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Abstract— Internal Border Gateway Protocol (IBGP) is respon- BGP, or more specifically EBGP, is a path vector protocol in
sible for distributing external reachability information, obtained  \which loops are detected and avoided by checking for multiple
via External-BGP (EBGP) sessions, within an autonomous system -\ ;rrences of an AS in the ABATH list? at each BGP node.
(AS). To avoid a full mesh of IBGP sessions between all the Thi h b dtod I in IBGP si I
BGP speakers of an AS, scaling schemes such as route reflection Is scheme cannot be used to detect loops ",1 §|nce a
and AS confederations have been proposed. But it has beenthe speakers belong to the same AS. So to avoid loops in IBGP,
observed that employing these schemes may result in problemsevery BGP speaker is required to maintain an IBGP session
such as routing oscillations and forwarding loops due to Multi- with every other BGP speaker in its AS. Clearly maintaining
Exit_Discriminator (MED) attribute and path asymmetry in 5 fy] mesh of IBGP connections is not very scalable. To

IBGP. In this paper we study the pathologies observed in IBGP . S .
when route reflection is used. We model the AS using the Interior overcome this scalability issue, the two widely used IBGP

Gateway Protocol (IGP) connectivity graphG; and IBGP peering  configuration schemes amS confederationg2] and route
graph Gr. Then we state some simple conditions oi7; and reflections [3]. But in recent years it has been observed
G and prove that these conditions guarantee the absence ofthat there can be persistent route oscillations [4][5][6][7][8]
any persistent routing oscillations and forwarding loops due to when these schemes are used in conjunction with Multi-Exit
MED attribute and IBGP path asymmetry. We consider the Discrimi MULT! EXIT DISC or MED h ib
problem of constructing an IBGP configuration given the IGP Iscrlmlnqtor( — — or )3 pat at_m ute.
connectivity such that there are no persistent oscillations and Later Griffin et al. [9] showed that even without taking MED
loops, and apply the conditions developed in the paper on this into account there may be route oscillations and loops due to
problem. We prove that solving the problem while minimizing the path asymmetry in IBGP.

some appropriate cost function is NP hard. We then give an  rpare have been several attempts to study these routing

Integer Linear Program (ILP) to construct a forwarding loop . L
and persistent routing oscillation free IBGP configuration, for anomalies. One of the approaches to eliminate MED os-

an AS with given IGP connectivity graph, which minimizes some Cillations, taken in [10] and [11], has been to change the
appropriate cost while satisfying the resource constraints on all protocol such that the problem vanishes. While Basu et al. [10]

the BGP speaking nodes. present a counterexample for the solution provided by Walton
et al. [11], their own method is plagued by scaling issues
(as discussed in [9]). In [10], they also prove that checking

. INTRODUCTION for MED oscillations is NP complete. In [12], Griffin et al.

At the topmost level, the Internet can be seen as a collectidi'dy MED oscillations using the technique employed in [13]
of a number of large and small Autonomous Systems (AS). Af" analyzing oscillations in EBGP due to the path selection
AS is nothing but a collection of routers managed by a smgnipllmes employed by various ASes. But the MED oscillations
organization. The routing of IP datagrams within an AS &M out to be much harder to model. In another paper [9] they
independent of the inter-AS routing and different organizatio the static analysis of the oscillations and loops due to path
are free to deploy different intra-AS routing protocols based @ymmetry using a graph theoretic approach and prove that
their needs. But, unlike the intra-AS routing, inter-AS routinghecking for such anomalies is NP hard. They also give some
protocol has to be the same throughout the Internet. Bord@ifficient conditions for preventing such anomalies. In [14],
Gateway Protocol (BGP) [1] is the de-facto standard intel}/_lu.sunun et al. propose moqmcatmns to t_hg IBGP protocol
domain routing protocol currently used in the Internet. ~ Which, when supplemented with some restrictions on the IBGP

BGP works in two distinct modes of operation: Externai€onfiguration, succeed in suppressing the anomalies. They
BGP (EBGP) and Internal-BGP (IBGP) based on wheth@sSUme a full mesh of IBGP sessions among all the border
the BGP peerd belong to different ASes or the same ASpeakers. But since aIn_"nost all the BGP speakgrs are border
respectively. EBGP is responsible for exchanging reachabilifakers, this is essentially the same as assuming a full mesh
information between different ASes whereas IBGP is respon§i-/BGP sessions between all the BGP speakers. So the scheme
ble for distributing the information gained from EBGP among

1or 2 . _—
all the BGP speakers within the AS. List of all the ASes that a route goes through to reach its destination, kept

at each BGP speaker.
SMED value of a BGP route is a non-negative integer used to compare two
1BGP peers are BGP speakers (in the same or neighboring ASes) havimgtes passing through the same next-hop AS. The route having lower MED
direct BGP connection between them. value has higher preference.



is not very useful in practice. Gobjuka [15] finds conditions (ii) from a client: reflect the path to all its IBGP peers,
on graphs to suppress loops due to path asymmetries in IBGP except the originator.

with route reflection. In [16] Musunuri et al. propose changeghe rest of the operating rules remain the same, i.e., whenever
to IBGP which solve the problems due to both MED ang node receives a route from an EBGP peer and selects it as
path asymmetry. But, until now there has been no attemg best path, then it must announce this to all its IBGP peers.

at the static analysis of anomalies due to MED attributgso, the clients do not re-advertise IBGP learned routes to
IBGP path asymmetry and their interactions. In this papether IBGP peers.

we model the AS using graphs and then we state and prove

conditions on.the_se graphs which ggarantge the absencg OfB".i”Route Selection in IBGP

these anomalies in IBGP configurations with route reflections, .

without requiring any changes to the protocol. On receiving a route updatg, a BGP speaker employs the
The rest of the paper is organized as follows. Section I prI)QIIOWIng procedure to ascertain the best route.

vides a brief overview of the route reflection mechanism and (i) The route having the highestegree of preferences

the route selection procedure employed by IBGP. In section Ill, Selected.

we present a simple model for AS. Section IV formally defines (i) If there are multiple routes having highest degree of

the problem and explains why routing oscillations and loops ~Preference, then the route having the minimum R&TH

occur in IBGP. In section V, we state our main theorem which ~ 1ength is selectedl.

gives conditions on the IBGP configuration guaranteeing the (iii) If there are multiple such paths, then for each neigh-

absence of persistent oscillation and looping problems. In this Poring AS, the path having the least MED value among

section we also give some intuition for why these conditions @ll the paths going through that AS is considered. If there

should work and discuss how our conditions are tighter than iS only one such route, then that route is selected.

the conditions specified by Griffin et al. in [9] so that they (iV) If there are multiple routes after stei  then among

take into account both path asymmetries and MED at the same these, all the routes learned through EBGP peers only are

time. Sections VI and VII contain the proof of the theorem.  considered. And if there are no routes learned via EBGP

Section VIII looks at the time complexity of the problem sessions, then all the routes learned via IBGP sessions

of constructing an IBGP configuration based on the theorem (i-€., all the routes obtained after stéip)j are considered.

from section V (while satisfying some other constraints and If there is only one route left then that route is selected.

minimizing some appropriate cost function), when the IGP (V) If there are still multiple routes in contention, then

connectivity is given. In section IX we give an algorithm based ~ the route having minimum IGP cost to the NEXHOP’

on Integer Linear Programming to solve the problem set up node is selected.

in section VIII. Finally section X concludes the paper. (vi) If there are multiple such routes, then some determin-
istic tie-breaking criteria is used.
Il. IBGP OVERVIEW Since the IBGP path selection process is independent for

We start with a brief overview of the route reflectiorfVo distinct external nodes, it is sufficient to consider only
mechanism and the IBGP route selection criteria. one destination node for analyzing the IBGP routing issues.

In this work we will assume this external destination to
be noded. Also, for ease of discussion, unless otherwise
stated, we will assume that all the paths to destinaticare

As stated earlier, route reflection is a scheme devised ritnked equally according to the rulg$ énd (i) of the path
avoid maintaining a full mesh of IBGP sessions between tlelection procedure stated above, i.e., they have equal degree
BGP speakers of an AS. The basic idea is to use a hierarchistpreference and ASPATH length.
tree like structure. The AS is partitioned into sets of nodes
called clusters Each cluster must have one (or more) special I1l. M ODEL

node(s) calledoute reflector(s) All the other nodes in the We define a simple, undirected gragh> = {N, E} which

cluster are calledlientsof the route reflectors of that CIUSt?r'captures the physical connectivity between the routers of an
'’’S. Here N is the set of all the routers in the AS ardl is

A. Route Reflection

The reflectors of an AS maintain a full mesh of IBGP sessio

among themselves and IBGP connections with every clientiy qet of physical links between the routers. There is an edge
their own cluster. A client cannot have an IBGP session with

any node not in its own cluster. IBGP sessions between client$The use of ASPATH length to break the path selection ties is not
of the same cluster are permitted but not required. Now ea®gntioned in the BGP specifications [1], but both Cisco [17] and Juniper

luster mav have its own sub-clusters and ni lust I,Ir'g]uters [18] use it. We also assume that it is practical to usd®’ABH length.
cluster may have Its o Sub-clusters and so on, 1.e., clusteringry, path selection rules given in the BGP specifications [1] do not

can be as deep as required. differentiate between paths learned via EBGP and IBGP peers while searching
The rules of route reflection are that whenever a reflecttr paths with minimum IGP cost to the NEXRIOP node. But if there are

- . tiple such paths with minimal IGP costs to the NEXDP node, then
receives a route from an IBGP peer, it selects the best p%@tP learned routes are given preference over IBGP learned routes. The

based on its path selection rule. After the best path is select@glection criteria we follow in this paper is the criteria used in the Cisco [17]
it must do the following depending on the type of peer it isnéJI Juniper routers [18].

N NEXT_HOP path attribute defines the IP address of the border router that
rece-lvmg the best path from. ) ) should be used as the point of exit (from the AS) for reaching the destinations
(i) from another reflector: reflect the path to all its clientsisted in the BGP update message.



n;n; € E if and only if there is a physical link between the
routers represented by nodesandn;.

A path P from noden; € N to noden;, € N is defined as
an ordered set of nodesnans . .. ng_1ny such that;n; 1 €
Efori=1,2,...,k—1. We define functiorvost() that takes
a path as its argument and returns the IGP cost associated with
that path. We assume that the IGP costs are additive, i.e., the
cost of a path is the sum of IGP weights of its constituent
physical links (edges).

Path S is the shortest pattbetween two nodes;,n; € N
if it is a valid path betweem; andn; and there is no valid
path.S’ betweenn; andn,; such thatcost(S’) < cost(S). We
define functionsp(n;, n;) that gives the shortest path available
between the nodes; andn;. .

