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Data Privacy for a ρ-Recoverable Function
Ajaykrishnan Nageswaran and Prakash Narayan , Fellow, IEEE

Abstract— A user’s data is represented by a finite-valued
random variable. Given a function of the data, a querier is
required to recover, with at least a prescribed probability,
the value of the function based on a query response provided
by the user. The user devises the query response, subject to
the recoverability requirement, so as to maximize privacy of the
data from the querier. Privacy is measured by the probability
of error incurred by the querier in estimating the data from
the query response. We analyze single and multiple independent
query responses, with each response satisfying the recoverability
requirement, which provide maximum privacy to the user. In the
former setting, we also consider privacy for a predicate of the
user’s data. Achievability schemes with explicit randomization
mechanisms for query responses are given and their privacy
compared with converse upper bounds.

Index Terms— Chernoff radius, function computation,
predicate privacy, privacy, recoverability.

I. INTRODUCTION

CONSIDER a (legitimate) user’s data that is represented
by a finite-valued random variable (rv) with known

probability mass function (pmf). A querier wishes to compute
a given function of the data from a user-provided query
response which is a suitably randomized version of the data.
The user devises the query response so as to enable the querier
to recover from it the function value with a prescribed accuracy
while maximizing privacy of the data, i.e., minimizing the
likelihood of the querier learning the data value from it.
A generalization entails the user devising multiple independent
such query responses with each query response adhering to
the prescribed recoverability requirement, while maximizing
overall privacy.

We consider a new and rudimentary formulation of this
setting in which the user forms a query response from which
the querier can recover the function value with probability
at least ρ, 0 ≤ ρ ≤ 1. Under this requirement, the chosen
query response must afford maximum data privacy. Specifi-
cally, the query response must inflict – on the querier’s best
estimate from it of the data value – a maximum probability
of error. Beginning with a single query response, we give an
explicit characterization of a randomization mechanism that
enables ρ-recoverability of the function value and yields the
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corresponding maximum privacy, termed ρ-privacy. In partic-
ular, our query-response scheme is tantamount to an “add-
noise” mechanism with the user computing first the function
value and then adding to it a suitable value-dependent noise.
Our optimal single query response depends on the pmf of the
data rv only in a limited way through associated minentropies.
Furthermore, when privacy is sought for a predicate of the
user data, we obtain a characterization of predicate ρ-privacy
and an explicit randomization mechanism that attains it. Next,
when the querier elicits n ≥ 1 ρ-recoverable and independent
query responses, privacy of user data can degrade while
accuracy of function estimation by the querier improves.
We provide a converse upper bound for maximum privacy
with respect to such responses, i.e., ρ-privacy, for every n.
When 0.5 < ρ ≤ 1, this upper bound decays exponentially
in n to a limit which is the querier’s data-estimation error
on the basis of a knowledge of the exact function value
(i.e., corresponding to ρ = 1). The rate of this decay is shown
to be (the Kullback-Leibler divergence) D (Ber(0.5)||Ber(ρ)).
We provide an explicit add-noise achievability scheme with
privacy that converges to the mentioned limit at the same
exponential rate. When 0 ≤ ρ ≤ 0.5, we again provide
an explicit add-noise achievability scheme. While it remains
unknown whether the corresponding privacy is optimal, this
scheme is shown to prevent the querier from estimating
exactly the function value for any n. Neither achievability
scheme depends on a knowledge of the pmf of the data rv.
Finally, these two achievability schemes are shown to be
asymptotically superior in privacy to a scheme made up of
(conditionally) independent and identically distributed (i.i.d.)
repetitions of our optimal single query response; this is done
by means of suitable asymptotic approximations of privacy in
terms of Chernoff radii. The superiority of the former schemes
is enabled by rendering an estimation by the querier of the
exact function value to be more error-prone than by the latter
scheme, while conforming to the ρ-recoverability requirement.

An explanation of our approach is in order. In a model for
private function computation, the querier can possess initial
knowledge or beliefs of the user’s data in the form of a
family of prior pmfs that describe said data. Accordingly,
the user must fashion a query response or responses that
assure data privacy in the form of an adequate querier’s
probability of data-estimation error for every prior in said
family. As indicated in Section VI, the minmax of the
probability of data-estimation error (maximum and minimum,
respectively, over query responses and prior pmfs) serves
as a minimum guarantee of privacy for user data. In this
approach, our concept of ρ-privacy developed below plays a
basal role whose operational significance is clear also if the
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querier’s uncertainty regarding the user’s data were reflected
by a (single) known pmf or if the user’s data were known
to be generated by said pmf. It should be added that the
maximum probability of error criterion is eminently tractable –
as our work shows – compared with more discerning measures,
e.g., L1- or L2-distances between user data and the querier’s
estimate of it. The latter measures serve to penalize deviation
of the querier’s estimate of user data from its true value,
a discriminating feature missing in our work (and one which
is currently under study).

