
selection procedure stated above, i.e., they have equal degree
of preference and AS_PATH length.

III. M ODEL

We define a simple, undirected graphGP = {N,E} which
captures the physical connectivity between the routers of an
AS. HereN is the set of all the routers in the AS andE is
the set of physical links between the routers. There is an edge

4The use of ASPATH length to break the path selection ties is not
mentioned in the BGP specifications [1], but both Cisco [17] and Juniper
routers [18] use it. We also assume that it is practical to use ASPATH length.

5The path selection rules given in the BGP specifications [1] do not
differentiate between paths learned via EBGP and IBGP peers while searching
for paths with minimum IGP cost to the NEXTHOP node. But if there are
multiple such paths with minimal IGP costs to the NEXTHOP node, then
EBGP learned routes are given preference over IBGP learned routes. The
selection criteria we follow in this paper is the criteria used in the Cisco [17]
and Juniper routers [18].

6NEXT HOP path attribute defines the IP address of the border router that
should be used as the point of exit (from the AS) for reaching the destinations
listed in the BGP update message.
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ninj ∈ E if and only if there is a physical link between the
routers represented by nodesni andnj .

A pathP from noden1 ∈ N to nodenk ∈ N is defined as
an ordered set of nodesn1n2n3 . . . nk−1nk such thatnini+1 ∈
E for i = 1, 2, . . . , k−1. We define functioncost() that takes
a path as its argument and returns the IGP cost associated with
that path. We assume that the IGP costs are additive, i.e., the
cost of a path is the sum of IGP weights of its constituent
physical links (edges).

PathS is theshortest pathbetween two nodesni, nj ∈ N
if it is a valid path betweenni and nj and there is no valid
pathS′ betweenni andnj such thatcost(S′) < cost(S). We
define functionsp(ni, nj) that gives the shortest path available
between the nodesni andnj .

In this paper we consider that the IGP has converged. This
is a valid assumption since we want to study the problems
caused by the path asymmetry between the IGP routing and
the BGP signaling.7 So we can define graphGI = {V, I}
which captures the IGP connectivity of the BGP speakers in
the AS. HereV ⊆ N is the set of all the BGP speakers in
the AS and there is an edgeuv ∈ I if and only if u, v ∈ V
and there is now ∈ V such thatw ∈ sp(u, v). So a link in
IGP connectivity graphGI actually refers to the shortest path
in the physical graphGP between two BGP nodes (if it does
not contain any other BGP node).

In this work we also assume that the EBGP learned paths, in
the AS under study, are stable. This is a standard assumption in
all the literature studying the IBGP convergence. The reason,
as stated in [10], is that if the paths learned via EBGP in the
AS under study are not stable, then we can always come up
with new EBGP paths and withdraw existing EBGP paths such
that the IBGP never converges. So it does not make sense to
study the IBGP convergence when the EBGP learned paths
are not stable.

We define another graphGL = {V,L} to represent the
IBGP peering relationships. Here L is the set of IBGP sessions
between the BGP speakers. A linkuv ∈ L if and only if node
u and nodev are IBGP peers.

For studying the IBGP routing issues due to MED and path
asymmetries we do not really need the physical graphGP .
It is enough to look at the IGP connectivity graphGI and
the IBGP graphGL. So in this paper we shall model an AS
as {GI , GL} and from now onwards we shall uselink for
referring to the links in the IGP connectivity graphGI and
not in the physical graphGP .

Unless otherwise stated, we assume that all the nodes of the
AS are divided into non-overlapping clusters, i.e.,V = ∪m

i=1Vi

such thatVi ∩ Vj = ∅, for i 6= j. Every node in clusterVi is
classified as either reflectorri or clientci. If we want to show
more than one reflector in clusterVi then we use the notation
rij . Similarly for multiple clients in clusterVi, we use the
notationcij .

Also for each external pathP to destination noded, we
define the following functions:

• nextAS(): gives the next AS which the packet has to
enter, after exiting from the current AS, while following

7We shall discuss this asymmetry in detail in Section IV-C.
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routeP .
• exitN(): gives the NEXT_HOP node for routeP (this is

the nodeu ∈ V that learns aboutP via an EBGP peer).
• med(): gives the MED value for routeP .

We also define functionbestP (u)8 that gives the path
selected by nodeu to reach destinationd.

In all the examples and figures in this paper, the IGP cost
of the link/shortest path (as the case may be) between two
nodes is indicated besides the line joining the nodes. And
wherever required, the MED values of the routes is indicated
in parentheses.

IV. PROBLEM

In this section first we shall define the problem in terms
of the model given in section III and then we shall study the
BGP behavior responsible for the anomalies.

A. Problem Statement

Given the IGP connectivity graphGI we want to find the
conditions on the logical graphGL which guarantee that the
AS configuration with route reflections is free of persistent
route oscillations and loops.

We define the two pathologies as:

• An AS is said to experiencepersistent route oscillations
if, even in absence of any EBGP updates, some subset
of BGP speakers of the AS keep on exchanging IBGP
updates and are unable to settle down to any stable
routing configuration.

• If a packet goes in a cyclic manner from one node to
another without ever reaching the destination, the path is
said to contain aforwarding loop.

B. MED

The basic problem with MED attribute is that it violates
what Griffin et al. [9] call therule of independent ranking.
According to this rule, the relative ranking of paths at a node
should be independent of the existence or non-existence of
any path.

When used in conjunction with route reflection this behavior
may lead to persistent route oscillation. Fig. 1 illustrates this

8Path selected by a node depends on all the paths that a node knows about,
so strictly speaking,bestP () should be a function of time (or system state)
also, but here we are assuming that the BGP has already converged to a stable
state.
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by an example9. This is essentially the example presented in
[6]. We assume that there is no IBGP session betweenc11 and
c12. Now the oscillations are generated due to the following
steps:

(i) Node r1 selects pathP2 over path P1 (lower IGP
metric) and noder2 selects pathP3 (only path known).

(ii ) On receiving update from noder2, node r1 learns
about pathP3 and it selects pathP1 as its best path (path
P3 is ranked over pathP2 based on lower MED value,
and then pathP1 is selected over pathP3 based on the
lower IGP metric).

(iii ) Now on receiving the update from noder1, noder2

learns about pathP1 and it selects pathP1 as its best
path over pathP3 (lower IGP metric) and withdraws its
previous best pathP3.

(iv) When pathP3 is withdrawn by noder2, node r1

selects pathP2 over pathP1 (lower IGP metric) and
withdraws its previous best pathP1.

(v) When pathP1 is withdrawn by noder1, noder2 selects
path P3 over pathP2 (lower MED value) and the cycle
begins again.

The underlying problem here is that since we are not using
the full mesh of IBGP sessions between all the nodes, at a
BGP speaker some of the available paths are invisible. When
these paths become visible, the BGP speaker updates its best
path and this new update may lead to path updates at other
BGP speakers forcing the newly made visible path to become
invisible once again. This results in route oscillation.

C. Path Asymmetries

In EBGP it is normally assumed that the peers share a
physical network, so the underlying TCP link is a one-hop
link. This means that usually EBGP messages are not routed.
In this case the path followed by the EBGP signaling messages
is same as the path followed by the data traffic, albeit in
opposite direction. This is termed in [9] aspath symmetry.
On the other hand IBGP sessions are usually set up over
multi-hop TCP links, so they are generally routed within the
AS using the connectivity provided by the local IGP. Due to
the internal routing of IBGP messages, there is an inherent
path asymmetryin IBGP. More specifically, consider the AS
modeled by its IGP connectivity graph and the IBGP peering
graph{GI , GL}. Let BGP nodev ∈ V learn about routeR

9Analogous example can easily be constructed where AS confederations
causes route oscillations when used in conjunction with MED path attributes.
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to the external destination noded via IBGP peers. Now the
IBGP signaling pathcorresponding toR at v is the logical
path in graphGL that the BGP updates announcing route
R take to reach nodev. So the signaling pathv1v2 . . . vkv
corresponding to routeR implies that BGP nodevi+1 learns
about R through IBGP peervi, where i = 1, 2 . . . , k − 1,
v learns aboutR throughvk and v1 learns aboutR through
some EBGP peer, i.e.,exitN(R) = v1. So if v selects routeR
as the best available route for destinationd, the data packets
destined ford at nodev are routed toexitN(R) = v1 via the
IGP. Now thedata pathcorresponding toR at v is the path
in IGP peering graphGI that the data packets take to reach
exitN(R) = v1 from v, i.e., the data path corresponding to
R at v is sp(v, exitN(R)) = sp(v, v1). Usually the data path
and the signaling path are not symmetric, i.e., usually data path
is not equal to the signaling path in the reverse order. Griffin
et al. [9] showed that these path asymmetries can cause both
routing oscillations and loops.

Fig. 2 gives an example of the routing oscillations caused by
the path asymmetry. This example was first presented in [9].
In the figure, the solid lines represent the IGP links, whereas
the dotted lines represent the IBGP sessions. Based on the path
selection criteria mentioned in section II-B we can see that the
client nodes always select the paths learned via EBGP peers,
i.e, bestP (ci) = Pi for i = 1, 2, 3. Now the pathsP1, P2, P3

are always visible to the reflectorsr1, r2, r3 respectively. But
due to the lower IGP metric, when visible, reflectorr1 prefers
path P2 over pathP1, reflectorr2 prefers pathP3 over path
P2 and reflectorr3 prefers pathP1 over pathP3. Now we
can verify that the reflectors will never be able to settle on
a stable choice of paths. More specifically, for destinationd,
the path selection atr1 will oscillate between pathsP1 and
P2, at r2 betweenP2, P3 and atr3 between pathsP3, P1. The
problem here is similar to the route oscillations described in
section IV-B. The difference is that the here the oscillations
are induced due to IBGP path asymmetry whereas in section
IV-B, the problem was due to the MED path attribute. Here
the signaling paths are along the dotted lines (IBGP sessions)
but the actual physical paths followed are along the solid lines
(IGP links). This path asymmetry leads to oscillation.