In this paper we consider that the IGP has converged. This
is a valid assumption since we want to study the problems,

Fig. 1.

Route oscillation due to MED

route P.

exitN(): gives the NEXT HOP node for route® (this is
the nodeu € V that learns abouP via an EBGP peer).
med(): gives the MED value for routé.

caused by _the path asymmetry bet_vveen the IGP routing anqye aiso define functiorbest P(u)® that gives the path
the. BGP signalind. So we can ‘?'?‘f'”e grapt; = {V, I} selected by node to reach destinatiod.
which captures the IGP connectivity of the BGP speakers in|, 4 the examples and figures in this paper, the IGP cost

the AS. Herel” C N is the set of all the BGP speakers iy e jink/shortest path (as the case may be) between two
the AS and there is an edge € I if and only if u,v € V' q4es is indicated besides the line joining the nodes. And

and there is nav € V' such thatw € sp(u,v). So a link in -\ herever required, the MED values of the routes is indicated
IGP connectivity grapltz; actually refers to the shortest patr]n parentheses

in the physical grapltzp between two BGP nodes (if it does
not contain any other BGP node).

In this work we also assume that the EBGP learned paths, in ] o ] ]
the AS under study, are stable. This is a standard assumption iff? this section first we shall define the problem in terms
all the literature studying the IBGP convergence. The reas@ the model given in section IIl and then we shall study the
as stated in [10], is that if the paths learned via EBGP in tiSP behavior responsible for the anomalies.

AS under study are not stable, then we can always come up
with new EBGP paths and withdraw existing EBGP paths sugh Problem Statement

that the IBGP never converges. So it does not make sense tgjen the IGP connectivity grapfi’; we want to find the

study the IBGP convergence when the EBGP leamned pafhiitions on the logical graphi’;, which guarantee that the

are not stable. AS configuration with route reflections is free of persistent
We define another grapti;, = {V,L} to represent the qte oscillations and loops.

IBGP peering relationships. Here L is the set of IBGP sessionsy,e define the two pathologies as:
between the BGP speakers. A link € L if and only if node
u and nodev are IBGP peers.

For studying the IBGP routing issues due to MED and path
asymmetries we do not really need the physical gréfgh
It is enough to look at the IGP connectivity graghy and
the IBGP graphG . So in this paper we shall model an AS
as {G;,Gr} and from now onwards we shall usiek for
referring to the links in the IGP connectivity gragh; and
not in the physical graplip.

Unless otherwise stated, we assume that all the nodes of the
AS are divided into non-overlapping clusters, ilé.= U, V;
such thatV; N'V; = 0, for i # j. Every node in clustel; is The basic problem with MED attribute is that it violates
classified as either reflectoy or clientc;. If we want to show what Griffin et al. [9] call therule of independent ranking
more than one reflector in clust&f then we use the notation According to this rule, the relative ranking of paths at a node
ri;. Similarly for multiple clients in clusted;, we use the should be independent of the existence or non-existence of
notationc;;. any path.

Also for each external patl® to destination nodel, we When used in conjunction with route reflection this behavior
define the following functions: may lead to persistent route oscillation. Fig. 1 illustrates this

AS(): giv he next AS which th ket h
* next S() gives the next AS ch the packet has to 8path selected by a node depends on all the paths that a node knows about,

enter, after exiting from the current AS, while 1EOHOWingso strictly speakingbestP() should be a function of time (or system state)

also, but here we are assuming that the BGP has already converged to a stable
state.

IV. PROBLEM

o An AS is said to experiencpersistent route oscillations
if, even in absence of any EBGP updates, some subset
of BGP speakers of the AS keep on exchanging IBGP
updates and are unable to settle down to any stable
routing configuration.

« If a packet goes in a cyclic manner from one node to
another without ever reaching the destination, the path is
said to contain dorwarding loop

“We shall discuss this asymmetry in detail in Section IV-C.
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Fig. 2. Route oscillation due to IBGP path asymmetry to the external destination nodevia IBGP peers. Now the
o . IBGP signaling pathcorresponding taR at v is the logical
by an exampl& This is essentially the example presented Bath in graphG, that the BGP updates announcing route

[6]. We assume that there is no IBGP session betwggenand R take to reach node. So the signaling path;vs ... v
c12. Now the oscillations are generated due to the fOIIOWiné’orresponding to routd® implies that BGP node;.; learns
steps: about R through IBGP peemw;, wherei = 1,2...,k — 1,
(i) Node r; selects pathP, over path P, (lower IGP 4 |earns aboutR throughv, and v, learns aboutR through
metric) and node, selects pathP; (only path known). some EBGP peer, i.eezitN(R) = v;. So if v selects routeR
(i) On receiving update from node,, noder; learns as the best available route for destinatifrthe data packets
about pathP; and it selects patif; as its best path (path destined ford at nodev are routed teezitN(R) = v, via the
P5 is ranked over path, based on lower MED value, |GP. Now thedata pathcorresponding taR at v is the path
and then pathP; is selected over pati; based on the in IGP peering graph?; that the data packets take to reach
lower IGP metric). exitN(R) = v; from v, i.e., the data path corresponding to
(i) Now on receiving the update from node, noders R atwv is sp(v, exitN(R)) = sp(v,v1). Usually the data path
learns about pattP; and it selects pattP; as its best and the signaling path are not symmetric, i.e., usually data path
path over pathP; (lower IGP metric) and withdraws its is not equal to the signaling path in the reverse order. Griffin
previous best patit’s. et al. [9] showed that these path asymmetries can cause both
(iv) When path P; is withdrawn by noder;, noder; routing oscillations and loops.
selects path?, over path P, (lower IGP metric) and  gjg 2 gives an example of the routing oscillations caused by
withdraws its previous best paif} . the path asymmetry. This example was first presented in [9].
(V) When pathP; is withdrawn by node, noder; selects | the figure, the solid lines represent the IGP links, whereas
path P; over pathP, (lower MED value) and the cycle ie gotted lines represent the IBGP sessions. Based on the path
begins again. selection criteria mentioned in section II-B we can see that the
The underlying problem here is that since we are not usiglent nodes always select the paths learned via EBGP peers,
the full mesh of IBGP sessions between all the nodes, aj.@ bestP(c;) = P; for i = 1,2,3. Now the pathsP;, P, Ps
BGP speaker some of the available paths are invisible. Wheie always visible to the reflectorg, o, r5 respectively. But
these paths become visible, the BGP speaker updates its gget to the lower IGP metric, when visible, reflectgrprefers
path and this new update may lead to path updates at otpath P, over pathP,, reflectorr, prefers pathP; over path
BGP speakers forcing the newly made visible path to beconme and reflectorr; prefers pathP; over pathP;. Now we
invisible once again. This results in route oscillation. can verify that the reflectors will never be able to settle on
a stable choice of paths. More specifically, for destinatipn
the path selection at; will oscillate between path$’; and
o P, atry betweenP,, P; and atrs between path®;, P,. The
In _EBGP it is normally assumed that the peers share foblem here is similar to the route oscillations described in
physical network, so the underlying TCP link is a One'hOBection IV-B. The difference is that the here the oscillations
link. _Thls means that usually EBGP messages are not routgpe induced due to IBGP path asymmetry whereas in section
_In this case the path followed by the EBGP S|gnallrjg Messagesy the problem was due to the MED path attribute. Here
is same as the path followed by the data traffic, albeit ¢ gignaling paths are along the dotted lines (IBGP sessions)
opposite direction. This is termgd in [9] gmth symmetry but the actual physical paths followed are along the solid lines
On the other hand IBGP sessions are usually set up OYREp |inks). This path asymmetry leads to oscillation.

multl-hop TCP links, S0 they are generally routed within the Griffin et al. [9] showed that path asymmetry can also lead
AS using the connectivity provided by the local IGP. Due t . 2 :
o forwarding loops such as shown in Fig. 3. In the figure, the

the internal routing of IBGP messages, there is an inherent. ' . . .
path asymmetryn IBGP. More specifical, consider the ASS©I1e5 Show Ihe \GF ks and e dotted lnes represent
modeled by its IGP connectivity graph and the IBGP peerlrbgestp(m) ~p, Siﬁce noder; has IBGP connection only
graph{Gy, Gr}. Let BGP nodev € V" leam about routef with nodery, bestP(c;) = Py (only path known). Similarly,

9Analogous example can easily be constructed where AS confederatid§stE(c2) = P. NPW consider a.paCket at node marked for
causes route oscillations when used in conjunction with MED path attribut¢oded. Node ¢, tries to send this packet @it N(Py) =

C. Path Asymmetries



(.- bestP(c;) = Pi). Note thatey € sp(ci,r1) therefore EBGP peer. This is becausedflearns about) through some
packet is routed througle,. Arguing similarly, a packet IBGP peerw (which learns about) via an EBGP session)
destined for nodel at nodec, will be routed through node thenw should have an IBGP session with nodé¢according
c1. SO we see that there is a loop between nageandc,.  to condition {)), and sou should have learned abo@t via w
In this example we see that the packet changes its intendad notv, which is a contradiction.
path at nodec; and again at node,. These changes in the Condition (i) of Theorem 5.1 takes care of forwarding loops
forwarding path are callegath deflectionsSuppose for node that may form due to the IBGP path asymmetry when there are
uy, bestP(uy) = P such thatexitN(P) = uy. Let the path extra IBGP sessions between clients of a cluster. An example
from uy to ug, according to IGP routing, be us ... u;x. A of such a forwarding loop is given in [9]. Note that conditions
deflection is said to occur at nodg if, starting fromwuy, u; (i) and {i) of Theorem 5.1 require that if nodeswv learn about
is the first nodes ujus . . . uy such thatexit N (bestP(u;)) # paths P, Q respectively, havingrextAS(P) = nextAS(Q)
U+ through EBGP sessions, then either both nodes are reflectors
As shown in the previous example, multiple deflectionsr they form a reflector-client pair in the same cluster. This
in the forwarding path may combine to form cycles callets because by conditiori)( we needu,v to be IBGP peers.
forwarding loops But, by condition i), clients in the same cluster cannot be
IBGP peers and according to the route reflection rules stated
V. THEOREM in section II-A, clients in different clusters cannot be IBGP
ers.
According to conditioni{i) of Theorem 5.1, if we ignore
e MED values or if the MED values are same for all the
paths, then for any node € cluster C, if 3 path P such
thatexzit N (P) € C then this path should be ranked over all
A. Theorem Statement paths@ havingezitN(Q) ¢ C. In other words if we ignore
Theorem 5.1:If an AS configuration with route reflection MED values then any node prefers paths learned via clients
satisfies each one of the following conditions then it is free @nd reflectors in its own cluster over paths learned via other
persistent route oscillations as well as forwarding loops. ~ reflectors. This is very similar to one of the condition given
(i) If nodesu, v learn about path®, Q respectively, hav- in [9] to guarantee that there are no forwarding loops due

ing nextAS(P) = nextAS(Q) through EBGP sessions,to IBGP path asymmetries. The condition in [9] states that
thenu, v are IBGP peers. any node should rank paths learned via clients over all the

(i) Clients of same cluster are not IBGP peers. other paths. We see that the two conditions are similar but not

(iii) cost(sp(u,v)) < cost(sp(u,w)) ¥ nodesu, v, w such exactly the same. Note that a consequence of condition (
thatu, v € clusterV;, w € clusterV; andi # j is that if nodesu,v € clusterC', then3 no nodew ¢ C such
) 1 ,] .