Our approach is in the spirit of prior works that deal with
information leakage of a user’s private data with associated
nonprivate correlated data. A randomized version of the non-
private data is released publicly under a constraint on the
expected distortion between the nonprivate and public data.
For instance, in [8], [28], and [30], leakage as measured
by the mutual information between the private and public
data is minimized with respect to the “channel” from the
former to the latter, while constraining a distortion between the
nonprivate and public data. In a more elaborate setting [32],
temporally i.i.d. private and nonprivate data that are correlated
across multiple users are encoded into a bin index. With this
index and additional side-information as inputs, a decoder
reconstructs the nonprivate data under a distortion constraint.
Privacy is gauged by the conditional entropy rate of the
private data given the decoder’s inputs, and achievable privacy-
distortion pairs are characterized. These works are based on
principles of rate distortion theory. A variant model in [27]
considers private and public data as the input and output
of a channel with a “hard” distortion requirement between
them being met with probability 1. Based on a concept of
“maximal leakage” introduced in [21], privacy-recoverability
tradeoffs are characterized with privacy measured in terms of
α-Rényi divergence. In a separate vein, in [20] a possibly
randomized function of the private and nonprivate data is
released publicly while constraining the expected distortion
between the nonprivate and public data. Measuring privacy in
terms of a minimal expected loss function of private data and
its estimate based on public data, optimal privacy mechanisms
are “learned” in binary and Gaussian settings using techniques
based on generative adversarial nets [18]. By comparison,
for finite-valued data and query responses, upon limiting
ourselves to information leakage as a probability of error
and recoverability as a (pointwise) conditional probability of
error, we obtain exact and approximate utility-privacy tradeoffs
for single and multiple query responses, respectively. This
is in contrast to a prior approach [3] in which maximum a
posteriori (MAP) estimates of private and nonprivate data are
formed on basis of a randomized version of the latter which
is made public. The private, nonprivate and public data are
assumed to form a Markov chain. Under a constraint on the
probability of estimating correctly the private data, mecha-
nisms are sought for said randomization so as to maximize
correct MAP estimation of the nonprivate data.

An important movement that has received dominant
attention in recent years is differential privacy, introduced
in [12] and [13] and explored further in [4], [7], [25], and [29],
among others. Consider a database that hosts multiple users’

data that, in our framework, constitutes a data vector. The
notion of differential privacy stipulates that altering a data
vector slightly leads only to a near-imperceptible change in
the corresponding probability distribution of the output of the
privacy mechanism, i.e., query responses that are randomized
functions of data vectors. We note that unlike in differential
privacy, our work lacks a notion of closeness of datasets. Upon
imposing a differential privacy constraint, there exists a large
body of work that seeks to maximize function recoverability
by minimizing a discrepancy cost between function value
and randomized query response; a sampling is mentioned
below. In contrast, our work maximizes privacy under a con-
straint on recoverability, and may be viewed as a companion
approach. Considering a class of linear functions of data,
tradeoffs between recoverability as measured by the worst-
case L2-distance (over user data) between function value
and query response, and differential privacy, are examined
in [19]. Similar tradeoffs for add-noise differential private
mechanisms with an additional restriction are characterized
in [17]. Other pertinent works include parameter estima-
tion [33], empirical-frequency-of-data estimation [5] and dis-
tribution estimation [11], [22], [37], all under differential
privacy constraints. A relaxation of the concept of differential
privacy is examined in [4] in the form of distributional
differential privacy as part of a larger framework of “coupled-
worlds privacy.” Distributional differential privacy requires the
mentioned indistinguishability to hold for a random data vector
over probability distributions in a specified family (to which
our allusion above to the querier’s initial knowledge of a
family of prior pmfs for the user’s data is redolent). This is
in contrast to a worst-case requirement over the family of all
probability distributions of the data vector in a differential
privacy context.

Directions other than differential privacy also have been
pursued. As mentioned in [36], these include studies based on
clustering (e.g., [35]), t-closeness (e.g., [26]), data pertubation
(e.g., [15]), etc; see [36] for a comprehensive list. Other meth-
ods include (ρ1, ρ2)-privacy (e.g., [16]), confidence intervals
(e.g., [1]), and cryptographic approaches (e.g., [6]).