Griffin et al. [9] showed that path asymmetry can also lead
to forwarding loops such as shown in Fig. 3. In the figure, the
solid lines show the IGP links and the dotted lines represent
the IBGP sessions. We can see thatbestP (r1) = P1 and
bestP (r2) = P2. Since nodec1 has IBGP connection only
with noder1, bestP (c1) = P1 (only path known). Similarly,
bestP (c2) = P2. Now consider a packet at nodec1 marked for
noded. Nodec1 tries to send this packet toexitN(P1) = r1
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(∵ bestP (c1) = P1). Note that c2 ∈ sp(c1, r1) therefore
packet is routed throughc2. Arguing similarly, a packet
destined for noded at nodec2 will be routed through node
c1. So we see that there is a loop between nodesc1 andc2.

In this example we see that the packet changes its intended
path at nodec1 and again at nodec2. These changes in the
forwarding path are calledpath deflections. Suppose for node
u1, bestP (u1) = P such thatexitN(P ) = uk. Let the path
from u1 to uk, according to IGP routing, beu1u2 . . . uk. A
deflection is said to occur at nodeui if, starting fromu1, ui

is the first node∈ u1u2 . . . uk such thatexitN(bestP (ui)) 6=
uk.

As shown in the previous example, multiple deflections
in the forwarding path may combine to form cycles called
forwarding loops.

V. THEOREM

In this section we state our main theorem followed by a brief
intuitive explanation for the conditions stated in the theorem
and compare them to the conditions given in [9].

A. Theorem Statement

Theorem 5.1:If an AS configuration with route reflection
satisfies each one of the following conditions then it is free of
persistent route oscillations as well as forwarding loops.

(i) If nodesu, v learn about pathsP,Q respectively, hav-
ing nextAS(P ) = nextAS(Q) through EBGP sessions,
thenu, v are IBGP peers.

(ii ) Clients of same cluster are not IBGP peers.
(iii ) cost(sp(u, v)) < cost(sp(u, w)) ∀ nodesu, v, w such
that u, v ∈ clusterVi, w ∈ clusterVj and i 6= j.

(iv) If ui ∈ Vi and uj ∈ Vj are client nodes andi 6= j,
then∃ a reflectoruk ∈ sp(ui, uj).

B. Intuitive Explanation

Condition (i) of Theorem 5.1 states that all the nodes,
which learn about the paths with comparable MED values
through EBGP sessions, should themselves be IBGP peers.
The intuition is that if all the nodes, which learn about the
paths having the samenextAS via EBGP peers, form an
IBGP mesh, then they can resolve amongst themselves which
of these is the best path depending on the MED values. Now
the other nodes in theAS should simply use this chosen
path in their IGP metric based path ranking. This avoids the
persistent routing oscillations in the system. If we look at this
condition more closely we can see that if a BGP speaker learns
about more than one path through its EBGP peers then it
will only advertise at most one of these paths (it may not
advertise any of these paths if it selects some path learned
via IBGP peer). It may seem that this behavior can result in
oscillations, but we shall see in section VI-B that this can only
cause transient oscillations and no persistent oscillations. An
important consequence of this condition is that if a nodeu has
an EBGP learned pathP throughnextAS(P ) = AXx, and it
learns about another pathQ throughnextAS(Q) = AXx via
an IBGP peerv, thenv must have learned aboutQ through an

EBGP peer. This is because ifv learns aboutQ through some
IBGP peerw (which learns aboutQ via an EBGP session)
thenw should have an IBGP session with nodeu (according
to condition (i)), and sou should have learned aboutQ via w
and notv, which is a contradiction.

Condition (ii ) of Theorem 5.1 takes care of forwarding loops
that may form due to the IBGP path asymmetry when there are
extra IBGP sessions between clients of a cluster. An example
of such a forwarding loop is given in [9]. Note that conditions
(i) and (ii ) of Theorem 5.1 require that if nodesu, v learn about
pathsP,Q respectively, havingnextAS(P ) = nextAS(Q)
through EBGP sessions, then either both nodes are reflectors
or they form a reflector-client pair in the same cluster. This
is because by condition (i), we needu, v to be IBGP peers.
But, by condition (ii ), clients in the same cluster cannot be
IBGP peers and according to the route reflection rules stated
in section II-A, clients in different clusters cannot be IBGP
peers.

According to condition (iii ) of Theorem 5.1, if we ignore
the MED values or if the MED values are same for all the
paths, then for any nodeu ∈ cluster C, if ∃ path P such
that exitN(P ) ∈ C then this path should be ranked over all
pathsQ having exitN(Q) /∈ C. In other words if we ignore
MED values then any node prefers paths learned via clients
and reflectors in its own cluster over paths learned via other
reflectors. This is very similar to one of the condition given
in [9] to guarantee that there are no forwarding loops due
to IBGP path asymmetries. The condition in [9] states that
any node should rank paths learned via clients over all the
other paths. We see that the two conditions are similar but not
exactly the same. Note that a consequence of condition (iii )
is that if nodesu, v ∈ clusterC, then∃ no nodew /∈ C such
that w ∈ sp(u, v).

Condition (iv) of Theorem 5.1 deals with the forwarding
loops that may form due to the IBGP path asymmetries. This
condition is not very intuitive but we can easily construct
examples of IBGP configurations where if this condition is
violated then there may be forwarding loops. In section VII
we shall prove that when this condition is met in addition to
the other conditions of Theorem 5.1, then there cannot be any
forwarding loops in the BGP configuration.

Overall, while condition (iii ) of Theorem 5.1, as stated
earlier, is somewhat similar to one of the conditions given
in [9] for removing routing oscillations, the conditions for
removing forwarding loops in [9] are very different from
what we present (conditions (ii ) and (iv) of Theorem 5.1).
We believe that our conditions are simpler to understand and
less restrictive than those given in [9]. Specifically, conditions
in [9] allow clients in the same clusters to be IBGP peers
while we do not allow this. This is not very restrictive since it
is taken as a rule of thumb in designing IBGP configurations
anyway. But [9] needs the shortest path between any two nodes
to be some valid signaling path, which is very restrictive in
nature; we do not require this but we need a much simpler
condition (condition (iv)) to hold. A major difference is that
our conditions allowsimple deflectionsin the IBGP config-
uration, whereas conditions in [9] remove simple deflections
also. Here we define a simple deflection as the path deflection
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that takes packets out of the AS. Note that as long as the
path selection procedure checks for AS_PATH length, simple
deflections cannot form loops on their own and therefore can
be ignored to simplify the required conditions.10 We will talk
more about these in section VII. Another major difference is
that we take into account the problems due to MED (mainly
using condition (i) of Theorem 5.1) whereas [9] ignores MED.

In sections VI and VII we give proof for Theorem 5.1. Note
that although the level of clustering in IBGP route reflection
configuration may be more than one level deep, the proof only
looks at the configurations where there are no sub-clusters
within some cluster, i.e., in the proof we assume that the
clustering is one level deep only.

Examples to show that if any condition is violated then the
system may have persistent oscillations or forwarding loops,
are not presented here due to the lack of space. But these
examples are presented in [19].

VI. ROUTING OSCILLATIONS

To prove that the conditions stated in Theorem 5.1 guarantee
the absence of persistent routing oscillations in the IBGP
configuration, we use theStable Paths Problem(SPP) model
defined in [12][13]. We first present a brief introduction of the
SPP model.

A. Modeling IBGP with MEDs

We consider the IBGP peering graphGL = (V,L) of the
given AS. Now we construct an augmented logical graph
G̃L = (Ṽ , L̃) where Ṽ = V

⋃
d

⋃
V̄ and L̃ = L

⋃
L̄.

Here d denotes the external destination and each node inV̄
represents one of the various ASes which advertised to the
AS under study.̄L includes links betweend and each node
∈ V̄ , and links corresponding to the EBGP sessions between
BGP speakers in the AS under study and the ASes represented
by node set̄V .

For any nodev ∈ Ṽ , let Pv denote the set ofpermitted
paths from v to destinationd. Each permitted path at node
v, is a valid BGP signaling path fromd to v in the logical
graph G̃L, taken in reverse order. Note that this is just an
extension to the idea of IBGP signaling paths defined in
section IV-C. The difference is that instead of using the IBGP
peering graphGL we use the augmented logical graphG̃L for
defining BGP signaling paths. Since each permitted path at
nodev corresponds to a BGP route to destinationd thatv can
learn through its EBGP or IBGP peers, we use the two terms
interchangeably. By selecting a route/path at IBGP nodev, we
mean thatv has selected someexitN for sending packets to
the destinationd. We defineP to be the union of all setsPv.

Path assignmentfunction π maps each nodeu ∈ Ṽ to a
path π(u) ∈ Pu, i.e., at each nodeu the path assignment
function selects one of the permitted paths. We represent all

10Consider the example given in Fig.17 in [9]. Let AS PATH length ofP1

be l1 and ofP2 be l2. Let the BGP path selection criteria look the ASPATH
lengths. Now since a node∈ AS1 selectsP1 as its best path and another node
∈ AS1 selectsAS2 − P2 as its best path, thereforel1 = l2 + 1. Similarly
if we consider path selection at nodes inAS2, then we getl1 + 1 = l2. So
we have a contradiction and the loop should not exist.

the permitted paths atu that can be formed by extending the
paths assigned to the neighbors ofu by candidates(u, π) =
Pu

⋂
{(uv)Q | Q = π(v), (u, v) ∈ L̃}11. So although all the

permitted paths at nodeu are valid paths, the only paths visible
are the paths that are advertised by its BGP peers. In other
words, if the BGP peers ofu select paths according toπ, then
the available paths atu are given bycandidates(u, π). Now
we definepath selectionat nodeu as a functionσu that maps
any set of permitted pathsW ⊆ Pu to the best path∈ W .
Path selection function describes the BGP rules that govern
the selection of best path from all the permitted paths at each
node. LetΣ = {σu | u ∈ Ṽ } be the set of all path selection
functions. Note that the path ranking functionσu at nodeu
ascertains whichexitN is preferred atu. This is because each
permitted path represents one of the possibleexitN .