(iv) If u; € V; andu; € V; are client nodes and # j, thatw € sp(u, v). _ ,
then3 a reflectoruy, € sp(u;, u;). Condition {v) of Theorem 5.1 deals with the forvv_ardmg_
loops that may form due to the IBGP path asymmetries. This
. ] condition is not very intuitive but we can easily construct
B. Intuitive Explanation examples of IBGP configurations where if this condition is
Condition {) of Theorem 5.1 states that all the nodesjiolated then there may be forwarding loops. In section VII
which learn about the paths with comparable MED valuege shall prove that when this condition is met in addition to
through EBGP sessions, should themselves be IBGP peéhs. other conditions of Theorem 5.1, then there cannot be any
The intuition is that if all the nodes, which learn about thérwarding loops in the BGP configuration.
paths having the sameextAS via EBGP peers, form an Overall, while condition i{i) of Theorem 5.1, as stated
IBGP mesh, then they can resolve amongst themselves whigrlier, is somewhat similar to one of the conditions given
of these is the best path depending on the MED values. Naw[9] for removing routing oscillations, the conditions for
the other nodes in thelS should simply use this chosenremoving forwarding loops in [9] are very different from
path in their IGP metric based path ranking. This avoids thehat we present (conditionsiY and {v) of Theorem 5.1).
persistent routing oscillations in the system. If we look at thM/e believe that our conditions are simpler to understand and
condition more closely we can see that if a BGP speaker leatass restrictive than those given in [9]. Specifically, conditions
about more than one path through its EBGP peers thenint[9] allow clients in the same clusters to be IBGP peers
will only advertise at most one of these paths (it may nethile we do not allow this. This is not very restrictive since it
advertise any of these paths if it selects some path learnedaken as a rule of thumb in designing IBGP configurations
via IBGP peer). It may seem that this behavior can result anyway. But [9] needs the shortest path between any two nodes
oscillations, but we shall see in section VI-B that this can onlp be some valid signaling path, which is very restrictive in
cause transient oscillations and no persistent oscillations. Aature; we do not require this but we need a much simpler
important consequence of this condition is that if a nades condition (condition if)) to hold. A major difference is that
an EBGP learned patR throughnextAS(P) = AX,, and it our conditions allowsimple deflectionsn the IBGP config-
learns about another path throughnext AS(Q) = AX, via uration, whereas conditions in [9] remove simple deflections
an IBGP peew, thenv must have learned abo@ through an also. Here we define a simple deflection as the path deflection

In this section we state our main theorem followed by a brié}

intuitive explanation for the conditions stated in the theorerp|
o . . t

and compare them to the conditions given in [9].



that takes packets out of the AS. Note that as long as tthee permitted paths at that can be formed by extending the
path selection procedure checks for ARTH length, simple paths assigned to the neighborswby candidates(u,n) =
deflections cannot form loops on their own and therefore catt N{(uv)Q | Q = 7(v), (u,v) € L}*L. So although all the
be ignored to simplify the required conditiofsWe will talk  permitted paths at nodeare valid paths, the only paths visible
more about these in section VII. Another major difference &re the paths that are advertised by its BGP peers. In other
that we take into account the problems due to MED (mainlyords, if the BGP peers af select paths according tg then
using condition i) of Theorem 5.1) whereas [9] ignores MEDthe available paths at are given bycandidates(u, 7). Now
In sections VI and VIl we give proof for Theorem 5.1. Noteave definepath selectiorat nodeu as a functiorns,, that maps
that although the level of clustering in IBGP route reflectioany set of permitted pathd” C P* to the best pathe W.
configuration may be more than one level deep, the proof orfhath selection function describes the BGP rules that govern
looks at the configurations where there are no sub-clusténe selection of best path from all the permitted paths at each
within some cluster, i.e., in the proof we assume that thede. Let: = {0, | v € V'} be the set of all path selection
clustering is one level deep only. functions. Note that the path ranking functiefy at nodeu
Examples to show that if any condition is violated then thascertains whiclazit N is preferred at:.. This is because each
system may have persistent oscillations or forwarding loogsermitted path represents one of the possiblg N .
are not presented here due to the lack of space. But thes@n instance ofGeneral Stable Paths ProbleffGSPP) is

examples are presented in [19]. a triple, S = (éL,P,E). And path assignment is said
to be asolution for the GSPP ifYu € V we haver(u) =
VI. ROUTING OSCILLATIONS ou(candidates(u,)).

PP is a special class of GSPP where the selection function
ased orlinear'? ranking of paths. For node € V, we
efine a non-negative, integer valueghking function\* over

" . S
To prove that the conditions stated in Theorem 5.1 guarantee,
the absence of persistent routing oscillations in the IBG

configuration, we use th8table Paths ProblenfSPP) model P, which specifies how the permitted paths are ranked. at

defined in [12][13]. We first present a brief introduction of th w
SPP model e assume that foP,, P, € P if A(P1) < A(P), then P,

is preferred overP;. We defineA = {\“ | u € V — {d}} as
the set of the ranking functions. Now the selection function
A. Modeling IBGP with MEDs induced by ranking\* is given by o, (W) = P where P

We consider the IBGP peering gragh, = (V, L) of the is the maximal path with respect t8 among all the paths

given AS. Now we construct an augmented logical graph ¥ & 7. Since BGP speakers only announce their best
G, = (‘7’5) where V. = v{JdUV and I = LUL. paths, therefore clearly at each BGP node, the set of visible

paths is such that, no two paths have the same next hop. Now
represents one of the various ASes which advedige the to ensure that this is well defined, we need the ranking to be
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AS under study.L includes links betweer and each node strict™. _

€ 7, and links corresponding to the EBGP sessions betweer>'iffin et al. [13] proved that a given SPP, and hence

BGP speakers in the AS under study and the ASes represerifgg BGP configuration, will converge to a unique solution

by node set. if it does not have anyDispute Wheel(DW). A dispute
For any nodev € V, let P* denote the set opermitted Wheel, Il = (U,Q, P), of size k, is a sequence of nodes

paths from v to destinationd. Each permitted path at nodel = v1:uz2,.-.,u and sequences of nonempty paths=
v, is avalid BGP signaling path fromi to v in the logical @1:@2;---,Qr a@nd P = Py, P,..., Py, such thatv i €
graph (1., taken in reverse order. Note that this is just ahl:-- -+ K} we have:
extension to the idea of IBGP signaling paths defined in (i) Q: is a path fromu; to u;
section IV-C. The difference is that instead of using the IBGP (i) F; € P
peering graptG;, we use the augmented logical gragh for (i) QiPiy1 €P™
defining BGP signaling paths. Since each permitted path at (iv) A“(P;) < A*(Q;Pit1)
nodev corresponds to a BGP route to destinatibthatv can  Here all subscripts are interpreted modiloFig. 4 gives an
learn through its EBGP or IBGP peers, we use the two terriigistration of DW. Later in section VI-B we shall see that if
interchangeably. By selecting a route/path at IBGP ngdee  all the DWs in a SPP are of even size, then the SPP has at
mean thatv has selected someritN for sending packets to |east one stable solution. This implies an absence of persistent
the destination/. We defineP to be the union of all set®”.

Path assignmenfunction # maps each node € V to a Here (uv)Q represents the path formed by concatenation of edgand
path n(u) € P*, L., at each node the path assignment P0G, " gener e deine pang o b e concatnaton o ks
function selects one of the permitted paths. We represent all2y jinear ranking of paths we mean that if path is ranked over path

P> and pathP is ranked over patlPs, then pathP; is ranked over patlis.

10Consider the example given in Fig7 in [9]. Let AS_PATH length of Py 13By strict ranking, we mean that if at node two permitted pathg; and
bel; and of P, bels. Let the BGP path selection criteria look the £8TH P, are ranked equally, themshould learn only one of these paths at any time.
lengths. Now since a node AS; selectsP; as its best path and another nodeThis is clearly true when both the paths are announcedhyp the same peer.
€ AS; selectsAS> — P» as its best path, therefoie = I + 1. Similarly  In mathematical terms, we mean thatif # P and \“(P;) = \“(P),

if we consider path selection at nodesAb2, then we get; +1 =1l2. So then3 v such thatP; = (uv)P] and P> = (uv)P}, i.e., pathsPy, P, have
we have a contradiction and the loop should not exist. same next hop node.