Our model for ρ-recoverable function computation with
associated privacy is described in Section II. The ρ-privacy
and predicate ρ-privacy for a single query response are
characterized in Section III, and ρ-privacy is extended to
multiple independent query responses in Section IV. The
inadequacy of (conditionally) i.i.d. repetitions of the optimum
ρ-privacy scheme of Section III in the context of Section IV is
brought out in Section V. The concluding Section VI mentions
unanswered questions even in our simple setting of multiple
independent query responses.

II. PRELIMINARIES

A (legitimate) user’s data is represented by a rv X taking
values in a finite set X with |X | = r, say, and of known pmf
PX with PX (x) > 0, x ∈ X . Throughout, we shall consider
a given mapping f : X → Z = {0, 1, . . . , k − 1}, 2 ≤ k ≤ r.
For a realization X = x in X , a querier – who does not know
x – wishes to compute f (x) from a query response (QR)
F (x) provided by the user, where F (x) is a rv with
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values in Z . A QR must satisfy the following recoverability
condition.

Definition 1: Given 0 ≤ ρ ≤ 1, a QR F (X) is
ρ-recoverable if

P
(
F (X) = f (x)

∣
∣X = x

) ≥ ρ, x ∈ X . (1)

Condition (1) can be written equivalently in terms of a
stochastic matrix W : X → Z with the requirement

W
(
f (x) |x) ≥ ρ, x ∈ X ; (2)

which, too, will constitute a ρ-recoverable QR. Such a
ρ-recoverable F (X) or W will be termed ρ-QR. Note that
ρ-recoverability in (1), (2) does not depend on PX .

Definition 2: A ρ-QR F (X) will be called an add-noise
ρ-QR if it can be expressed as

F (X) = f(X) + N mod k (3)

where N is a Z-valued rv that satisfies

N −◦− f(X) −◦− X (4)

and with conditional pmf given by

P
(
N = i

∣
∣X = x

)
= P

(
N = i

∣
∣f(X) = f(x), X = x

)

= P
(
N = i

∣
∣f(X) = f(x)

)
(5)

= V
(
i + f(x) mod k

∣
∣f(x)

)
(6)

for some stochastic matrix V : Z → Z with V (i|i) ≥ ρ,
i ∈ Z; we shall refer to it also as add-noise ρ-QR V . Thus,
an add-noise ρ-QR is obtained by adding to the function value
f(x) a noise N whose (conditional) pmf can depend on f(x).

By (3)-(6), an add-noise ρ-QR F (X) with V : Z → Z has
the following property:

P
(
F (X) = i

∣
∣f(X) = f(x), X = x

)

= V (i|f(x)), i ∈ Z, x ∈ X . (7)

Definition 3: Denoting by Z the rv F (X) with values in Z ,
the privacy of a ρ-QR F (X) (or equivalently ρ-QR W )
satisfying (1)

(
respectively (2)

)
is

πρ (F ) = πρ (W ) = min
g

P
(
g (Z) �= X

)
(8)

where the minimum is over all estimators g : Z → X of X
on the basis of F (X). Clearly, the minimum in (8) is attained
by the MAP estimator gMAP = gMAP (W ) : Z → X given by

gMAP (W )(i) = argmax
x∈X

PX (x) W (i|x), i ∈ Z (9)

so that (8) equals P
(
gMAP (W ) (Z) �= X

)
. When F (X) is an

add-noise ρ-QR V as in Definition 2, we shall denote πρ(F )
in (8) by πρ(V ). The corresponding minimum in (8) will be
denoted by P

(
gMAP (V ) (Z) �= X

)
where

gMAP (V )(i) = arg max
x∈X

PX (x)V
(
i|f(x)

)
, i ∈ Z. (10)

Ties in (9) and (10) are broken arbitrarily.
Remark: We assume throughout that the querier knows PX

and W for computing the MAP estimate in (9).

Definition 4: For each 0 ≤ ρ ≤ 1, the maximum privacy
that can be attained by a ρ-QR is termed ρ-privacy and denoted
by π (ρ), i.e.,

π (ρ) = max
W :W (f(x)|x)≥ρ

x∈X
πρ (W ). (11)

Remark: That the maximum in (11) exists will be seen
below.

The following simple lemma shows when a ρ-QR W is
also an add-noise ρ-QR, and will be helpful in our proofs of
achievability of privacy by ρ-QRs.