An instance ofGeneral Stable Paths Problem(GSPP) is
a triple, S = (G̃L,P,Σ). And path assignmentπ is said
to be asolution for the GSPP if∀u ∈ Ṽ we haveπ(u) =
σu(candidates(u, π)).

SPP is a special class of GSPP where the selection function
is based onlinear12 ranking of paths. For nodeu ∈ Ṽ , we
define a non-negative, integer valuedranking functionλu over
Pu, which specifies how the permitted paths are ranked atu.
We assume that forP1, P2 ∈ Pu if λ(P1) < λ(P2), thenP2

is preferred overP1. We defineΛ = {λu | u ∈ Ṽ − {d}} as
the set of the ranking functions. Now the selection function
induced by rankingλu is given by σu(W ) = P where P
is the maximal path with respect toλu among all the paths
∈ W ⊆ Pu. Since BGP speakers only announce their best
paths, therefore clearly at each BGP node, the set of visible
paths is such that, no two paths have the same next hop. Now
to ensure that this is well defined, we need the ranking to be
strict13.

Griffin et al. [13] proved that a given SPP, and hence
the BGP configuration, will converge to a unique solution
if it does not have anyDispute Wheel(DW). A dispute
wheel, Π = (Ū , Q̄, P̄ ), of size k, is a sequence of nodes
Ū = u1, u2, . . . , uk and sequences of nonempty pathsQ̄ =
Q1, Q2, . . . , Qk and P̄ = P1, P2, . . . , Pk, such that∀ i ∈
{1, . . . , k} we have:

(i) Qi is a path fromui to ui+1

(ii ) Pi ∈ Pui

(iii ) QiPi+1 ∈ Pui

(iv) λui(Pi) ≤ λui(QiPi+1)
Here all subscripts are interpreted modulok. Fig. 4 gives an
illustration of DW. Later in section VI-B we shall see that if
all the DWs in a SPP are of even size, then the SPP has at
least one stable solution. This implies an absence of persistent

11Here(uv)Q represents the path formed by concatenation of edgeuv and
pathQ. In general we define pathPQ to be the concatenation of pathsP, Q
when the first node inQ is same as the last of node inP .

12By linear ranking of paths we mean that if pathP1 is ranked over path
P2 and pathP2 is ranked over pathP3, then pathP1 is ranked over pathP3.

13By strict ranking, we mean that if at nodeu, two permitted pathsP1 and
P2 are ranked equally, thenu should learn only one of these paths at any time.
This is clearly true when both the paths are announced tou by the same peer.
In mathematical terms, we mean that ifP1 6= P2 and λu(P1) = λu(P2),
then∃ v such thatP1 = (uv)P ′

1 andP2 = (uv)P ′
2, i.e., pathsP1, P2 have

same next hop node.
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route oscillations. So, in a sense, these kinds of DWs are
manageable. We refer to these DWs of even size aseven DWs.

The problem with SPP model is that if we take into account
the MED attributes then the path rankings are no longer linear.
So while considering MEDs, it is not straightforward to model
a BGP configuration as a SPP. [12] models BGP with MEDs
as aTwo Pass Stable Paths Problem(2pSPP). A 2pSPP is a
GSPP where the selection functionσu is derived from two
linear path ranking functions. In thefirst pass, the paths are
sorted into disjoint classes and linear ranking is done within
each class. In thesecond passthe best available paths from
each class are ranked linearly. So at each nodeu, the permitted
paths are partitioned into disjoint classes. LetCu be the set of
classes at nodeu andPu

c ⊆ Pu be the paths of classc ∈ Cu.
Each nodeu has two ranking functions:

(i) αu
c is a strict linear ranking defined only on permitted

pathsPu
c of classc ∈ Cu

(ii ) βu is a strict linear ranking of all the permitted paths
at u

Now for a set of given pathsW , (βu ⊕ αu)(W ) is defined
as the maximally ranked paths according toβu among all the
pathsWα, whereWα is obtained as:

(i) Divide W into setsXc = W
⋂
Pu

c .
(ii ) ∀ classesc ∈ Cu, let γu

c be the maximally ranked path
according toαu

c among all the paths inXc, i.e. γu
c is the

path P ∈ Xc such that∀ pathsQ ∈ Xc and Q 6= P ,
αu

c (P ) > αu
c (Q).

(iii ) Wα = {γu
c | ∀c}

And a GSPP selection functionσu is a two pass ranking
function if it can be written asσu = (βu ⊕ αu).

It is easy to see that BGP with MED can be represented as
a 2pSPP. At any nodeu, classes represent the classification
of paths based onnextAS. So the paths for each class can
be strictly ranked since they have comparable MED values.
This is the first pass ranking (αu

c ). The second pass (βu) is
just ranking all the paths ignoring the MED values. Now the
overall ranking functionσu = (βu ⊕ αu) should give us the
desired nonlinear path rankings.

Moreover any 2pSPPS can be reduced to SPPS′ using the
following simple transformation:

(i) ∀ nodeu ∈ S, place nodeu in S′. We call thesesimple
nodes.

(ii ) ∀ nodesu ∈ S and∀ classesc ∈ Cu, place nodeuc

in S′. We call uc the auxiliary nodeof the simple node
u for classc.

(iii ) If w is a neighbor ofu in S, thenw is connected to
eachuc in S′.

Now in the SPPS′, auxiliary nodesuc rank paths according
to linear ranking functionαu

c and simple nodeu ranks paths
according to linear ranking functionβu.

So we can model BGP configurations while considering
MED attributes by first modeling it as a 2pSPP and then
reducing it to an equivalent SPP as described above. Now
the problem of oscillations in the BGP configuration can be
studied by studying the DWs in the SPP.

Qk u1 Q1

uk

Pk
P1

u2

P2

d

Pi−1

Pi
Pi+1

ui+1

Qi ui

Qi−1

ui−1

Fig. 4. Dispute Wheel

B. Proof

In this section we shall prove that a BGP configuration
is free from persistent routing oscillation as long as the
conditions of Theorem 5.1 are satisfied. For the purpose of the
proof we assume that the given BGP configuration satisfies all
the conditions of Theorem 5.1 and we have reduced it to its
equivalent SPP model as defined in section VI-A. The main
idea in the proof is that any DW in the equivalent SPP of
a BGP configuration satisfying all the conditions of Theorem
5.1, will have at least one stable solution. And if this is the case
then the SPP and hence the BGP configuration has at least one
stable solution which can be reached from any starting state
in finite time.

Now we present a brief outline of the proof. First we show
that any even DW has at least one stable solution (Lemma
6.4). Then we prove that any DW in the given SPP is either
an even DW or can be reduced to an even DW, and hence
has at least one stable solution (Lemma 6.5). We then show
that since all the DWs in the given SPP have stable solutions,
therefore the SPP also has at least one stable solution which is
reachable from any starting state in finite time (Lemma 6.6).
This implies absence of persistent route oscillations in the BGP
configuration (Lemma 6.7), which completes the proof.

The tricky part of the proof is to show that in the given
SPP, if a DW is not even, then it can be reduced to an even
DW. To prove this we use some properties of the structure of
DWs in the given SPP. More specifically, we show that every
DW in the given SPP satisfies the following:

(i) Every DW in the given SPP has at least one auxiliary
node (Lemma 6.1)

(ii ) Every DW in the given SPP has at least one simple
node (Lemma 6.2)

(iii ) Every simple node is followed by one or more aux-
iliary nodes of the same class and then another simple
node. Here the first node following the simple node is
always one of its own auxiliary nodes (Lemma 6.3).

Properties (i) and (ii ) are used to prove the important property
(iii ). Now using condition (i) of the Theorem 5.1 along with
property (iii ), we prove that any DW in the given SPP can
be reduced to a DW which has the same simple nodes as the
original DW, but in which every simple node is followed by
just one auxiliary node. Clearly this reduced DW is of even
size.
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We now present the formal proofs of all the claims stated
above.

Lemma 6.1:Any DW in the SPP should have at least one
auxiliary node.

Proof: Let all the nodes of a DW be simple nodes
as shown in Fig 4. Let us assume thatexitN(Pi) = pi ∈
clusterVi ∀ i ∈ {1, . . . , k}, were we interpret all subscripts
to be modulok. Note that sincePi andQi−1Pi are permitted
paths representing the same external route at different nodes,
exitN(Qi−1Pi) = exitN(Pi) = pi. Also, since the selection
criterion at simple nodes is independent of the MED value,
therefore nodeui selecting pathQiPi+1 over pathPi means
that cost(sp(ui, pi+1)) ≤ cost(sp(ui, pi)).

Now we must have one of the following two possible cases.

(i) u1 ∈ V1: In this case, sinceu1, p1 ∈ V1 and
cost(sp(u1, p2)) ≤ cost(sp(u1, p1)), therefore from con-
dition (iii ) of Theorem 5.1, we can infer thatp2 ∈ V1,
i.e., V1 = V2. But if Q1P2 is a permitted path atu1

having exitN(Q1P2) = p2, with both u1, p2 ∈ V1, then
every node∈ Q1P2 should∈ V1, thereforeu2 ∈ V1.
Similarly we can show thatui ∈ V1 = V2 · · · = Vk ∀i in
the DW, i.e., the DW is within one single cluster. Now
we note that within a single cluster any valid permitted
path is one of the following types14: (a) Rf ← Ep, (b)
Cl← Ep, (c) Cl← Rf ← Ep, (d) Rfx ← Rfy ← Ep,
(e) Rf ← Cl ← Ep or (f ) Clx ← Rf ← Cly ← Ep.
Clearly P1 cannot be of type (a) or (b), since thenu1

would have selected EBGP learned pathP1 over IBGP
learned pathQ1P2. Now consider pathQkP1. This also
cannot be of the form (a) or (b), since u1 ∈ QkP1.
Looking atP1 andQkP1 we can see that the only possible
case when permitted paths are valid is whenP1 is of type
(e) and QkP1 is of type (f ). This requiresu1 to be a
reflector (anduk to be a client node). Applying similar
reasoning on pathsP2 andQ1P2 we get thatu1 should
be a client node (andu2 should be a reflector). This is a
contradiction, therefore this case is impossible.