Here d denotes the external destination and each nod¥ in



route oscillations. So, in a sense, these kinds of DWs are
manageable. We refer to these DWs of even sizevas DWs
The problem with SPP model is that if we take into account
the MED attributes then the path rankings are no longer linear.
So while considering MEDs, it is not straightforward to model
a BGP configuration as a SPP. [12] models BGP with MEDs
as aTwo Pass Stable Paths Problef@pSPP). A 2pSPP is a
GSPP where the selection functien, is derived from two
linear path ranking functions. In thigrst pass the paths are
sorted into disjoint classes and linear ranking is done within
each class. In theecond passhe best available paths from _
each class are ranked linearly. So at each ngdiee permitted 79 4 Dispute Wheel
paths are partitioned into disjoint classes. {gtbe the set of
classes at node andP? C P* be the paths of classe C,.
Each nodeu has two ranking functions:
(i) a¥ is a strict linear ranking defined only on permitted !N this section we shall prove that a BGP configuration
pathsP* of classc € C, is free from persistent routing oscillation as long as the
(i) g* is a strict linear ranking of all the permitted path§onditions of Theorem 5.1 are satisfied. Fpr the.purpoge.of the
proof we assume that the given BGP configuration satisfies all
) ] . the conditions of Theorem 5.1 and we have reduced it to its
Now for a set of given path®/, (5" © o")(W) is defined gquivalent SPP model as defined in section VI-A. The main
as the maximally ran'ked pqths accordingtoamong all the jgez in the proof is that any DW in the equivalent SPP of
pathsWV,, wherelV, is obtained as: a BGP configuration satisfying all the conditions of Theorem
(i) Divide W into setsX. = W [ P%. 5.1, will have at least one stable solution. And if this is the case
(i) V classes: € O, lety* be the maximally ranked paththen the SPP and hence the BGP configuration has at least one
according ton® among all the paths i, i.e.y* is the stable solution which can be reached from any starting state
path P € X, such thaty pathsQ € X. andQ # P, in finite time.
ad(P) > af(Q). Now we present a brief outline of the proof. First we show
(i) Wo = {1 | Ve} that any even DW has at least one stable solution (Lemma
And a GSPP selection function, is a two pass ranking 6.4). Then we prove that any DW in the given SPP is either
function if it can be written as-, — (3" & a*). an even DW or can be redu'ced to an even DW, and hence
, ; has at least one stable solution (Lemma 6.5). We then show
Itis easy to see that BGP with MED can be represgnted Pt since all the DWs in the given SPP have stable solutions,
a 2pSPP. At any node, classes represent the Class"f'cat'oﬂlerefore the SPP also has at least one stable solution which is
of pat_hs based one_xtAS. So the paths for each class CaWaachable from any starting state in finite time (Lemma 6.6).
be_stpctly ra_nked since th.ey have comparable MED \{alue‘ﬁhis implies absence of persistent route oscillations in the BGP
,Th's IS the first pass ranlfmgygf). The second passt) is configuration (Lemma 6.7), which completes the proof.
Just relllnkmgk.all :che p'aths |gnor|gg thf MﬁD ;/O?Iugs. NOV\r’] the The tricky part of the proof is to show that in the given
g\elzir?edrignllinngeal:n;;t%nrfgn;rfgs ® a¥) should give us the SPP, if a DW is not even, then it can be reduced to an even
' _ DW. 'I_'o prove this we use some p_r(_)pertles of the structure of
Moreover any 2pSPB can be reduced to SP¥ using the p\ys in the given SPP. More specifically, we show that every

B. Proof

atu

following simple transformation: DW in the given SPP satisfies the following:
(i) ¥ nodeu € S, place node in S”. We call thesesimple (i) Every DW in the given SPP has at least one auxiliary
nodes node (Lemma 6.1)
(it) V nodesu € S andV classes: € Cy, place nodeu* (i) Every DW in the given SPP has at least one simple
in S’. We call u® the auxiliary nodeof the simple node node (Lemma 6.2)
u for classc. (i) Every simple node is followed by one or more aux-
(iii) If w is & neighbor ofu in S, thenw is connected to iliary nodes of the same class and then another simple
eachu® in 5" node. Here the first node following the simple node is
Now in the SPPS’, auxiliary nodesu® rank paths according always one of its own auxiliary nodes (Lemma 6.3).
to linear ranking functiory and simple node: ranks paths Propertiesi) and {i) are used to prove the important property
according to linear ranking functiofi“. (iii ). Now using conditionif of the Theorem 5.1 along with

So we can model BGP configurations while consideringroperty {ii), we prove that any DW in the given SPP can
MED attributes by first modeling it as a 2pSPP and thdve reduced to a DW which has the same simple nodes as the
reducing it to an equivalent SPP as described above. Nowiginal DW, but in which every simple node is followed by
the problem of oscillations in the BGP configuration can est one auxiliary node. Clearly this reduced DW is of even
studied by studying the DWs in the SPP. size.



We now present the formal proofs of all the claims stated
above.

Lemma 6.1:Any DW in the SPP should have at least one
auxiliary node.

Proof: Let all the nodes of a DW be simple nodes
as shown in Fig 4. Let us assume thatitN(P;) = p; €
clusterV; Vv i € {1,...,k}, were we interpret all subscripts
to be modulok. Note that since?; andQ;_, P; are permitted
paths representing the same external route at different nodes,
exitN(Q;-1P;) = exitN(P;) = p;. Also, since the selection
criterion at simple nodes is independent of the MED valugig- 5. Dispute Wheel with only auxiliary nodes
therefore node:; selecting path); P;,; over pathP;, means
that cost(sp(u;, pivr1)) < cost(sp(ui, p;))- ] )

Now V\Se rgmst ha\at)e one of(thé follogv)ing two possible cases. Vvalid are when either;.,, Q; P;1, are of types §) and
() v1 € Vi: In this case, sinceu;,p1 € V; and (c) respectively orP;1, Qi are of typesd) and )
cost(sp(ur, ps)) < cost(sp(us, 1)), therefore from con- rgspectlvely. Note that in any case we negdto pe_a
dition (iii) of Theorem 5.1, we can infer thab € V3, client n.ode (and:;41 to be a reflector). Applying similar
ie. Vi = V,. Butif Q,P, is a permitted path ati, reasoning on pathg;, andQ;_; P, we get thatu; shou_ld_
having czitN(Q1 Py) = po, with bothuy, ps € V4, then be a refle_ct(_Jr (and,;_ shoul_d be a c_Ilent nqde). Th_|s is
every nodec (P, should € V;, thereforeus € V3. a contradiction, therefore this case is also impossible.

Similarly we can show that; € V; = V5 --- =V}, Vi in This shows that we cannot have a DW with only simple nodes.

the DW, i.e., the DW is within one single cluster. NowHence in any DW there should be at least one auxiliary node.

we note that within a single cluster any valid permitted .

path is one of the following typé& (a) Rf — Ep, (b) Lemma 6.2:All the nodes of a DW cannot be auxiliary

Cl — Ep, () Cl — Rf — Ep, (d) Rf, — Rf, — Ep, nodes. _ y -~

() Rf — Cl — Ep or (f) Cl, — Rf — Cl, — Ep. Proof: Let us consider a_DW con3|_st|ng only of auxmary

Clearly P, cannot be of typed) or (b), since themu; nodes. A part of such a DW is shown in Fig. 5. The notation

would have selected EBGP learned p#th over IBGP u{ represents an auxiliary node of nodgfor classz (AS,).

learned pathQ; P». Now consider pattQ,P;. This also Note that any permitted path at nodé& has to pass through
cannot be of the forma) or (b), sinceu; € QiP;. AS,, therefore any auxiliary node on any of the valid signaling

Looking atP; andQ;, P, we can see that the only possiblepaths atw{ should also be for class. Hence, as shown in the

case when permitted paths are valid is wiigris of type figure, nodeu3, which lies on a valid path at7, is also for

(e and QP is of type €). This requiresu; to be a classz. Similarly we can show that all the auxiliary nodes

reflector (andu to be a client node). Applying similar ©n the DW are for class:. By condition () of Theorem

reasoning on path#, and Q, P, we get thatu; should 5.1, as noted in section V-By3 (i.e., nodeuy) must have
be a client node (and. should be a reflector). This is aléarned about pat#, via an EBGP peer. Now for3 to rank
contradiction, therefore this case is impossible. IBGP learned pathQ), P3 over EBGP learned patlf;, we
(i) uy ¢ Vi: We assert that this means, ¢ V;. We requiremed(QzPs) < med(P,), i.e., med(P3) < med(P).
show this assertion by contradiction. Lef, € V;. Applying similar reasoning over the DW we see that we need

Now since Q.P; is a permitted path aty having ™ed(F2) < med(Ps) < --- < med(Py) < med(P1) <

exitN(QrP;) = p1 With both ug,p; € V4, every node med(P,), which is a contradiction. Therefore we cannot have

€ Q) P, shoulde V;. But this means that; € V4, which @ DW with all its nodes as auxiliary nodes. [ |
is a contradiction, therefore;, ¢ V;. Also u, ¢ Vi, Lemma 6.3:In a DW, any simple node is followed by one
since otherwisey;, should rank pattP;, over pathQ,P;. ©f more auxiliary nodes of the same class and then another

Similarly we can show that; ¢ V;, Vi, Vi in the simple node. Also the first auxiliary node following the simple

DW. Now if we have a permitted path spanning multipl&0dev, is an auxiliary node ob.

clusters then it has to be of one of the following tyles Proof: By Lemma 6.1 and Lemma 6.2, we have at least
@ Rf. — Rf, — Ep, (b) Cl, — Rf, — Rf, — oOne simple node and one auxiliary node in DW. Without loss

Cl, — Ep, (¢) Cl, — Rf, — Rf, — Ep or (d) of generality we can considef”v to be the ordered nodes in
Rf, — Rf, — Cl, — Ep. Since @i+1,ui ¢ Vi, DW.Hereu”is an auxiliary node of node for classz (AS;)

therefore paths®; 1, Q; P11 should be from one of the andv is a simple node. Now since path, P, is permitted at
above mentioned types. Considering both at once we cn this path should be throughS;. So by condition i) of

see that the only possible cases when permitted paths di€orem 5.1, as noted in section V-B,must have learned
about pathP;, via an EBGP peer. Now the only wayranks
14Here C1 means some client nodé?f means some reflector anlp  another patrQ2P3 over EBGP learned patﬁ’2 is that Qo P
means some external peer. All the nodes belong to the same cluster. '?é‘dalso learned via some EBGP peer and has a higher local
a « b signifies that a node of type learns about the path from a node of . -
type b. preference. So the next node in the DW should be an auxiliary

I5Here the subscripts signify the cluster in which the node belongs.  node of nodes for some clasg, i.e., the next node ig¥. This




nodesv?, p¥ from our DW. Similarly we can remove ttextra
auxiliary nodes from all the groups just keeping a pair of nodes
(a simple node and an auxiliary node). Now treslucedDW

has even number of nodes and therefore, by Lemma 6.4, has
stable solutions. Note that although two stable solutions exist
for the reduced DW, if we look carefully we can see that
there is only one of the two solutions is possible. This can be
seen in the example in Fig. 6. Since nodé&spY, ¢¥ rank the
path advertised byxzitN(Ps) = ¢q over the other paths (seen

in the DW) throughAS,,, therefore to get a stable solution
Fig. 6. Dispute Wheel in SPP for the original DW we need that¥ selects pathPs, pY

selects patl), Ps, v¥ selects path);Q4Ps andv selects path

] o o ) 2Q3Q4Ps (and w does not select pati; which therefore
situation is shown in Fig. 6. Now we know that any permittethnains invisible at all the other nodes). This is because the
signaling path abv, should be for clasg, so if the next node qer possible solution for the DW requires nodeto select
on the DW is an auxiliary node then it must also be for clagiyih p,  over EBGP leamed (and therefore always visible)
y and similarly any foIIow[ng consecutive aUX|I|ary nodes OWath Q,P;, which is not possible. Similar is the case for
thleé DW are for clasg until we reach the next simple nodey,e nodes in all the groups havimgtra auxiliary nodes, and
w™. Also we can see that whenever we put a simple Noggarefore only one of the two solutions is possible. So we see

in the DW, it would be preceded by some auxiliary node anfla¢ in any case a DW in the SPP should has at least one stable
therefore, as argued, any simple node in the DW should Bg| tion. -

followed by one of its auxiliary nodes, which in turn may be
followed by some auxiliary nodes of the same class and thenLemma 6.6:1f a BGP configuration satisfies the conditions
we have another simple node. B of Theorem 5.1, then its equivalent SPP has at least one stable

Lemma 6.4:1f a general DW has even number of nodessolution which is reachable from any initial path assignment
then it has two stable solutions. in finite time.