Lemma 1: Given 0 ≤ ρ ≤ 1, for a ρ-QR W : X → Z
with identical rows for all x ∈ f−1(i), i ∈ Z , there exists an
add-noise ρ-QR V = V (W ) : Z → Z with the same privacy,
i.e., with πρ(V ) = πρ(W ). Conversely, for an add-noise ρ-QR
V : Z → Z , there exists a ρ-QR W = W (V ) : X → Z with
identical rows as above, and with πρ(W ) = πρ(V ).

Proof: For a stochastic matrix W : X → Z which
satisfies (2) and has rows {(W (i′|x), i′ ∈ Z), x ∈ X} that
are identical for all x ∈ f−1(i), i ∈ Z , consider a stochastic
matrix V = V (W ) : Z → Z given by

V (i|j) = W (i|x) for every x ∈ f−1(j), i, j ∈ Z (12)

and an associated add-noise QR F ′(X) defined as in (3)-(6)
with V as above. Since V (i|i) ≥ ρ, i ∈ Z , in (12), F ′(X) is
an add-noise ρ-QR. To see that πρ(V ) = πρ(W ), we have

P
(
gMAP (V )

(
F ′ (X)

)
= X

)

=
∑

i∈Z
max
x∈X

P
(
X = x, F ′(X) = i

)
(13)

where in the right-side,

P
(
X = x, F ′(X) = i

)

=
∑

j∈Z
P
(
X = x, f(X) = j, F ′(X) = i

)

= P
(
X = x, f(X) = f(x)

)
PF ′(X)|f(X) (i|f(x)), by (7)

= PX(x)V
(
i|f (x)

)

= PX(x)W
(
i|x), by (12).

Hence, by (13),

1 − πρ(V ) = P
(
gMAP (V )

(
F ′ (X)

)
= X

)

=
∑

i∈Z
max
x∈X

PX(x)W
(
i|x)

= 1 − πρ(W ).

Conversely, given an add-noise ρ-QR V : Z → Z , consider
a stochastic matrix W = W (V ) : X → Z with identical
rows for all x ∈ f−1(i), i ∈ Z , defined by (12). By the
same steps as above, this W is a ρ-QR and, furthermore,
πρ(W ) = πρ(V ).

A justification of our model above is warranted. Our choice
of the probability of error as a measure of recoverability as
well as privacy is driven by considerations of tractability and
obtaining exact answers, as indicated in Section I. In particular,
it enables us to identify optimal or asymptotically optimal
ρ-QRs in our achievability proofs. In symmetry with the
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pointwise measure of recoverability in X = x in (1) or (2),
it would be preferable to consider a redolent measure of
privacy in (8), (11) that is pointwise in Z = i, viz.

max
W :W (f(x)|x)≥ρ

x∈X
max
i∈Z

P
(
gMAP (W ) (Z) �= X

∣∣ Z = i
)
.

However, such conservatism leads to intractability; by contrast,
our liberal choice in (8), (11), which is equivalent to

max
W :W (f(x)|x)≥ρ

x∈X
max
i∈Z

P
(
gMAP (W ) (Z) �= X, Z = i

)
, (14)

makes for comprehensive analysis as will be seen below; the
equivalence of (14) is explained in the remark following the
proof of Theorem 2 in the next section.

Concerning ρ-recoverability, we add that there is no loss
of generality in (1), (2) by not considering an estimate of
f(X) on the basis of F (X); this is so, because the user can
emulate any such estimation strategy of the querier to produce
yet another ρ-QR.

Lastly, a seemingly more general setting comprising “private
data X , correlated nonprivate data Y and publicly released
data Z” is addressed below; see Remark (iii) after the proof
of Proposition 3.

III. ρ-PRIVACY FOR A SINGLE QUERY RESPONSE

A characterization of ρ-privacy is provided by obtaining
first an upper bound for π(ρ) and then identifying explicitly
an add-noise ρ-QR whose privacy meets the bound.

Let

x∗=argmax
x∈X

PX (x), x∗
i =arg max

x∈f−1(i)
PX (x), i ∈ Z

(15)

and suppose that x∗ ∈ f−1 (i∗) for some i∗ ∈ Z , where x∗, i∗

and x∗
i , i ∈ Z , need not be unique. Further, set

ρc =
PX (x∗)

∑

i∈Z
PX (x∗

i )
(16)

and observe that 1/k ≤ ρc < 1, where the left inequality is by

PX (x∗)
∑

i∈Z
PX (x∗

i )
≥ PX (x∗)

∑

i∈Z
PX (x∗)

=
1
k

.