(ii ) u1 /∈ V1: We assert that this meansuk /∈ V1. We
show this assertion by contradiction. Letuk ∈ V1.
Now since QkP1 is a permitted path atuk having
exitN(QkP1) = p1 with both uk, p1 ∈ V1, every node
∈ QkP1 should∈ V1. But this means thatu1 ∈ V1, which
is a contradiction, thereforeuk /∈ V1. Also uk /∈ Vk,
since otherwiseuk should rank pathPk over pathQkP1.
Similarly we can show thatui /∈ Vi, Vi+1 ∀i in the
DW. Now if we have a permitted path spanning multiple
clusters then it has to be of one of the following types15:
(a) Rfx ← Rfy ← Ep, (b) Clx ← Rfx ← Rfy ←
Cly ← Ep, (c) Clx ← Rfx ← Rfy ← Ep or (d)
Rfx ← Rfy ← Cly ← Ep. Since ui+1, ui /∈ Vi+1

therefore pathsPi+1, QiPi+1 should be from one of the
above mentioned types. Considering both at once we can
see that the only possible cases when permitted paths are

14Here Cl means some client node,Rf means some reflector andEp
means some external peer. All the nodes belong to the same cluster. And
a ← b signifies that a node of typea learns about the path from a node of
type b.

15Here the subscripts signify the cluster in which the node belongs.
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Fig. 5. Dispute Wheel with only auxiliary nodes

valid are when eitherPi+1, QiPi+1 are of types (a) and
(c) respectively orPi+1, QiPi+1 are of types (d) and (b)
respectively. Note that in any case we needui to be a
client node (andui+1 to be a reflector). Applying similar
reasoning on pathsPi andQi−1Pi we get thatui should
be a reflector (andui−1 should be a client node). This is
a contradiction, therefore this case is also impossible.

This shows that we cannot have a DW with only simple nodes.
Hence in any DW there should be at least one auxiliary node.

Lemma 6.2:All the nodes of a DW cannot be auxiliary
nodes.

Proof: Let us consider a DW consisting only of auxiliary
nodes. A part of such a DW is shown in Fig. 5. The notation
ux

1 represents an auxiliary node of nodeu1 for classx (ASx).
Note that any permitted path at nodeux

1 has to pass through
ASx, therefore any auxiliary node on any of the valid signaling
paths atux

1 should also be for classx. Hence, as shown in the
figure, nodeux

2 , which lies on a valid path atux
1 , is also for

classx. Similarly we can show that all the auxiliary nodes
on the DW are for classx. By condition (i) of Theorem
5.1, as noted in section V-B,ux

2 (i.e., nodeu2) must have
learned about pathP2 via an EBGP peer. Now forux

2 to rank
IBGP learned pathQ2P3 over EBGP learned pathP2, we
requiremed(Q2P3) < med(P2), i.e., med(P3) < med(P2).
Applying similar reasoning over the DW we see that we need
med(P2) < med(P3) < · · · < med(Pk) < med(P1) <
med(P2), which is a contradiction. Therefore we cannot have
a DW with all its nodes as auxiliary nodes.

Lemma 6.3:In a DW, any simple nodev is followed by one
or more auxiliary nodes of the same class and then another
simple node. Also the first auxiliary node following the simple
nodev, is an auxiliary node ofv.

Proof: By Lemma 6.1 and Lemma 6.2, we have at least
one simple node and one auxiliary node in DW. Without loss
of generality we can consideruxv to be the ordered nodes in
DW. Hereux is an auxiliary node of nodeu for classx (ASx)
andv is a simple node. Now since pathQ1P2 is permitted at
ux, this path should be throughASx. So by condition (i) of
Theorem 5.1, as noted in section V-B,v must have learned
about pathP2 via an EBGP peer. Now the only wayv ranks
another pathQ2P3 over EBGP learned pathP2 is thatQ2P3

is also learned via some EBGP peer and has a higher local
preference. So the next node in the DW should be an auxiliary
node of nodev for some classy, i.e., the next node isvy. This
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situation is shown in Fig. 6. Now we know that any permitted
signaling path atvy should be for classy, so if the next node
on the DW is an auxiliary node then it must also be for class
y and similarly any following consecutive auxiliary nodes on
the DW are for classy until we reach the next simple node
w16. Also we can see that whenever we put a simple node
in the DW, it would be preceded by some auxiliary node and
therefore, as argued, any simple node in the DW should be
followed by one of its auxiliary nodes, which in turn may be
followed by some auxiliary nodes of the same class and then
we have another simple node.

Lemma 6.4:If a general DW has even number of nodes,
then it has two stable solutions.

Proof: It is easy to see that for a DW of even size, if
nodeui selectsPi∀ odd value ofi and selectsQiPi+1∀ even
value ofi, then the system is stable. Similarly ifui selectsPi

∀ even value ofi and selectsQiPi+1 ∀ odd value ofi, then
also the system is stable. So these are the two stable solutions
for any DW of even size.

Lemma 6.5:Any DW in the SPP should have at least one
stable solution.

Proof: If the number of nodes in the DW is even then
by Lemma 6.4 the DW has stable solutions. So we only need
to look at the case when the number of nodes in the DW
is odd. By Lemma 6.3, the nodes in a DW come in groups,
where each group consists of a simple node followed by one
or more auxiliary nodes. If the number of nodes in the DW
is odd then at least one of these groups must have an odd
number of nodes, i.e., at least one of the groups must have
a simple node followed by more than one auxiliary nodes.
Fig. 6 depicts a case when we have multiple auxiliary nodes
(vy, py, qy) following a simple node (v). Now by virtue of
condition (i) of Theorem 5.1, we can see that the nodepy

learns about pathsP4 via some EBGP peer. Similarly nodeqy

learns about pathP5 via some EBGP peer. Also we saw in the
proof of Lemma 6.3 thatvy learns aboutP3 via an EBGP peer.
Again by condition (i) of Theorem 5.1, all the permitted paths
at any of the auxiliary nodesvy, py, qy are also permitted at
the other two nodes. Now since at auxiliary nodes the ranking
criteria is based on MED values,vy, py, qy should rank the
path advertised byexitN(P5) = q over the other paths (seen
in the DW) throughASy. So as far as nodesvy, py, qy are
concerned, there is no dispute and therefore we can ignore

16Note that pathP6 is also throughASy but the pathQ6P7 (not shown
in the figure) can be through some othernextAS.

nodesvy, py from our DW. Similarly we can remove theextra
auxiliary nodes from all the groups just keeping a pair of nodes
(a simple node and an auxiliary node). Now thisreducedDW
has even number of nodes and therefore, by Lemma 6.4, has
stable solutions. Note that although two stable solutions exist
for the reduced DW, if we look carefully we can see that
there is only one of the two solutions is possible. This can be
seen in the example in Fig. 6. Since nodesvy, py, qy rank the
path advertised byexitN(P5) = q over the other paths (seen
in the DW) throughASy, therefore to get a stable solution
for the original DW we need thatqy selects pathP5, py

selects pathQ4P5, vy selects pathQ3Q4P5 andv selects path
Q2Q3Q4P5 (and w does not select pathP6 which therefore
remains invisible at all the other nodes). This is because the
other possible solution for the DW requires nodev to select
path P2, over EBGP learned (and therefore always visible)
path Q2P3, which is not possible. Similar is the case for
the nodes in all the groups havingextra auxiliary nodes, and
therefore only one of the two solutions is possible. So we see
that in any case a DW in the SPP should has at least one stable
solution.

Lemma 6.6:If a BGP configuration satisfies the conditions
of Theorem 5.1, then its equivalent SPP has at least one stable
solution which is reachable from any initial path assignment
in finite time.

Proof: If the equivalent SPP has no DW then as proved
in [13], the solution to SPP is unique and is always reached.
If we have DWs in the SPP then according to Lemma 6.5
all of the DWs have stable solutions. Now if the DWs are
non-overlapping then clearly the SPP has at least one stable
solution. It is easy to see that even if DWs overlap we have
stable solutions. This is because if two DWs overlap at some
node u, then we consider the path assignment such thatu
selects the best possible path (among the four choices). We can
now get to a stable solution for one of the DWs. And the other
DW breaks down, since irrespective of the path selections of
the other nodes of the DW, nodeu no longer selects any of
the two paths available atu in that DW. Now in [13], Griffin
et al. prove that in any SPP the nodes can be classified into
two disjoint classes:stableand oscillating. The stable nodes
provably reach their stable state in finite time regardless of
the initial path assignment, and the oscillating nodes form the
DWs. We have already shown that a stable solution exists for
any DW in our SPP, and we have also discussed what the
stable solution should be. We now note that this solution is
indeed reachable irrespective of the starting system state. This
is because at least one of the paths on each of the nodes
of any DW is learned by the node via an EBGP session17

and therefore irrespective of the starting path assignment, this
is visible to the node. So we can easily construct an IBGP

17Consider nodeui of the DW from Fig. 4 (ui can be a simple node or
an auxiliary node). PathPi is learned byui via some EBGP peer.
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message exchange sequence where the solution is reached18.

Lemma 6.7:If a BGP configuration satisfies the conditions
of Theorem 5.1, then it is free from persistent oscillations.

Proof: From Lemma 6.6 we can see that since we always
reach some stable solution, there are no persistent oscillations.

Note that although a stable state exists and can be reached
in finite steps, there might still be transient oscillations, i.e.,
in certain cases we can construct IBGP message exchange
sequences such that the system oscillates. This is due to the
presence of DWs in the system. An example is given in Fig.
7. The local preference values for paths are indicated besides
the lines representing the paths (lower value signifies higher
preference) and, as always, the MED values are indicated in
parentheses. If initially both nodesu, v select the path that
they learn through their EBGP peers inAS1 and they always
update and advertise their best paths simultaneously then, we
can see that there will be oscillations (after the first BGP
message exchange both nodesu, v will select the path that they
learn from their EBGP peers inAS2, after the second message
exchange they will revert back to the initial path assignment
and the cycle will continue as long as they keep on updating
and advertising their updated paths simultaneously). Actually
the example has a DW with four nodes and two stable solutions
as described in [12].