Proof: It is easy to see that for a DW of even size, if

nodew; selectsP,V odd value ofi and selects); P,V even Proof: If the equivalent SPP has no DW then as proved
value ofi, then the system is stable. Similarly:if selectsP; in [13], the solution to SPP is unique and is always reached.
Vv even value ofi and selects); P;,.; V odd value ofi, then If we have DWs in the SPP then according to Lemma 6.5
also the system is stable. So these are the two stable solutiathg>f the DWs have stable solutions. Now if the DWs are

for any DW of even size. m hon-overlapping then clearly the SPP has at least one stable
Lemma 6.5:Any DW in the SPP should have at least on&olution. It is easy to see that even if DWs overlap we have
stable solution. stable solutions. This is because if two DWSs overlap at some

Proof: If the number of nodes in the DW is even therode u, then we consider the path assignment such that
by Lemma 6.4 the DW has stable solutions. So we only neéglects the best possible path (among the four choices). We can
to look at the case when the number of nodes in the DWOW get to a stable solution for one of the DWs. And the other
is odd. By Lemma 6.3, the nodes in a DW come in groupPW breaks down, since irrespective of the path selections of
where each group consists of a simple node followed by otfe other nodes of the DW, nodeno longer selects any of
or more auxiliary nodes. If the number of nodes in the Dhe two paths available at in that DW. Now in [13], Griffin
is odd then at least one of these groups must have an @lcl. prove that in any SPP the nodes can be classified into
number of nodes, i.e., at least one of the groups must hdw® disjoint classesstable and oscillating The stable nodes
a simple node followed by more than one auxiliary nodegrovably reach their stable state in finite time regardless of
Fig. 6 depicts a case when we have multiple auxiliary nod#e initial path assignment, and the oscillating nodes form the
(v, pY, ¢¥) following a simple node«). Now by virtue of DWs. We have already shown that a stable solution exists for
condition {) of Theorem 5.1, we can see that the ngde any DW in our SPP, and we have also discussed what the
learns about pathB, via some EBGP peer. Similarly nogé stable solution should be. We now note that this solution is
learns about patl; via some EBGP peer. Also we saw in théndeed reachable irrespective of the starting system state. This
proof of Lemma 6.3 that? learns abouf; via an EBGP peer. is because at least one of the paths on each of the nodes
Again by condition {) of Theorem 5.1, all the permitted pathsof any DW is learned by the node via an EBGP sesgion
at any of the auxiliary nodesY, p¥, ¢¥ are also permitted at and therefore irrespective of the starting path assignment, this
the other two nodes. Now since at auxiliary nodes the rankiigy visible to the node. So we can easily construct an IBGP
criteria is based on MED values?, p¥, ¢¥ should rank the
path advertised byxzitN(Ps) = ¢q over the other paths (seen
in the DW) throughAS,. So as far as nodes’,p?,¢¥ are
concerned, there is no dispute and therefore we can ignore

18Note that pathPs is also throughAS, but the pathQgsP; (not shown  7Consider nodeu; of the DW from Fig. 4 {; can be a simple node or
in the figure) can be through some otherztAS. an auxiliary node). Patt®; is learned byu; via some EBGP peer.
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show that if an IBGP configuration satisfies the conditions of
Theorem 5.1, then there may be deflections but they will never
form loops. As there is no point in talking about loops if there

-

© w0 are routing oscillations in the system, so in this section we
[ A8, } [ A5, } assume that the IBGP configuration is in stable state. We also
assume that the given configuration satisfies all the conditions

\CD/ stated in Theorem 5.1.

We start our analysis by proving certain properties about the
structure of the forwarding loops when the BGP configuration
satisfies all the conditions of Theorem 5.1. In particular, we
prove the following.
message exchange sequence where the solution is rééched (i) In a forwarding loop, if a packet gets deflected at a

u reflector then the next deflection must occur at some
Lemma 6.7:1f a BGP configuration satisfies the conditions client node (Lemma 7.3).
of Theorem 5.1, then it is free from persistent oscillations. (i) If some reflector in the AS selects pafh having
Proof: From Lemma 6.6 we can see that since we always exitN(P) € clusterC, then no nodes C should select
reach some stable solution, there are no persistent oscillations. any path@ having exitN(Q) ¢ C (Lemma 7.4).
u (iii) If a packet encounters a forwarding loop, then the

Note that although a stable state exists and can be reached only path deflections forming the loop occur at the nodes
in finite steps, there might still be transient oscillations, i.e., at which the packet enters a cluster (Lemma 7.5). We
in certain cases we can construct IBGP message exchange refer to such nodes as tip@int of entryto the cluster.

sequences such that the system oscillates. This is due 10 {py ysing the first property, we show that there can be only
presence of DWs in the system. An example is given in Figyq tynes of forwarding loops. The other two properties place
7. The local preference values for paths are indicated besidgsher restrictions on the structure of the possible loops. We
the lines representing the paths (lower value slgn_lfle_S hlgrﬁﬁdy these two classes of forwarding loops individually in
preference) and, as always, the MED values are indicatedgif-tions viI-A and VII-B and show that if all the conditions
parentheses. If mmally both nodegv_select the path that ot Theorem 5.1 hold, then even these are not possible.

they learn through their EBGP peers.it, and they always  \ye first prove a couple of observations that we, in turn, use
update and advertise their best paths simultaneously then, ye, ove the above listed properties of the forwarding loops.
can see that there will be oscillations (after the first BGiyg first observation is on the visibility of paths to the IBGP
message exchange both nodes will select the path that they peers in an AS. It states that the best path selected at a node
learn from their EBGP peers iAS;, after the second messaggg always visible to its IBGP peers.

exchange they will revert back to the initial path assignment| o \ma 7.1:1f two nodes are IBGP peers then they know

and the cycle will continue as long as they keep on updating , \: each other's best path.

and advertising their updated paths simultaneously). Actually poof | et nodes:. v be IBGP peers and 1étstP(u) =

the example has a DW with four nodes and two stable solutiops Clearly if P is an EEGP learned path at thenu should

as described in [12]. _ advertiseP to all its IBGP peers including. HenceP should
These kinds of oscillations are not persistent and they, \isible atv. Now let us assume the is an IBGP learned

are highly dependent on the timing and delay between W&, 4, Sincewu,v are IBGP peers, we have one of the
BGP updates. Due to the random delays in the system th?&lfowing three possible cases.

oscillations (if they occur) break down very soon and the
system converges. So these are not fatal in nature. The maif
problem with such cases is that since there are multiple stable
solutions, we are not sure to which state will the configuration
converge. This may pose difficulty in debugging. In this paper
we ignore the transient oscillations mentioned above.

Fig. 7. Example for transient oscillations

u is a reflector and is its client: According to the rules
of route reflectiony always reflects patt® to its clients.
Hence P should be visible at.

« bothu, v are reflectors: Here we have one of the following
two subcases.

— u learns aboutP via some client: In this case

VIl. FORWARDING LOOPS reflects pathP to all its IBGP peers including.

— u learns aboutP via some reflectors: Now since
reflectors form a full IBGP meshy, v are also IBGP
peers. And so ifv announces to reflectoru then it

18syppose we assume that the DW has even number of nodes and should announc® to all its reflector peers including

node u; has initially selected path?;,. Now we can see that if,; ad- .
vertises pathP; to node u;_1, and thenw;_; calculates its best path, . ..

u;—1 Will select path@;_1 P;. Proceeding in similar fashion to the nodes SQ in both the case;, pafh S_hOUId be visible at’ .
Wi_a,...,ul,Up, ..., u;r1 We reach one of the stable solutions in finite e v iS @ reflector and. is its client: Due to conditioniif)

number of message exchanges. Stable state can be reached similarly for the of Theorem 5.1, the 0n|y IBGP peers of a client are

case when the DW has odd number of nodes. Now since stable solution is . fl S0 ifu i i d its | bout
reachable for all the DWs in the SPP, stable solution for the SPP is also IS r€flectors. So I Is a client and its learns abo

reachable in finite time irrespective of the starting path assignments. via an IBGP session, then it must have learned it form

As mentioned earlier, path asymmetry can lead to de-
flections, which may then combine to form loops. We will



some reflectorw. Now since reflectors form a full IBGP
mesh,w, v are also IBGP peers. The only time when
announcedP to its clientu but not to its reflector pear

is whenw learns abouf” through another reflector peer
2. Now with the similar argument as used in the second
subcase of the above case, we see thahould be visible

at v.

We have proved that ifi, v are IBGP peers thebest P (u)
is always visible av. We can similarly show thdtest P(v) is
always visible at:. So if u,v are IBGP peers then they know
about each others best path. ]

The next observation lists two cases when we have simple
deflections. It states that if two nodesv are either IBGP
peers or clients in the same cluster, then the only possible
path deflection ab, on the packets coming from is a simple
deflection.

Lemma 7.2:If v € sp(u,exitN (bestP(u)) and u,v are
either IBGP peers or clients in the same cluster, then eithe
bestP(u) = bestP(v) or exitN (bestP(v)) = v. v

Proof: Let bestP(u) = P with exitN(P) = p and let
bestP(v) = Q with exitN(Q) = g and P # Q.

First we observe that if;, v know about each other’s bes
path, then the following are true.

o At u, both pathsP and @ are IBGP learned paths. To
see thatP is not an EBGP learned path af we note
thatv € sp(u,p) = p # u. For path@, we note that
since bestP(u) # @ but bestP(v) = Q, therefored
nodew # u which advertises patty.

At v, path P is an IBGP learned patl{. This is because
bestP(u) = P but bestP(v) # P, therefore3 nodex #
v which advertises patt?.

Now if u,v know about each other’'s best path, such that
bestP(u) = P with exitN(P) = p, bestP(v) = @ with
exitN(Q) = ¢ and P # @ then we have one of the following
two possible cases.