The following choice of ρ-QR W = Wo : X → Z will
play a material role in the achievability proof of ρ-privacy
in Theorem 2 below:

Wo (i|x)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max{ρc, ρ}, i = f(x)(
1 − max{ρc, ρ}

)
PX (x∗

i )�
l �=f(x)

PX(x∗
l )

, i �= f(x),

x ∈ X , i ∈ Z.

(17)

We note that Wo has the property that for each i ∈ Z , all rows
of Wo corresponding to x ∈ f−1 (i) are identical. By dint

Fig. 1. π(ρ) vs. ρ.

of Lemma 1, the associated stochastic matrix Vo : Z → Z
given by

Vo (i|j)
= Wo (i|x) for every x ∈ f−1 (j)

=

⎧
⎨

⎩

max{ρc, ρ}, i = j(
1 − max{ρc, ρ}

)
PX(x∗

i )�
l �=j

PX(x∗
l )

, i �= j, i, j ∈ Z (18)

will be also of consequence in achieving ρ-privacy.
An exact characterization of ρ-privacy is provided by
Theorem 2: ρ-privacy equals

π (ρ) = 1 − max

{

PX (x∗), ρ
∑

i∈Z
PX (x∗

i )

}

= 1 − max {ρc, ρ}
∑

i∈Z
PX (x∗

i ), 0 ≤ ρ ≤ 1. (19)

Furthermore, ρ-privacy is achieved by the ρ-QR Wo in (17)
and, additionally, by the add-noise ρ-QR Vo in (18).

Remarks:
(i) The choice of Wo and Vo in (17) and (18), and the

value of ρ-privacy in (19), depend on PX only through
PX (x∗

i ), i ∈ Z , i.e., PX

(
f−1(i)

)
2−Hmin(Pi), i ∈ Z ,

where Hmin(Pi) is the minentropy of the pmf Pi =(
PX(x)/PX

(
f−1(i)

)
, x ∈ f−1(i)

)
.

(ii) By Theorem 2,

π(ρ) =

⎧
⎨

⎩

1 − PX (x∗), 0 ≤ ρ ≤ ρc

1 − ρ
∑

i∈Z
PX (x∗

i ), ρc ≤ ρ ≤ 1

and is plotted in Fig. 1. In particular, for 0 ≤ ρ ≤ ρc,
π(ρ) = 1−PX (x∗) and is the error of a MAP estimator
of X without any observation. For ρ = 1, π(1) = 1 −∑

i∈Z
PX (x∗

i ) is the error of a MAP estimator of X on

the basis of f(X).
(iii) The ρ-privacy achieving ρ-QR Wo and the correspond-

ing add-noise ρ-QR Vo in Theorem 2 are not unique. For
instance, see Remark (ii) after the proof of Proposition 3,
Remark (ii) following Theorem 5 and the first part of
the Remark following Theorem 6.

Proof: That the two characterizations of π(ρ) in (19) are
identical follows by straightforward manipulation. We first
show that ρ-privacy cannot exceed the right-side(s) of (19),
and then identify a ρ-QR that attains it.
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Converse: Clearly

P
(
gMAP (W ) (Z) = X

) ≥ PX (x∗)

and for every W : X → Z satisfying (2),

P
(
gMAP (W ) (Z) = X

)
=

∑

i∈Z
max
x∈X

PX (x)W (i|x)

≥
∑

i∈Z
max

x∈f−1(i)
PX (x) W (i|x)

≥ ρ
∑

i∈Z
PX (x∗

i )

leading to

P
(
gMAP (W ) (Z) = X

) ≥ max

{

PX (x∗), ρ
∑

i∈Z
PX (x∗

i )

}

.

(20)

Hence

πρ (W ) = P
(
gMAP (W ) (Z) �= X

)

≤ 1 − max

{

PX (x∗), ρ
∑

i∈Z
PX (x∗

i )

}

, 0≤ρ≤1

(21)

so that the same upper bound, valid for all W : X → Z
subject to (2), applies to π(ρ), too.