These kinds of oscillations are not persistent and they
are highly dependent on the timing and delay between the
BGP updates. Due to the random delays in the system these
oscillations (if they occur) break down very soon and the
system converges. So these are not fatal in nature. The main
problem with such cases is that since there are multiple stable
solutions, we are not sure to which state will the configuration
converge. This may pose difficulty in debugging. In this paper
we ignore the transient oscillations mentioned above.

VII. F ORWARDING LOOPS

As mentioned earlier, path asymmetry can lead to de-
flections, which may then combine to form loops. We will

18Suppose we assume that the DW has even number of nodes and
node ui has initially selected pathPi. Now we can see that ifui ad-
vertises pathPi to node ui−1, and thenui−1 calculates its best path,
ui−1 will select pathQi−1Pi. Proceeding in similar fashion to the nodes
ui−2, . . . , u1, uk, . . . , ui+1 we reach one of the stable solutions in finite
number of message exchanges. Stable state can be reached similarly for the
case when the DW has odd number of nodes. Now since stable solution is
reachable for all the DWs in the SPP, stable solution for the SPP is also
reachable in finite time irrespective of the starting path assignments.

show that if an IBGP configuration satisfies the conditions of
Theorem 5.1, then there may be deflections but they will never
form loops. As there is no point in talking about loops if there
are routing oscillations in the system, so in this section we
assume that the IBGP configuration is in stable state. We also
assume that the given configuration satisfies all the conditions
stated in Theorem 5.1.

We start our analysis by proving certain properties about the
structure of the forwarding loops when the BGP configuration
satisfies all the conditions of Theorem 5.1. In particular, we
prove the following.

(i) In a forwarding loop, if a packet gets deflected at a
reflector then the next deflection must occur at some
client node (Lemma 7.3).

(ii ) If some reflector in the AS selects pathP having
exitN(P ) ∈ clusterC, then no node∈ C should select
any pathQ havingexitN(Q) /∈ C (Lemma 7.4).

(iii ) If a packet encounters a forwarding loop, then the
only path deflections forming the loop occur at the nodes
at which the packet enters a cluster (Lemma 7.5). We
refer to such nodes as thepoint of entryto the cluster.

Now using the first property, we show that there can be only
two types of forwarding loops. The other two properties place
further restrictions on the structure of the possible loops. We
study these two classes of forwarding loops individually in
sections VII-A and VII-B and show that if all the conditions
of Theorem 5.1 hold, then even these are not possible.

We first prove a couple of observations that we, in turn, use
to prove the above listed properties of the forwarding loops.
The first observation is on the visibility of paths to the IBGP
peers in an AS. It states that the best path selected at a node
is always visible to its IBGP peers.

Lemma 7.1:If two nodes are IBGP peers then they know
about each other’s best path.

Proof: Let nodesu, v be IBGP peers and letbestP (u) =
P . Clearly if P is an EBGP learned path atu, thenu should
advertiseP to all its IBGP peers includingv. HenceP should
be visible atv. Now let us assume theP is an IBGP learned
path atu. Since u, v are IBGP peers, we have one of the
following three possible cases.

• u is a reflector andv is its client: According to the rules
of route reflection,u always reflects pathP to its clients.
HenceP should be visible atv.

• bothu, v are reflectors: Here we have one of the following
two subcases.

– u learns aboutP via some client: In this caseu
reflects pathP to all its IBGP peers includingv.

– u learns aboutP via some reflectorw: Now since
reflectors form a full IBGP mesh,w, v are also IBGP
peers. And so ifw announcesP to reflectoru then it
should announceP to all its reflector peers including
v.

So in both the cases, pathP should be visible atv.
• v is a reflector andu is its client: Due to condition (iii )

of Theorem 5.1, the only IBGP peers of a client are
its reflectors. So ifu is a client and its learns aboutP
via an IBGP session, then it must have learned it form
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some reflectorw. Now since reflectors form a full IBGP
mesh,w, v are also IBGP peers. The only time whenw
announcesP to its clientu but not to its reflector peerv
is whenw learns aboutP through another reflector peer
x. Now with the similar argument as used in the second
subcase of the above case, we see thatP should be visible
at v.

We have proved that ifu, v are IBGP peers thenbestP (u)
is always visible atv. We can similarly show thatbestP (v) is
always visible atu. So if u, v are IBGP peers then they know
about each others best path.

The next observation lists two cases when we have simple
deflections. It states that if two nodesu, v are either IBGP
peers or clients in the same cluster, then the only possible
path deflection atv, on the packets coming fromu, is a simple
deflection.

Lemma 7.2:If v ∈ sp(u, exitN(bestP (u)) and u, v are
either IBGP peers or clients in the same cluster, then either
bestP (u) = bestP (v) or exitN(bestP (v)) = v.

Proof: Let bestP (u) = P with exitN(P ) = p and let
bestP (v) = Q with exitN(Q) = q andP 6= Q.

First we observe that ifu, v know about each other’s best
path, then the following are true.

• At u, both pathsP and Q are IBGP learned paths. To
see thatP is not an EBGP learned path atu, we note
that v ∈ sp(u, p) ⇒ p 6= u. For pathQ, we note that
since bestP (u) 6= Q but bestP (v) = Q, therefore∃
nodew 6= u which advertises pathQ.

• At v, pathP is an IBGP learned path.19 This is because
bestP (u) = P but bestP (v) 6= P , therefore∃ nodex 6=
v which advertises pathP .

Now if u, v know about each other’s best path, such that
bestP (u) = P with exitN(P ) = p, bestP (v) = Q with
exitN(Q) = q andP 6= Q then we have one of the following
two possible cases.

1) cost(sp(u, p)) ≤ cost(sp(u, q))
and if equality, thenP is ranked overQ based on BGP
tie-breaking criteria.
Using this inequality along with the following facts
• v ∈ sp(u, p)⇒

cost(sp(u, v)) + cost(sp(v, p)) = cost(sp(u, p)
• cost(sp(u, q)) ≤ cost(sp(u, v)) + cost(sp(v, q))

we can show that
cost(sp(v, p)) ≤ cost(sp(v, q))
with equality only ifP is ranked overQ based on BGP
tie-breaking criteria.
Now since v selectsQ over P , therefore∃ path P ′

visible atv but not atu such that:
• nextAS(P ′) = nextAS(P )
• med(P ′) < med(P )
• cost(sp(v, q)) ≤ cost(sp(v, exitN(P ′)))

Note that in this case we have,cost(sp(v, p)) ≤
cost(sp(v, exitN(P ′))). Using this inequality along

19Note that there is no such restriction for pathQ, i.e., nodev may learn
about pathQ via some EBGP or IBGP peer. But ifQ is an EBGP learned
path atv then the deflection atv would take the packet out of the AS, i.e.,
at v there would be a simple deflection only.

with the fact thatv learns about pathP via some IBGP
peer, we can see that in this caseP ′ is also an IBGP
learned path atv.

2) cost(sp(u, p)) ≥ cost(sp(u, q)
and if equality, thenP is ranked overQ based on BGP
tie-breaking criteria.
Now since u selectsP over Q, therefore∃ path Q′

visible to u but not tov such that:

• nextAS(Q′) = nextAS(Q)
• med(Q′) < med(Q)
• cost(sp(u, p)) ≤ cost(sp(u, exitN(Q′)))

Note that in this case we have,cost(sp(u, q)) ≤
cost(sp(u, exitN(Q′))). Using this inequality along
with the fact thatu learns about pathQ via some IBGP
peer, we can see that in this caseQ′ is also an IBGP
learned path atu.

Now we start the actual proof. We first study the case when
u, v are IBGP peers. In this case by Lemma 7.1,u, v know
about each other’s best path. So the only deflections possible
are due to the cases described above. Whenu, v are IBGP
peers, then we have one of the following cases.

• u is reflector andv is client, both∈ clusterC. First we
consider case 1. In this case, sinceP ′ is an IBGP learned
path atv, it should be visible to all the reflectors∈ C
includingu. This is a contradiction, hence 1 is impossible.
Now consider case 2. In this case, since bothQ andQ′

are IBGP learned paths atu, they should be visible to
all the other reflectors∈ C as well. But then no reflector
should advertise pathQ, so the only wayv can learn
aboutQ is through an EBGP session, i.e., we can only
have a simple deflection atv.

• u is client andv is reflector, both∈ clusterC. In case
1, since bothP and P ′ are IBGP learned paths atv,
they should be visible to all the other reflectors∈ C
as well. But then no reflector should advertise pathP
and sou cannot learn aboutP through IBGP. This is a
contradiction, hence case 1 is impossible. In case 2, since
Q′ is an IBGP learned path atu, it should be visible to
all the reflectors∈ C includingv. This is a contradiction,
hence 2 is also impossible.

• Both u and v are reflectors. We can split this into the
following two subcases:

– Both u, v ∈ came clusterC. In case 1, sinceP ′ is an
IBGP learned path atv, it should be visible to all the
reflectors∈ C including u. This is a contradiction,
hence 1 is impossible. Similarly, in case 2, sinceQ′

is an IBGP learned path atu, it should be visible
to all the reflectors∈ C including v. This is a
contradiction, hence 2 is also impossible.

– u, v are reflectors in different clusters. Letu ∈ Cu

and v ∈ Cv. According to case 1,P ′ is an IBGP
learned path atv. Let v learn aboutP ′ via some
IBGP peerw. Now w can either be a reflector of the
AS or it can be a client∈ Cv. If w is a reflector which
advertisesP ′, then P ′ should be visible to all the
reflectors in the AS, includingu. This is a contradic-
tion, hencew cannot be a reflector. Ifw is a client∈
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Cv which advertisesP ′, then it should have learned
aboutP ′ via some EBGP peer, i.e.,exitN(P ′) = w.
Now sincecost(sp(v, exitN(P ′))) ≥ cost(sp(v, p))
and exitN(P ′) = w ∈ Cv therefore by condition
(iii ) of Theorem 5.1,p ∈ Cv. So u must have
learned about pathP via some reflector∈ Cv.
But since client nodew ∈ Cv announces path
P ′, it should be visible to all the reflectors∈ Cv

and in that case no reflector∈ Cv should select
and advertiseP . This is a contradiction, so 1 is
impossible. Now we consider case 2. In this case, we
have cost(sp(u, exitN(Q′))) ≥ cost(sp(u, v)).20

Now applying condition (iii ) of Theorem 5.1 on this
inequality and using the fact thatv /∈ Cu, we infer
that exitN(Q′) /∈ Cu. So the only wayu can learn
aboutQ′ is via some reflectorw /∈ Cu. But in that
casew should announceQ′ to all the reflectors in
the AS, includingv. This is a contradiction, hence
case 2 is also impossible.