1) cost(sp(u,p)) < cost(sp(u,q))

and if equality, thenP is ranked over) based on BGP
tie-breaking criteria.
Using this inequality along with the following facts

e v € splu,p) =

cost(sp(u,v)) + cost(sp(v,p)) = cost(sp(u,p)

o cost(sp(u,q)) < cost(sp(u,v)) + cost(sp(v, q))
we can show that
cost(sp(v,p)) < cost(sp(v,q))
with equality only if P is ranked overp based on BGP
tie-breaking criteria.
Now sincev selects) over P, therefore3 path P’
visible atv but not atu such that:

o nextAS(P') = nextAS(P)

o med(P’") < med(P)

o cost(sp(v,q)) < cost(sp(v, exitN(P')))
Note that in this case we havepst(sp(v,p)) <
cost(sp(v, exitN(P'))). Using this inequality along

2)

r

19Note that there is no such restriction for pagh i.e., nodev may learn
about path@ via some EBGP or IBGP peer. But @ is an EBGP learned
path atv then the deflection at would take the packet out of the AS, i.e.,
at v there would be a simple deflection only.
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with the fact that learns about patt¥ via some IBGP
peer, we can see that in this caBé is also an IBGP
learned path at.

cost(sp(u,p)) = cost(sp(u, q)

and if equality, thenP is ranked ovelr) based on BGP
tie-breaking criteria.

Now since u selectsP over @, therefored path Q'
visible to » but not tov such that:

o nextAS(Q') = nextAS(Q)

e med(Q') < med(Q)

o cost(sp(u,p)) < cost(sp(u, exitN(Q')))
Note that in this case we havepst(sp(u,q)) <
cost(sp(u, exitN(Q'))). Using this inequality along
with the fact that. learns about patly via some IBGP
peer, we can see that in this cagé is also an IBGP
learned path at..

Now we start the actual proof. We first study the case when
v are IBGP peers. In this case by Lemma 7#ly know
about each other’s best path. So the only deflections possible
are due to the cases described above. Whan are IBGP
{peers, then we have one of the following cases.

u is reflector andv is client, bothe clusterC. First we
consider case 1. In this case, sinéeis an IBGP learned
path atv, it should be visible to all the reflectors C
includingu. This is a contradiction, hence 1 is impossible.
Now consider case 2. In this case, since b@tland Q'
are IBGP learned paths at they should be visible to
all the other reflectors C as well. But then no reflector
should advertise patly), so the only wayv can learn
about( is through an EBGP session, i.e., we can only
have a simple deflection at

o u is client andv is reflector, bothe clusterC. In case

1, since bothP and P’ are IBGP learned paths at,

they should be visible to all the other reflectars C'

as well. But then no reflector should advertise p#th
and sou cannot learn abouP through IBGP. This is a
contradiction, hence case 1 is impossible. In case 2, since
Q' is an IBGP learned path at, it should be visible to

all the reflectorse C includingwv. This is a contradiction,
hence 2 is also impossible.

Both v and v are reflectors. We can split this into the
following two subcases:

— Bothwu, v € came cluster. In case 1, sincé”’ is an
IBGP learned path at, it should be visible to all the
reflectorse C including «. This is a contradiction,
hence 1 is impossible. Similarly, in case 2, sirige
is an IBGP learned path at, it should be visible
to all the reflectorse C including v. This is a
contradiction, hence 2 is also impossible.

u,v are reflectors in different clusters. Lete C,
andv € C,. According to case 1P’ is an IBGP
learned path av. Let v learn aboutP’ via some
IBGP peerw. Now w can either be a reflector of the
AS oritcan be aclient C,. If w is a reflector which
advertisesP’, then P’ should be visible to all the
reflectors in the AS, including. This is a contradic-
tion, hencew cannot be a reflector. if is a cliente



C, which advertised”’, then it should have learned
aboutP’ via some EBGP peer, i.ezitN(P') = w.
Now sincecost(sp(v, exitN(P’))) > cost(sp(v, p))
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Proof: Let v be a reflector. Since is also a reflector

in the same ASu,v should be IBGP peers. Now applying
Lemma 7.2, we can infer that the for a packet going through

and exitN(P') = w € C, therefore by condition w, if the next deflection occurs at then it should be a simple
(i) of Theorem 5.1,p € C,. So v must have deflection. But in that case we cannot have a forwarding loop

learned about pathP? via some reflectore C,,.

in the AS. This is a contradiction, heneehas to be a client

But since client nodew € C, announces path node. [ |

P’, it should be visible to all the reflectors C,

By Lemma 7.3, we can see that there cannot be any

and in that case no reflectatr C, should select forwarding loop with deflections at reflectors only. So there
and advertiseP. This is a contradiction, so 1 iscan only be the following two kinds of forwarding loops in
impossible. Now we consider case 2. In this case, whe system.

have cost(sp(u, exitN(Q'))) > cost(sp(u,v)).?°
Now applying conditioni{i) of Theorem 5.1 on this
inequality and using the fact that¢ C,, we infer
that exit N (Q') ¢ C,. So the only wayu can learn
about@’ is via some reflectotw ¢ C,,. But in that
casew should announcé)’ to all the reflectors in

« Forwarding loop consisting of deflections at client nodes

only.

« Forwarding loop consisting of deflections at both client

nodes and reflectors. We note that in this case, by Lemma
7.3, any deflection at reflector must be preceded and
succeeded by deflections at client nodes.

the AS, includingv. This is a contradiction, hence

case 2 is also impossible. We shall analyze these two possible types of forwarding

) loops individually and show that they cannot exist. But be-
So there can be no deflection atwhen bothu,v aré f5re qoing this, we prove some more properties about the

reflectors. . . forwarding loops. These properties put further restrictions on
Now we consider the case when bathand v are clients the structure of the loops.

€ clusterC. Since clientsc the same cluster are not IBGP | emma 7.4:If 3 a reflectoru having exitN (bestP(u)) €
peers, therefore, in this case,v need not know about eachc, thenv nodewv € C exitN(bestP(v)) € C.
other’s best paths. But note that:ifv are clientsc C, then Proof: Let bestP(u) = P. First note that ifu ¢ C but

the following are true. still selects pathP havingezitN(P) = p € C, then it must
« SincebestP(u) = P, u always knows abouf’. have learned abou? via an IBGP session with some reflector
« SincebestP(v) = Q, v always knows abouf). € C. So without loss of generality, we can assume thas
« Note thatP is an IBGP learned path at** Sou must a reflectore C. Now let v € C havebestP(v) = Q such
learn about?” via some reflector € C'. But in that case thatexitN(Q) = ¢ ¢ C. Sinceu,v are IBGP peers therefore
w also announce$’ to v, thereforev knows aboutP. by Lemma 7.1, they know about each other’s best path. Now
So whenu,v are clientse C, then we have one of theusing condition ifi) of Theorem 5.1 and the facts thatt C
following two possible cases. andv,p € C, we getcost(sp(v,p)) < cost(sp(v,q)). But if
« u,v know about each other’s best path. In this case westill selectsQ over P then we have one of the following
only need to look at cases 1 and 2. In casePl,js an two cases.
IBGP learned paths at. This means thall a reflector o nextAS(Q) = nextAS(P) and med(Q) < med(P).
w € C which announces”. But in that casev should But thenu should also select patf) over pathP, so this
also announcé”’ to w. This is a contradiction, hence case  cannot be the case.
1is impossible. Similarly in case 2) is an IBGP learned « 3 route P/, known to v but not to u such that
path atu. This means thaB a reflectore € C which nextAS(P') = mnextAS(P), med(P') < med(P)
announceg)’. But in that caser should also announce and cost(sp(v, q)) < cost(sp(v,exitN(P'))). But the
Q' to u. This is a contradiction, hence case 2 is also  only route known tov and unknown tou should have
impossible. exitN(P') = wv. Also sincebestP(v) # @ but it
« u does not know abouf). This is only possible when is visible atw, it is an IBGP learned path at, i.e.,
v learns about) through an EBGP session. Butin that ¢ +# ¢. From these observations we can infer that
case we can only have a simple deflectiornat cost(sp(v,q)) > cost(sp(v,exitN(P"))). So this is also
] not possible.
Now we prove the three properties about the structure gience proved. m
the forwarding loops that we listed at the start of this section. | emma 7.5:Deflections that may cause loops can only
Lemma 7.3:In a forwarding loop, if a packet gets deflecte¢yccyr at the point of entry to the clusters.
at a reflecton, and the next deflection occurs at nadethen Proof: Let nodeu € clusterC, havingbestP(u) = P

v should be a client node. and let the first path deflection o occur at nodev. If v €
C, # C, and is not the point of entry to clustér,, then let
the point of entry bev. Now sincev, w are either IBGP peers
or clientse C, therefore by Lemma 7.2 if the first deflection
after nodeu occurs atv, then it has to be a simple deflection.
On the other hand if node € C,,, then either it has an IBGP

20This is because we have the following.

cost(sp(u, exitN(Q'))) > cost(sp(u, p))

And v € sp(u, p) = cost(sp(u,p)) > cost(sp(u,v))

21This is because we have the following.

P is always known at.

v € sp(u, exitN(P)) = P cannot be an EBGP learned pathuat
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First we note the following about the structure of this loop.

o Lete, € Cp, ¢y € Cy ande; € C..

o LetbestP(c;) = P; with exitN(P;) = p; fori = z,y, z.

o Dz, Dy, D2 ¢ Cy,Cy, C,. Since an inter-cluster IGP link
rqcy lies in sp(cy,p,), therefore by conditionii{) of
Theorem 5.1p,. andc,, are in different clusters, i.ep, ¢
C,. Similarly p, ¢ Cy, andp. ¢ C,. This means that
clientc, learns abouf’, through some reflector, € C,..
Similarly ¢, learns aboutP, through reflector, € C,
and c, learns aboutP, through reflector-, € C,. Now
note that since reflector, € C, selects pathP, having
eritN(P,) = p, ¢ C,, therefore by Lemma 7.4 no
reflectorr in the AS such thatzitN (bestP(r)) € C,.
And therefore no node C, learns about any patk’
having exitN(P') € C,. So p,,p, ¢ C,. Arguing
similarly we getp,, py,p> ¢ Va, V,, V..

« As mentioned in the previous point, learns aboutP,
through reflectorr, € C,, ¢, learns aboutP, through
reflectorr, € C, andc, learns abouf, through reflector

Fig. 8. Loop due to deflection at clients only - case |

session withu or u,v are clientse C,. So again by Lemma r, € C,.
7.2 the only deflection possible at nodeshould be a simple + The presence of loop requires thate sp(c., ps), ¢, €
deflection. sp(Ta,Pz); ™5 € sp(Cy,Py), ¢z € sp(Tp,Py); Te €

So we have proved that if a deflection occurs at some node sp(c.,p.),c: € sp(re,p.), @s shown in the figure.

v € some cluster, such thatv is not the point of entry Note that according to the figure ¢ sp(c., 7., but the proof
for the packet to cluste€’,, then we can only have a simplegges not require this and considers the most general case.
deflection atv which takes the packets out of the AS and \we can now easily get the constraints on IGP costs pre-

cannot form any loop in the AS. B sented in equations (1)-(5). The reasoning for each equation
Now we shall separately consider the two types of fofs provided after the equation.

warding loops possible in the system and prove that if the
IBGP configuration satisfies the conditions of Theorem 5.1, di <ap+b 1)
then neither of these types of loops can exist. The strategy_is .
to establish the IGP metric based inequality relation, giv guation (1) states that
as equation (11), between the consecutive client nodes afost(sp(re, pz)) < cost(sp(ra, cz)) + cost(sp(ca, p))-
which the packet gets deflected. We then use this inequality f1 < d; )
sequentially over all the client nodes in the loop, at which the
packet gets deflected, and achieve the contradiction as gkt f1 > di. Now since bothP,, P, are visible tor, and
in equation (13). it choosesP, over P, therefore3 a path P, visible to r,
with exitN(P.) = p’, having nextAS(P.) = nextAS(P,),
med(P.) < med(P,) and cost(sp(rs,p,)) > fi1. But since
r., P are not in same cluster, therefore conditiam) (of

We first look at the loops consisting of path deflections atheorem 5.1 ensures that, p’, are also in different clusters.
client nodes only. Let two consecutive deflections occur Rlow r, knows about path?, means thaf! is announced by
client nodesc, andc,. Let ¢, € clusterC, andc, € cluster some reflector, therefore, should also know about it. And if
C,. Lemma 7.5 states that forwarding loops can only occur knows aboutP, then it will never choose patR,, so there
due to the deflections at the points of entry to the clusters. &l not be any loop. Hencef; < d1, i.e., equation (2) holds.
the packets must entét, atc, andC, atc,. Since the packets
enter clusteiC, at client nodec,, therefore by conditioniy) ertetay<b+fi ®)
of Thgorem 5.1, the Iast_link traversed by the p_acke_ts bemé%]uation (3) states that
reachingc, has to be an inter-cluster reflector-client link. Let

P : COSt(Sp(prw)) < COSt(Sp(varw)) + COSt(Sp(vapw))
this link bg TaCy where.ra. is a reflector¢ C,,. Now we can \ vre we use that fact that
further split the analysis into two cases depending on Whetherr € sp(ca,ps) ande, € sp(ra; ps)
ra € Cp OF NOt. “ wEY Y L rw

1) r, € C, # C,: We study this case using Fig. 8. In the b1 < e (4)
figure, the line joining any two nodes represents the shortest
path between the nodes. The figure shows the structure of S iS true because,, ¢, € C; andr, ¢ C.
forwarding loop consisting of path deflections at three client by < 1 (5)
nodesc,, ¢y, c,. Note that the proof does not rely on the
number of deflections and holds for general case. This is true because,, ¢, € Cy andr, ¢ C,,.

A. Deflections at Clients only
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Fig. 9. Loop due to deflection at clients only - case Il
Using equations (1)-(5), we get

fi<ar+b;
e1t+cp+ar<b+a;+b

c1+ay <ap+b

as +by <ap+b (6)

2) ra € Cy: Now we look at the case when, € C,. The Fig. 10. Loop due to deflection at clients and reflectors
links of the loop in such case is shown in the Fig. 9. All the
observations about the structure of the loop, stated in sectiaw if the loop contains: deflections then using equation
VII-A.1 still hold. The only difference is that since there is nd11), we get
deflection atr,, thereforer, selectsP, and we can consider
it to be the reflector from whiclk, learns about patt¥,. So

without loss of generality, we assumgto be the reflector, Byt since this is a loop with links, the @+ 1)th link is same

a1+b1>a2+b2>--->an+bn>an+1+bn+1 (12)

of section VII-A.1. as the first link. Using this along with equation (12), we get
We can now easily get the constraints on IGP costs pre-
sented in equations (7)-(9). The reasoning for each equation ar +b1 > ani1 +bpp1 = a1+ b (13)

is provided after the equation. This is a contradiction, hence we see that, if the IBGP con-

dy < ay + by (7) figuration satisfies the conditions stated in Theorem 5.1, then
loops with deflections at client nodes only are not possible.
Equation (1) states that

cost(sp(ra, pz)) < cost(sp(ra, ¢z)) + cost(sp(ca, pz)). B. Deflections at both Clients and Reflectors

c1+ax <dy (8) Now we look at the case when the forwarding loop has
deflections at both clients as well as reflectors. By Lemma
7.3 we know that if a forwarding loop has a deflection at
some reflector then it should be preceded and succeeded
by deflections at client nodes. We study the structure of
such deflections. Consider deflection at clieptfollowed by

Using the fact thatc, € sp(rq,p.), We get the shortest
path IGP distance between and p, as cost(sp(ra,pz)) =
c1 + az. Now let¢; + ag > dy, i.e., letcost(sp(rq,ps)) >
cost(sp(ra,p-)). Since bothP,, P, are visible tor, and

it chooses P, over P, therefore 3 a path P, visible . ) .
t0 1o with ezitN(P)) — p. having nextAS(P) deflection at reflector, followed by deflection at client..

newtAS(P.), med(P!) < med(P.) and cost(sp(ra,p.)) > We note the following about the structure of the part of the

cost(sp(rq, pz))- But sincer,, p, are not in the same clug'[er,IOOp under study.
e Letc, € Cyp, ry € Oy andc, € C,. By Lemma 7.5¢,

therefore conditioniif) of Theorem 5.1 ensures thaf, p/, are ; A | /
also in different clusters. Now, knows about patt’ means is the point of entry ta’, r, is the point of entry taC,
andc, is the point of entry taC,.

that P, is announced by some reflector, therefoereshould . ]
also know about it. And ifr, knows aboutP! then it will ~ * LetbestP(c;) = Py with exitN(Py) = ps, bestP(ry) =
never choose pattP,, so there will not be any loop. Hence v With ezitN(P,) = p, andbestP(c.) = P. with

1 +ag < dy, i.e., equation (8) holds. exitN(P;) = p.. _
o Dz, Dy, & Cy,Cy, C,. Using the fact that, andr,

by < 1 9) are points of entry to their respective clusters and the
o fact thatr, € sp(cs,p,), We see thatsp(c,, p,) goes
This is true bepausey,cy € Cy andr, ¢ C,. through more than one cluster. So by conditidin) (of
Using equations (7)-(9), we get Theorem 5.1p, and ¢, are in different clusters. This

means thatc, learns aboutP, through some reflector
r, € C,. Similarly ¢, learns aboutP, through some
reflectorr, € C,. Now note that since for reflector,
selects pathP, having exitN (bestP(ry)) = pr ¢ Cy,
therefore by Lemma 7.4 no reflectorr in the AS such
that exit N (bestP(r)) € C,. And therefore no node
aiy1 + b1 <a;+b (11) ¢ C, learns about any pat®’ with exitN(P’) € V.

cr+ax <a+b
az +bs < a1+ b (10)

So for both the cases in sections VII-A.1 and VII-A.2, from
equations (6) and (10), fath link in the loop, we have
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reflectorr, € C,.
o The presence of loop requires thatnode u,, having

bestP(uy) = P, With exitN(P,) = py ¢ Cy, Cy, C,

andc, € sp(ty, Pw)- Fig. 11. Replace each node i by a group ofm nodes inV’
« The presence of loop also requires thatc sp(cy, ps)

andc; € sp(ry,py). o _ _
« Note that noder, ¢ sp(c.,r,). This is because, ¢ loop containing deflections at both clients and reflectors, the

sp(cs,pe) and if r, € sp(cy,p.) that meansr, ¢ contradiction shown in equa_dion (13) can §ti|l be achievedl.
sp(rs,p.). But sincer, and r, are IBGP peers, by Hence we see that any kind of forwarding loops occurring
Lemma 7.2 deflection cannot occurgt due to path deflections are not possible if the IBGP configu-
ration satisfies the conditions stated in Theorem 5.1.

So p,,p. ¢ V. Arguing similarly we getp,,p,,p. ¢ G .

va Vy; Vz-
« As mentioned in the previous point, learns aboutP,

through reflector, € C,, andc, learns abouf’, through :> » Q ’,3

The structure of such deflections is shown in the Fig?%lDhe

line joining two nodes represents the shortest path between the
VIIl. COMPLEXITY ANALYSIS

nodes.
We can now easily get the constraints on IGP costs pre-Now the problem that we face is that given an IGP routing
sented in equations (14)-(19). graph for an AS, we want to construct the IBGP configura-
tion which guarantees the absence of any persistent routing
h<d (14)  oscillations and loops and is optimal in some sense and meets
The reasoning for equation (14) is similar to that for equatidi® 9\ven resource constraifitsWe extend the idea used in
). [20][21]. for evaluat|.ng the cost (anq thergby determ|_n|ng the
dy < ay + by (15) optimality) of a logical (IBGP) configuration. We define the
- sizeof the IBGP graph as the sum of all the shortest path IGP
Equation states that costs which constitute the IBGP links. Now the problem is
cost(sp(ry, Dw)) < cost(sp(ry,cz)) + cost(sp(cs, Puw))- to design an IBGP configuration satisfying all the conditions
of Theorem 5.1 (this guarantees the absence of persistent
erter < b+ i (16)  oscillations and forwarding loops), for a given IGP routing
This is because, € sp(c,p.) andr, & sp(ca, ps). graph, such that the size of the logical graph is minimum.
Lemma 8.1:Constructing IBGP configuration having min-
by <ep (17) imum size while satisfying the conditions of Theorem 5.1 is
L NP hard.
This is because,,, c; € €y andry ¢ C. Proof: Given a simple, undirected graphi = (V, E),
g1 +as <c (18) finding its minimum vertex coveis NP hard. We shall prove

that finding the minimum size IBGP configuration while
Here we use the fact that. € sp(ry,p,). The rest of the aking sure that the conditions of Theorem 5.1 are satisfied is
explanation is similar to that for equation (2). at least as hard as finding the minimum vertex cover. Consider

by < g1 (19) any graphG = (_V, E) with k nodesV = {vp,...,vp_1}. We
construct a weighted, undirected graph = (V', E’) from
This is because.,c, € C, andr, ¢ C.. G by replacing each node; € V by a group of m nodes
Using equations (14)-(17), we get Vi = {uf,...,ul,_,} as shown in Fig. 11. We assume that
m > k + 1. Each groupV; has astar topology with node
hsa+h u! at the center of the star and nod€s uj, u, ..., ul, _, as
e1+c <bi+a+b the edge nodes. Now” = V,|JVi---|JVi—1 andV edges
c1 <ay+b (20) wv,v; € E we have edgesiu} € E’ (these are all thénter-
i i group edgesetweenV;,V; V i,j ). E’ also includesintra-
Using equations (18) and (19), we get group edgedetween the center node and the edge nodes (i.e.,
g+ by < ¢4 (21) for group V; there are edges b_etwgen nadeand the nodes
uy, Uy, s, ..., UL, _q, as shown in Fig. 11). We assume that all
Now equations (20) and (21) give the inter-group edges have weightsand all the intra-group
edges have weights, with 5 > 2a. We assume=’ to be the
as + by < ay + by (22)