So there can be no deflection atv when bothu, v are
reflectors.

Now we consider the case when bothu and v are clients
∈ clusterC. Since clients∈ the same cluster are not IBGP
peers, therefore, in this case,u, v need not know about each
other’s best paths. But note that ifu, v are clients∈ C, then
the following are true.

• SincebestP (u) = P , u always knows aboutP .
• SincebestP (v) = Q, v always knows aboutQ.
• Note thatP is an IBGP learned path atu.21 So u must

learn aboutP via some reflectorw ∈ C. But in that case
w also announcesP to v, thereforev knows aboutP .

So when u, v are clients∈ C, then we have one of the
following two possible cases.

• u, v know about each other’s best path. In this case we
only need to look at cases 1 and 2. In case 1,P ′ is an
IBGP learned paths atv. This means that∃ a reflector
w ∈ C which announcesP ′. But in that casew should
also announceP ′ to u. This is a contradiction, hence case
1 is impossible. Similarly in case 2,Q′ is an IBGP learned
path atu. This means that∃ a reflectorx ∈ C which
announcesQ′. But in that casex should also announce
Q′ to u. This is a contradiction, hence case 2 is also
impossible.

• u does not know aboutQ. This is only possible when
v learns aboutQ through an EBGP session. But in that
case we can only have a simple deflection atv.

Now we prove the three properties about the structure of
the forwarding loops that we listed at the start of this section.

Lemma 7.3:In a forwarding loop, if a packet gets deflected
at a reflectoru, and the next deflection occurs at nodev, then
v should be a client node.

20This is because we have the following.
cost(sp(u, exitN(Q′))) ≥ cost(sp(u, p))
And v ∈ sp(u, p)⇒ cost(sp(u, p)) > cost(sp(u, v))
21This is because we have the following.
P is always known atu.
v ∈ sp(u, exitN(P ))⇒ P cannot be an EBGP learned path atu.

Proof: Let v be a reflector. Sinceu is also a reflector
in the same AS,u, v should be IBGP peers. Now applying
Lemma 7.2, we can infer that the for a packet going through
u, if the next deflection occurs atv, then it should be a simple
deflection. But in that case we cannot have a forwarding loop
in the AS. This is a contradiction, hencev has to be a client
node.

By Lemma 7.3, we can see that there cannot be any
forwarding loop with deflections at reflectors only. So there
can only be the following two kinds of forwarding loops in
the system.

• Forwarding loop consisting of deflections at client nodes
only.

• Forwarding loop consisting of deflections at both client
nodes and reflectors. We note that in this case, by Lemma
7.3, any deflection at reflector must be preceded and
succeeded by deflections at client nodes.

We shall analyze these two possible types of forwarding
loops individually and show that they cannot exist. But be-
fore doing this, we prove some more properties about the
forwarding loops. These properties put further restrictions on
the structure of the loops.

Lemma 7.4:If ∃ a reflectoru having exitN(bestP (u)) ∈
C, then∀ nodev ∈ C exitN(bestP (v)) ∈ C.

Proof: Let bestP (u) = P . First note that ifu /∈ C but
still selects pathP having exitN(P ) = p ∈ C, then it must
have learned aboutP via an IBGP session with some reflector
∈ C. So without loss of generality, we can assume thatu is
a reflector∈ C. Now let v ∈ C have bestP (v) = Q such
that exitN(Q) = q /∈ C. Sinceu, v are IBGP peers therefore
by Lemma 7.1, they know about each other’s best path. Now
using condition (iii ) of Theorem 5.1 and the facts thatq /∈ C
and v, p ∈ C, we getcost(sp(v, p)) < cost(sp(v, q)). But if
v still selectsQ over P then we have one of the following
two cases.

• nextAS(Q) = nextAS(P ) and med(Q) < med(P ).
But thenu should also select pathQ over pathP , so this
cannot be the case.

• ∃ route P ′, known to v but not to u such that
nextAS(P ′) = nextAS(P ), med(P ′) < med(P )
and cost(sp(v, q)) ≤ cost(sp(v, exitN(P ′))). But the
only route known tov and unknown tou should have
exitN(P ′) = v. Also since bestP (v) 6= Q but it
is visible at u, it is an IBGP learned path atv, i.e.,
v 6= q. From these observations we can infer that
cost(sp(v, q)) > cost(sp(v, exitN(P ′))). So this is also
not possible.

Hence proved.
Lemma 7.5:Deflections that may cause loops can only

occur at the point of entry to the clusters.
Proof: Let nodeu ∈ clusterCu having bestP (u) = P

and let the first path deflection onP occur at nodev. If v ∈
Cv 6= Cu and is not the point of entry to clusterCv, then let
the point of entry bew. Now sincev, w are either IBGP peers
or clients∈ Cv therefore by Lemma 7.2 if the first deflection
after nodeu occurs atv, then it has to be a simple deflection.
On the other hand if nodev ∈ Cu, then either it has an IBGP
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Fig. 8. Loop due to deflection at clients only - case I

session withu or u, v are clients∈ Cu. So again by Lemma
7.2 the only deflection possible at nodev should be a simple
deflection.

So we have proved that if a deflection occurs at some node
v ∈ some clusterCv such thatv is not the point of entry
for the packet to clusterCv, then we can only have a simple
deflection atv which takes the packets out of the AS and
cannot form any loop in the AS.

Now we shall separately consider the two types of for-
warding loops possible in the system and prove that if the
IBGP configuration satisfies the conditions of Theorem 5.1,
then neither of these types of loops can exist. The strategy is
to establish the IGP metric based inequality relation, given
as equation (11), between the consecutive client nodes at
which the packet gets deflected. We then use this inequality
sequentially over all the client nodes in the loop, at which the
packet gets deflected, and achieve the contradiction as given
in equation (13).

A. Deflections at Clients only

We first look at the loops consisting of path deflections at
client nodes only. Let two consecutive deflections occur at
client nodescx and cy. Let cx ∈ clusterCx and cy ∈ cluster
Cy. Lemma 7.5 states that forwarding loops can only occur
due to the deflections at the points of entry to the clusters. So
the packets must enterCx at cx andCy at cy. Since the packets
enter clusterCy at client nodecy, therefore by condition (iv)
of Theorem 5.1, the last link traversed by the packets before
reachingcy has to be an inter-cluster reflector-client link. Let
this link be racy wherera is a reflector/∈ Cy. Now we can
further split the analysis into two cases depending on whether
ra ∈ Cx or not.

1) ra ∈ Ca 6= Cx: We study this case using Fig. 8. In the
figure, the line joining any two nodes represents the shortest
path between the nodes. The figure shows the structure of a
forwarding loop consisting of path deflections at three client
nodes cx, cy, cz. Note that the proof does not rely on the
number of deflections and holds for general case.

First we note the following about the structure of this loop.

• Let cx ∈ Cx, cy ∈ Cy andcz ∈ Cz.
• Let bestP (ci) = Pi with exitN(Pi) = pi for i = x, y, z.
• px, py, pz /∈ Cx, Cy, Cz. Since an inter-cluster IGP link

racy lies in sp(cx, px), therefore by condition (iii ) of
Theorem 5.1,px andcx are in different clusters, i.e.,px /∈
Cx. Similarly py /∈ Cy and pz /∈ Cz. This means that
client cx learns aboutPx through some reflectorrx ∈ Cx.
Similarly cy learns aboutPy through reflectorry ∈ Cy

and cz learns aboutPz through reflectorrz ∈ Cz. Now
note that since reflectorrx ∈ Cx selects pathPx having
exitN(Px) = px /∈ Cx, therefore by Lemma 7.4∃ no
reflectorr in the AS such thatexitN(bestP (r)) ∈ Cx.
And therefore no node/∈ Cx learns about any pathP ′

having exitN(P ′) ∈ Cx. So py, pz /∈ Cx. Arguing
similarly we getpx, py, pz /∈ Vx, Vy, Vz.

• As mentioned in the previous point,cx learns aboutPx

through reflectorrx ∈ Cx, cy learns aboutPy through
reflectorry ∈ Cy andcz learns aboutPz through reflector
rz ∈ Cz.

• The presence of loop requires thatra ∈ sp(cx, px), cy ∈
sp(ra, px); rb ∈ sp(cy, py), cz ∈ sp(rb, py); rc ∈
sp(cz, pz), cx ∈ sp(rc, pz), as shown in the figure.

Note that according to the figurerx /∈ sp(cx, ra), but the proof
does not require this and considers the most general case.