IGP routing graph for some AS. We also assume that there
So we see that even if there is a deflection at a refleci@i€ No resource constraints, i.e., at any node, we can have as
between deflections at two client nodes (Sﬂy andi + 1th 23ps discussed in [20] [21], in real ASes there is a limit on the number

client nodes), equation (11) still holds. And therefore for any 1BGP sessions that a node can support at a time (due to the resource

constraints on the nodes). This limit may be different on different nodes and
22Node u,, in not shown in the figure. any valid IBGP configuration should respect this constraint at all the nodes.
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many IBGP sessions as we like. Now we assert that even if il
the paths are through differenexzt ASes, finding the optimal
IBGP configuration based on conditions of Theorem 5.1 is SG = dij + k(o + (m — 2)2a)

E
L
e
L

equivalent to finding the vertex cover of original gra@ghWe i=0j=i+1
can see that due to conditioiii ] of Theorem 5.1 and the fact k=1 k—1
that 3 > 2« the only valid cases of IBGP configuration for = Y dij +k(2ma - 3a) (25)
G’ can be: i=0j=i+1
(i) All the nodese V' are in a single cluster. Now we show that whemn > k, the RHS of (25) is less
(i) All the nodes are in separate clusters, i.e., each clustean the RHS of (23) by proving the following.
has only one node. k-1 k-1
(iii) Each group of nodes is a separate cluster, i.e., we mm{ ZmdU} > Z Zdu (26)
havefk clustersVy, ..., Viy_1, each havingn nodes. =0 i =0 j—it1

Clearly for any graphG’, the size of IBGP graph having eachwithout loss of generality, we can assume that 0 mini-
node as a separate cluster (casP {s greater than size of mizes the LHS of (26). Now we can see that:

IBGP having all the nodes in one single cluster (cage ow b1 kel kel k1l

we will show that case) (only one cluster) is also not optimal. d;: do; + do;

Let the IBGP configuration be of the form described in case ;j;rl ! gjgl( oi + o)

(i), i.e., having only one cluster. Clearly the configuration with
minimum size should have only one reflector. Let the reflector _ Z (k —i — 1)do; + Zdo'
be in groupV; . We can see that the IBGP configuration formed = Pl !
by selectingu;, as the reflector should be smaller in size than — (=)ot -+ d. )
the IBGP configuration formed by selecting reflector from - o1 Ok—1

IN

k—1 k—1

nodesu, ..., ul,_,. Let d;; = cost(sp(ub,uy)). Now if we ~ (k- 1)Zd _
selectu), as the reflector then we can calculate the size of the h £ 70
IBGP graph to be: 1
< kY dy (27)
S(G) = Y mdi+k(a+ (m—2)20) =1
§=0,j#i The first step in (27) follows from the following two properties
k—1 of the graphG’:
= Z md;; + k(2ma — 3a) (23) (i) Triangle equality holds, i.ed;, < di; +djx V 1,7,k
§=0,j7#i (i) Graph weights are symmetric, i.el,; = dj;.

Using (27) it is easy to show that ifi > &, then (26) holds.
And if we Selectul as the reflector then the size of the |BG%ut sincem > kin grath/ due to our construction, the IBGP

graph is: configuration with each group of nodes as a separate cluster
and nodesu as reflectors has smaller size than any IBGP
, Rt configuration with only one cluster. So IBGP configuration
S(@) = Z mdyj + (k —1)(a + (m —2)2a+ma)  yith one cluster is not the minimum size configuration, and we
7=0.571 should construct IBGP graph such that each group of nodes
+(m —1)a is a separate cluster (casié)j. Now the question is which
of the nodes should be reflectors. As observed earlier, the
= Zmdij + (k= 1)(2ma = 3a) IBGP configuration formed by selecting, as the reflector
J=0.j#i in all the clustersV; should be smaller in size than the
+(km — 1)a (24) IBGP configuration formed by selecting any other node from
ub,...,ul _, as the reflector in clustér;. If in some cluster

Now note thatkma — a > (2ma — 3a) as long ask > 2, V; we select node:] instead of nodex), as the reflector, then
i.e., when we have more than one group of nodes in gt&ph the change in the size of the resultlng IBGP configuration is
(i.e., more than one node @, which is the non-trivial case), ((k — 1)a+ (m — 1)a) — (o +2(m — 2)a) = (k+ 1 —m)a.
the size of IBGP graph with only one cluster is smalletff So if m > k + 1, which is the case in grap&’ due to our
is selected as the reflector rather thgn Hence if the IBGP construction, then it is better to seleet as reflector rather
conflguratlon is to have only one cluster then We should selegtin any other node in clustdf;. Now it is clear that the
someu}, as the reflector, wheréis such thatZ] —o,j=i™di; optimal IBGP configuration for grapy’ should have clusters
is minimum. Vo, ..., Vk—1 and we should try to select node§ as the

If we assume that the IBGP configuration is constructedflectors. But according to conditioiv) of Theorem 5.1, in
according to cassiil), i.e., each group of nodes is a separateach inter-cluster link, we need at least one of the nodes to be
cluster, then we haveé: clustersVy,...,V,_1. Let u} be areflector. So we want to pick minimum number of reflectors
reflectorsvi. Now we can see that the size of this IBGP grapbf form v, such that we cover all the inter-cluster links and
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the reflectors in the other clusters should be of the fafm And the optimization is subject to the following constraints.

Note that this is the vertex cover for the original gra@h

Hence the problem is at least as hard as the minimum vertex

cover for general graphs. ]

IX. ALGORITHM

In section VIII, we proved that the problem of obtaining
a minimum size IBGP configuration satisfying the conditions
of Theorem 5.1 is NP hard. Clearly this is not desirable, but
still it is not as bad as the case in [9][12], where the authors
prove that even detecting anomalies due to MED and IBGP

path asymmetries is NP hard.

In this section we formulate our problem as an Integer
Linear Program (ILP). Although this may not be an attractive Sij
solution since solving the ILP might take exponential time, the

T+ > Vi Vi, j (29)
T+ x5+ cy = 285 Vi, j (30)
Tit+aj+ce; < 285+1 Vi, j (31)
(cij — cin)P(0iz,00) < 0 Vi, j,k (32)
Sij = 04 Vi, J (33)
Z sij <oy Vi (34)

Jj#i
sy o= 1 Vi (35)

J#i
Cik + ey —ciy <1 Vi, j, k (36)
= sj Vi, j (37)
Cij = Cj; Vi, (38)

ILP itself can be used as a starting point for obtaining other

intelligent heuristics. For example, the ILP can be relaxed to The set of equations (29) state that if nodes are clients

a Linear Program (LP) and then some intelligent roundirf different clusters then they cannot be neighbors in IGP
can be used. The ILP formulation helps in understanding tRennectivity graph (this is the conditiofv) of the Theorem
structure of the problem, and the insights can then be applied)- Together, the sets of equations (30) and (31) relate the
to design other approaches such as tabu search, simuld@dablesz;,z;, ci;, si; (basically the equations state that there
annealing etc. The study of these alternate approachedsign IBGP session between nodeg only when eitheri, j

outside the scope of this work.
Now we give the ILP formulation of the problem. L&t=

form a client-reflector (or reflector-client) pair in the same
cluster or both are reflectors). The set of equations (32) state

{0,1,..., N —1}, whereN is the number of BGP speakers irthat if nodesi, j are in same cluster but nodes: are not,

the AS. We define the following binary variablgsi, j € 7:

L
Tlo

1 if nodesi,j belong to same cluster
Cij = .
0 otherwise

if node is a reflector
if node s is a client

1 if nodesi, j are IBGP peers
Sij = .
0 otherwise

We assume the following quantities as given:
d;;: IGP weight for shortest path between nodeg
«;: max. IBGP connections permissible at nade

~_J 1 ifijisalink in the IGP connectivity graph
Y57 0 otherwise

0 if nodei, j learn about paths through
samenextAS via EBGP peers
1 otherwise

045 =

We also define a functioth : # x ®# — {—1,1} as:

oz, y) = {

1 if x>y
—1 otherwise

We define the cost functiof’ as the size of the logical

graph:

W = Z Z Sijéij

)
Now our objective is to minimize cost’.

min W

Sij

(28)

thend;; < d;; (this is the conditionii) of the Theorem 5.1).
Equations (33) state that if nodég learn about paths through
the samenext AS via EBGP peers, then they should be IBGP
peers (this is the condition)(of the Theorem 5.1). Equations
(34) take care of the resource constraint (maximum number
of IBGP sessions permissible) at each node. The rest of the
equations (35)-(38) makes sure that the solution is consistent
with the IBGP constraints (like each node should have at least
one IBGP session (35), if nodésj and nodeg, k are in same
cluster then nodeg, k£ are also in the same cluster (36), and
IBGP peering (37) and clustering (38) should be symmetric).
Note that this ILP is flexible in the sense that if we need
some node (say nodg as a reflector (or client) then it can be
easily incorporated in the ILP by adding, = 1 (or z;, = 0)
in the list of constraints.

X. CONCLUSION

The two straightforward approaches to tackle the routing
oscillations and loops due to MED and IBGP path asymmetries
are either to modify the protocol or to configure the AS in an
intelligent manner such that the anomalies are absent. In [16]
Musunuri et al. takes the first approach and proposes changes
in BGP. But we believe that due to the large-scale deployment
of BGP, it will be difficult to incorporate any major changes in
the protocol at this point of time. In this paper we followed the
second approach and proved conditions on IBGP configuration
which are easy to check and guarantee the absence of the
anomalies due to MED attribute and path asymmetry. We also
look into the time complexity of the problem of constructing
an IBGP configuration with minimum size, while satisfying
the conditions developed in the paper and some other resource
constraints, for given IGP connectivity graph. We then give an



algorithm based on integer linear programming to solve the
problem.
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