We can now easily get the constraints on IGP costs pre-
sented in equations (1)-(5). The reasoning for each equation
is provided after the equation.

d1 ≤ a1 + b1 (1)

Equation (1) states that
cost(sp(rx, pz)) ≤ cost(sp(rx, cx)) + cost(sp(cx, pz)).

f1 ≤ d1 (2)

Let f1 > d1. Now since bothPx, Pz are visible torx and
it choosesPx over Pz therefore∃ a pathP ′

z visible to rx

with exitN(P ′
z) = p′z having nextAS(P ′

z) = nextAS(Pz),
med(P ′

z) < med(Pz) and cost(sp(rx, p′z)) ≥ f1. But since
rx, px are not in same cluster, therefore condition (iii ) of
Theorem 5.1 ensures thatrx, p′z are also in different clusters.
Now rx knows about pathP ′

z means thatP ′
z is announced by

some reflector, thereforerz should also know about it. And if
rz knows aboutP ′

z then it will never choose pathPz, so there
will not be any loop. Hencef1 ≤ d1, i.e., equation (2) holds.

e1 + c1 + a2 ≤ b1 + f1 (3)

Equation (3) states that
cost(sp(cx, px)) ≤ cost(sp(cx, rx)) + cost(sp(rx, px))

where we use that fact that
ra ∈ sp(cx, px) andcy ∈ sp(ra, px).

b1 < e1 (4)

This is true becauserx, cx ∈ Cx andra /∈ Cx.

b2 < c1 (5)

This is true becausery, cy ∈ Cy andra /∈ Cy.
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Using equations (1)-(5), we get

f1 ≤ a1 + b1

∴ e1 + c1 + a2 ≤ b1 + a1 + b1

∴ c1 + a2 < a1 + b1

∴ a2 + b2 < a1 + b1 (6)

2) ra ∈ Cx: Now we look at the case whenra ∈ Cx. The
links of the loop in such case is shown in the Fig. 9. All the
observations about the structure of the loop, stated in section
VII-A.1 still hold. The only difference is that since there is no
deflection atra, thereforera selectsPx and we can consider
it to be the reflector from whichcx learns about pathPx. So
without loss of generality, we assumera to be the reflectorrx

of section VII-A.1.
We can now easily get the constraints on IGP costs pre-

sented in equations (7)-(9). The reasoning for each equation
is provided after the equation.

d1 ≤ a1 + b1 (7)

Equation (1) states that
cost(sp(ra, pz)) ≤ cost(sp(ra, cx)) + cost(sp(cx, pz)).

c1 + a2 ≤ d1 (8)

Using the fact thatcy ∈ sp(ra, px), we get the shortest
path IGP distance betweenra and px as cost(sp(ra, px)) =
c1 + a2. Now let c1 + a2 > d1, i.e., let cost(sp(ra, px)) >
cost(sp(ra, pz)). Since bothPx, Pz are visible to ra and
it chooses Px over Pz therefore ∃ a path P ′

z visible
to ra with exitN(P ′

z) = p′z having nextAS(P ′
z) =

nextAS(Pz), med(P ′
z) < med(Pz) and cost(sp(ra, p′z)) ≥

cost(sp(ra, px)). But sincera, px are not in the same cluster,
therefore condition (iii ) of Theorem 5.1 ensures thatra, p′z are
also in different clusters. Nowra knows about pathP ′

z means
that P ′

z is announced by some reflector, thereforerz should
also know about it. And ifrz knows aboutP ′

z then it will
never choose pathPz, so there will not be any loop. Hence
c1 + a2 ≤ d1, i.e., equation (8) holds.

b2 < c1 (9)

This is true becausery, cy ∈ Cy andra /∈ Cy.
Using equations (7)-(9), we get

c1 + a2 ≤ a1 + b1

∴ a2 + b2 < a1 + b1 (10)

So for both the cases in sections VII-A.1 and VII-A.2, from
equations (6) and (10), forith link in the loop, we have

ai+1 + bi+1 < ai + bi (11)
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Fig. 10. Loop due to deflection at clients and reflectors

Now if the loop containsn deflections then using equation
(11), we get

a1 + b1 > a2 + b2 > · · · > an + bn > an+1 + bn+1 (12)

But since this is a loop withn links, the (n+1)th link is same
as the first link. Using this along with equation (12), we get

a1 + b1 > an+1 + bn+1 = a1 + b1 (13)

This is a contradiction, hence we see that, if the IBGP con-
figuration satisfies the conditions stated in Theorem 5.1, then
loops with deflections at client nodes only are not possible.

B. Deflections at both Clients and Reflectors

Now we look at the case when the forwarding loop has
deflections at both clients as well as reflectors. By Lemma
7.3 we know that if a forwarding loop has a deflection at
some reflector then it should be preceded and succeeded
by deflections at client nodes. We study the structure of
such deflections. Consider deflection at clientcx followed by
deflection at reflectorry followed by deflection at clientcz.
We note the following about the structure of the part of the
loop under study.

• Let cx ∈ Cx, ry ∈ Cy and cz ∈ Cz. By Lemma 7.5,cx

is the point of entry toCx, ry is the point of entry toCy

andcz is the point of entry toCz.
• Let bestP (cx) = Px with exitN(Px) = px, bestP (ry) =

Py with exitN(Py) = py and bestP (cz) = Pz with
exitN(Pz) = pz.

• px, py, pz /∈ Cx, Cy, Cz. Using the fact thatcx and ry

are points of entry to their respective clusters and the
fact that ry ∈ sp(cx, px), we see thatsp(cx, px) goes
through more than one cluster. So by condition (iii ) of
Theorem 5.1,px and cx are in different clusters. This
means thatcx learns aboutPx through some reflector
rx ∈ Cx. Similarly cz learns aboutPz through some
reflector rz ∈ Cz. Now note that since for reflectorrx

selects pathPx having exitN(bestP (rx)) = px /∈ Cx,
therefore by Lemma 7.4∃ no reflectorr in the AS such
that exitN(bestP (r)) ∈ Cx. And therefore no node
/∈ Cx learns about any pathP ′ with exitN(P ′) ∈ Vx.
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So py, pz /∈ Vx. Arguing similarly we getpx, py, pz /∈
Vx, Vy, Vz.

• As mentioned in the previous point,cx learns aboutPx

through reflectorrx ∈ Cx andcz learns aboutPz through
reflectorrz ∈ Cz.

• The presence of loop requires that∃ node uw having
bestP (uw) = Pw with exitN(Pw) = pw /∈ Cx, Cy, Cz

andcx ∈ sp(uw, pw).
• The presence of loop also requires thatry ∈ sp(cx, px)

andcz ∈ sp(ry, py).
• Note that noderx /∈ sp(cx, ry). This is becausery ∈

sp(cx, px) and if rx ∈ sp(cx, px) that meansry ∈
sp(rx, px). But since rx and ry are IBGP peers, by
Lemma 7.2 deflection cannot occur atry.

The structure of such deflections is shown in the Fig. 10.22 The
line joining two nodes represents the shortest path between the
nodes.

We can now easily get the constraints on IGP costs pre-
sented in equations (14)-(19).

f1 ≤ d1 (14)

The reasoning for equation (14) is similar to that for equation
(2).

d1 ≤ a1 + b1 (15)

Equation states that
cost(sp(rx, pw)) ≤ cost(sp(rx, cx)) + cost(sp(cx, pw)).

e1 + c1 ≤ b1 + f1 (16)

This is becausery ∈ sp(cx, px) andrx /∈ sp(cx, px).

b1 < e1 (17)

This is becauserx, cx ∈ Cx andry /∈ Cx.

g1 + a2 < c1 (18)

Here we use the fact thatcz ∈ sp(ry, py). The rest of the
explanation is similar to that for equation (2).

b2 < g1 (19)

This is becauserz, cz ∈ Cz andry /∈ Cz.
Using equations (14)-(17), we get

f1 ≤ a1 + b1

∴ e1 + c1 ≤ b1 + a1 + b1

∴ c1 < a1 + b1 (20)

Using equations (18) and (19), we get

a2 + b2 < c1 (21)

Now equations (20) and (21) give

a2 + b2 < a1 + b1 (22)

So we see that even if there is a deflection at a reflector
between deflections at two client nodes (sayith and i + 1th
client nodes), equation (11) still holds. And therefore for any

22Nodeuw in not shown in the figure.
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loop containing deflections at both clients and reflectors, the
contradiction shown in equation (13) can still be achieved.

Hence we see that any kind of forwarding loops occurring
due to path deflections are not possible if the IBGP configu-
ration satisfies the conditions stated in Theorem 5.1.

VIII. C OMPLEXITY ANALYSIS

Now the problem that we face is that given an IGP routing
graph for an AS, we want to construct the IBGP configura-
tion which guarantees the absence of any persistent routing
oscillations and loops and is optimal in some sense and meets
the given resource constraints23. We extend the idea used in
[20][21] for evaluating the cost (and thereby determining the
optimality) of a logical (IBGP) configuration. We define the
sizeof the IBGP graph as the sum of all the shortest path IGP
costs which constitute the IBGP links. Now the problem is
to design an IBGP configuration satisfying all the conditions
of Theorem 5.1 (this guarantees the absence of persistent
oscillations and forwarding loops), for a given IGP routing
graph, such that the size of the logical graph is minimum.

Lemma 8.1:Constructing IBGP configuration having min-
imum size while satisfying the conditions of Theorem 5.1 is
NP hard.

Proof: Given a simple, undirected graphG = (V,E),
finding its minimum vertex coveris NP hard. We shall prove
that finding the minimum size IBGP configuration while
making sure that the conditions of Theorem 5.1 are satisfied is
at least as hard as finding the minimum vertex cover. Consider
any graphG = (V,E) with k nodesV = {v0, . . . , vk−1}. We
construct a weighted, undirected graphG′ = (V ′, E′) from
G by replacing each nodevi ∈ V by a group of m nodes
Vi = {ui

0, . . . , u
i
m−1} as shown in Fig. 11. We assume that

m > k + 1. Each groupVi has astar topology with node
ui

1 at the center of the star and nodesui
0, u

i
2, u

i
3, . . . , u

i
m−1 as

the edge nodes. NowV ′ = V0

⋃
V1 · · ·

⋃
Vk−1 and ∀ edges

vivj ∈ E we have edgesui
0u

j
0 ∈ E′ (these are all theinter-

group edgesbetweenVi, Vj ∀ i, j ). E′ also includesintra-
group edgesbetween the center node and the edge nodes (i.e.,
for groupVi there are edges between nodeui

1 and the nodes
ui

0, u
i
2, u

i
3, . . . , u

i
m−1, as shown in Fig. 11). We assume that all

the inter-group edges have weightsβ and all the intra-group
edges have weightsα, with β > 2α. We assumeG′ to be the
IGP routing graph for some AS. We also assume that there
are no resource constraints, i.e., at any node, we can have as

23As discussed in [20] [21], in real ASes there is a limit on the number
of IBGP sessions that a node can support at a time (due to the resource
constraints on the nodes). This limit may be different on different nodes and
any valid IBGP configuration should respect this constraint at all the nodes.
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many IBGP sessions as we like. Now we assert that even if all
the paths are through differentnextASes, finding the optimal
IBGP configuration based on conditions of Theorem 5.1 is
equivalent to finding the vertex cover of original graphG. We
can see that due to condition (iii ) of Theorem 5.1 and the fact
that β > 2α the only valid cases of IBGP configuration for
G′ can be:

(i) All the nodes∈ V ′ are in a single cluster.
(ii ) All the nodes are in separate clusters, i.e., each cluster
has only one node.

(iii ) Each group of nodes is a separate cluster, i.e., we
havek clustersV0, . . . , Vk−1, each havingm nodes.

Clearly for any graphG′, the size of IBGP graph having each
node as a separate cluster (case (ii )) is greater than size of
IBGP having all the nodes in one single cluster (case (i)). Now
we will show that case (i) (only one cluster) is also not optimal.
Let the IBGP configuration be of the form described in case
(i), i.e., having only one cluster. Clearly the configuration with
minimum size should have only one reflector. Let the reflector
be in groupVi. We can see that the IBGP configuration formed
by selectingui

0 as the reflector should be smaller in size than
the IBGP configuration formed by selecting reflector from
nodesui

2, . . . , u
i
m−1. Let dij = cost(sp(ui

0, u
j
0)). Now if we

selectui
0 as the reflector then we can calculate the size of the

IBGP graph to be:

S(G′) =
k−1∑

j=0,j 6=i

mdij + k(α + (m− 2)2α)

=
k−1∑

j=0,j 6=i

mdij + k(2mα− 3α) (23)

And if we selectui
1 as the reflector then the size of the IBGP

graph is:

S(G′) =
k−1∑

j=0,j 6=i

mdij + (k − 1)(α + (m− 2)2α + mα)

+(m− 1)α

=
k−1∑

j=0,j 6=i

mdij + (k − 1)(2mα− 3α)

+(km− 1)α (24)

Now note thatkmα − α > (2mα − 3α) as long ask ≥ 2,
i.e., when we have more than one group of nodes in graphG′

(i.e., more than one node inG, which is the non-trivial case),
the size of IBGP graph with only one cluster is smaller ifui

0

is selected as the reflector rather thanui
1. Hence if the IBGP

configuration is to have only one cluster then we should select
someui

0 as the reflector, wherei is such that
∑k−1

j=0,j 6=i mdij

is minimum.
If we assume that the IBGP configuration is constructed

according to case (iii ), i.e., each group of nodes is a separate
cluster, then we havek clusters V0, . . . , Vk−1. Let ui

0 be
reflectors∀i. Now we can see that the size of this IBGP graph

is:

S(G′) =
k−1∑
i=0

k−1∑
j=i+1

dij + k(α + (m− 2)2α)

=
k−1∑
i=0

k−1∑
j=i+1

dij + k(2mα− 3α) (25)

Now we show that whenm > k, the RHS of (25) is less
than the RHS of (23) by proving the following.

min
∀i

{
k−1∑

j=0,j 6=i

mdij

}
>

k−1∑
i=0

k−1∑
j=i+1

dij (26)

Without loss of generality, we can assume thati = 0 mini-
mizes the LHS of (26). Now we can see that:

k−1∑
i=0

k−1∑
j=i+1

dij ≤
k−1∑
i=0

k−1∑
j=i+1

(d0i + d0j)

=
k−1∑
i=0

(k − i− 1)d0i +
k−1∑

j=i+1

d0j


= (k − 1)(d01 + · · ·+ d0k−1)

= (k − 1)
k−1∑
j=1

d0j

< k

k−1∑
j=1

d0j (27)

The first step in (27) follows from the following two properties
of the graphG′:

(i) Triangle equality holds, i.e.,dik ≤ dij + djk ∀ i, j, k.
(ii ) Graph weights are symmetric, i.e.,dij = dji.

Using (27) it is easy to show that ifm > k, then (26) holds.
But sincem > k in graphG′ due to our construction, the IBGP
configuration with each group of nodes as a separate cluster
and nodesui

0 as reflectors has smaller size than any IBGP
configuration with only one cluster. So IBGP configuration
with one cluster is not the minimum size configuration, and we
should construct IBGP graph such that each group of nodes
is a separate cluster (case (iii )). Now the question is which
of the nodes should be reflectors. As observed earlier, the
IBGP configuration formed by selectingui

0 as the reflector
in all the clustersVi should be smaller in size than the
IBGP configuration formed by selecting any other node from
ui

2, . . . , u
i
m−1 as the reflector in clusterVi. If in some cluster

Vj we select nodeuj
1 instead of nodeuj

0 as the reflector, then
the change in the size of the resulting IBGP configuration is
((k − 1)α + (m− 1)α)− (α + 2(m− 2)α) = (k + 1−m)α.
So if m > k + 1, which is the case in graphG′ due to our
construction, then it is better to selectui

1 as reflector rather
than any other node in clusterVi. Now it is clear that the
optimal IBGP configuration for graphG′ should have clusters
V0, . . . , Vk−1 and we should try to select nodesui

1 as the
reflectors. But according to condition (iv) of Theorem 5.1, in
each inter-cluster link, we need at least one of the nodes to be
a reflector. So we want to pick minimum number of reflectors
of form ui

0 such that we cover all the inter-cluster links and
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the reflectors in the other clusters should be of the formui
1.

Note that this is the vertex cover for the original graphG.
Hence the problem is at least as hard as the minimum vertex
cover for general graphs.

IX. A LGORITHM

In section VIII, we proved that the problem of obtaining
a minimum size IBGP configuration satisfying the conditions
of Theorem 5.1 is NP hard. Clearly this is not desirable, but
still it is not as bad as the case in [9][12], where the authors
prove that even detecting anomalies due to MED and IBGP
path asymmetries is NP hard.

In this section we formulate our problem as an Integer
Linear Program (ILP). Although this may not be an attractive
solution since solving the ILP might take exponential time, the
ILP itself can be used as a starting point for obtaining other
intelligent heuristics. For example, the ILP can be relaxed to
a Linear Program (LP) and then some intelligent rounding
can be used. The ILP formulation helps in understanding the
structure of the problem, and the insights can then be applied
to design other approaches such as tabu search, simulated
annealing etc. The study of these alternate approaches is
outside the scope of this work.

Now we give the ILP formulation of the problem. LetI =
{0, 1, . . . , N−1}, whereN is the number of BGP speakers in
the AS. We define the following binary variables∀ i, j ∈ I:

xi =
{

1 if node i is a reflector
0 if node i is a client

cij =
{

1 if nodesi, j belong to same cluster
0 otherwise

sij =
{

1 if nodesi, j are IBGP peers
0 otherwise

We assume the following quantities as given:

δij : IGP weight for shortest path between nodesi, j

αi: max. IBGP connections permissible at nodei

γij =
{

1 if ij is a link in the IGP connectivity graph
0 otherwise

σij =

 0 if node i, j learn about paths through
samenextAS via EBGP peers

1 otherwise

We also define a functionφ : <× < −→ {−1, 1} as:

φ(x, y) =
{

1 if x ≥ y
−1 otherwise

We define the cost functionW as the size of the logical
graph:

W =
∑

i

∑
j 6=i

sijδij

Now our objective is to minimize costW .

min
sij

W (28)

And the optimization is subject to the following constraints.

xi + xj + cij ≥ γij ∀i, j (29)

xi + xj + cij ≥ 2sij ∀i, j (30)

xi + xj + cij ≤ 2sij + 1 ∀i, j (31)

(cij − cik)φ(δij , δik) ≤ 0 ∀i, j, k (32)

sij ≥ σij ∀i, j (33)∑
j 6=i

sij < αi ∀i (34)∑
j 6=i

sij ≥ 1 ∀i (35)

cik + ckj − cij ≤ 1 ∀i, j, k (36)

sij = sji ∀i, j (37)

cij = cji ∀i, j (38)

The set of equations (29) state that if nodesi, j are clients
in different clusters then they cannot be neighbors in IGP
connectivity graph (this is the condition (iv) of the Theorem
5.1). Together, the sets of equations (30) and (31) relate the
variablesxi, xj , cij , sij (basically the equations state that there
is an IBGP session between nodesi, j only when eitheri, j
form a client-reflector (or reflector-client) pair in the same
cluster or both are reflectors). The set of equations (32) state
that if nodesi, j are in same cluster but nodesi, k are not,
thenδij < δik (this is the condition (iii ) of the Theorem 5.1).
Equations (33) state that if nodesi, j learn about paths through
the samenextAS via EBGP peers, then they should be IBGP
peers (this is the condition (i) of the Theorem 5.1). Equations
(34) take care of the resource constraint (maximum number
of IBGP sessions permissible) at each node. The rest of the
equations (35)-(38) makes sure that the solution is consistent
with the IBGP constraints (like each node should have at least
one IBGP session (35), if nodesi, j and nodesi, k are in same
cluster then nodesj, k are also in the same cluster (36), and
IBGP peering (37) and clustering (38) should be symmetric).

Note that this ILP is flexible in the sense that if we need
some node (say nodek) as a reflector (or client) then it can be
easily incorporated in the ILP by addingxk = 1 (or xk = 0)
in the list of constraints.

X. CONCLUSION

The two straightforward approaches to tackle the routing
oscillations and loops due to MED and IBGP path asymmetries
are either to modify the protocol or to configure the AS in an
intelligent manner such that the anomalies are absent. In [16]
Musunuri et al. takes the first approach and proposes changes
in BGP. But we believe that due to the large-scale deployment
of BGP, it will be difficult to incorporate any major changes in
the protocol at this point of time. In this paper we followed the
second approach and proved conditions on IBGP configuration
which are easy to check and guarantee the absence of the
anomalies due to MED attribute and path asymmetry. We also
look into the time complexity of the problem of constructing
an IBGP configuration with minimum size, while satisfying
the conditions developed in the paper and some other resource
constraints, for given IGP connectivity graph. We then give an
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algorithm based on integer linear programming to solve the
problem.
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