Achievability: We show that the choice of the ρ-QR Wo :
X → Z in (17) has privacy πρ (Wo) equal to the right-side(s)
of (19). To this end,

1 − πρ (Wo) = P
(
gMAP (Wo) (Z) = X

)

=
∑

i∈Z
max
x∈X

PX (x) Wo (i|x)

=
∑

i∈Z
max

{

max
x∈f−1(i)

PX (x) Wo (i|x),

max
x �∈f−1(i)

PX (x) Wo (i|x)

}

=
∑

i∈Z
max

{
PX (x∗

i )max{ρc, ρ},

max
x �∈f−1(i)

PX(x)Wo (i|x)
}

, by (17). (22)

We claim that

PX (x∗
i )max{ρc, ρ} ≥ max

x �∈f−1(i)
PX (x)Wo (i|x), i ∈ Z

(23)

whereupon (22) becomes

1 − πρ (Wo) = max{ρc, ρ}
∑

i∈Z
PX (x∗

i )

so that the privacy πρ (Wo) equals the right-side(s) of (19).
It remains to establish (23). Considering first the case
0 ≤ ρ ≤ ρc, we must show for each x �∈ f−1(i) that

PX (x∗
i ) ρc ≥ PX (x) Wo (i|x)

= PX(x) (1 − ρc)
PX (x∗

i )∑

j �=f(x)

PX

(
x∗

j

) , by (17)

i.e.,

ρc

1 − ρc
≥ PX (x)

∑

j �=f(x)

PX

(
x∗

j

) (24)

which, in turn, would follow if

ρc

1 − ρc
≥ PX (x∗)

∑

j �=f(x)

PX

(
x∗

j

) ,

which is tantamount to showing that
∑

j �=i∗
PX

(
x∗

j

)

∑

j �=f(x)

PX

(
x∗

j

) ≤ 1. (25)

Clearly, (25) holds for each x �∈ f−1(i), as the denominator
is either larger than or equal to the numerator for all i ∈ Z .
For the case ρc ≤ ρ < 1, we must show (24) with ρc replaced
by ρ; this follows readily since

ρ

1 − ρ
≥ ρc

1 − ρc
, ρc ≤ ρ < 1.

For ρ = 1, we have by (17) that Wo (i|x) = �
(
i =

f (x)
)
, x ∈ X , i ∈ Z , whereby (23) holds trivially.

Finally, that the add-noise ρ-QR Vo achieves ρ-privacy
follows by Lemma 1.

Remark: The equivalence in (14) is justified by the proof of
Theorem 2 which shows, in effect, that a common maximizer
in

arg max
W :W (f(x)|x)≥ρ

x∈X
P
(
gMAP (W ) (Z) �= X

)

= arg max
W :W (f(x)|x)≥ρ

x∈X

∑

i∈Z
P
(
gMAP (W ) (Z) �= X, Z = i

)

= arg max
W :W (f(x)|x)≥ρ

x∈X
max
i∈Z

P
(
gMAP (W ) (Z) �= X, Z = i

)

is Wo in (17).
We close this section by considering ρ-privacy for a predi-

cate Y = h(X) of X , where h : X → Y = {0, 1, . . . , m−1},
2 ≤ m ≤ r, is a given mapping. Analogously as in Defini-
tion 3, predicate privacy1 of a ρ-QR F (X) or W in (1), (2) is

π′
ρ (F ) = π′

ρ (W ) = P
(
g′MAP (W ) (Z) �= Y

)

and predicate ρ-privacy is

π′(ρ) = max
W :W (f(x)|x)≥ρ

x∈X
π′

ρ(W ). (26)

Clearly, π′(ρ) ≤ π(ρ), 0 ≤ ρ ≤ 1, and when h : X → Y = X
is the identity mapping, predicate ρ-privacy in (26) specializes
to ρ-privacy in (11).

Proposition 3 below provides an exact characterization
of π′(ρ). Its proof builds on that for π(ρ) in Theorem 2.

1Notation used in the context of ρ-privacy will be primed throughout for
predicate ρ-privacy.
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The following additional notation is convenient. Define

j∗ = arg max
j∈Y

PX

(
h−1(j)

)
,

PX(i, j) = PX

(
f−1(i) ∩ h−1(j)

)
, i ∈ Z, j ∈ Y,

j∗i = arg max
j∈Y

PX(i, j), i ∈ Z

and

ρ′c =
PX

(
h−1(j∗)

)
∑

i∈Z
PX (i, j∗i )

, (27)

where the maxima above need not be attained uniquely.
Observe that max

{
1
m , 1

k

} ≤ ρ′c ≤ 1. The right inequality
is by

ρ′c =

∑

i∈Z
PX (i, j∗)

∑

i∈Z
PX (i, j∗i )

≤ 1

while the left inequality follows from

PX

(
h−1(j∗)

)
∑

i∈Z
PX (i, j∗i )

≥ PX

(
h−1(j∗)

)
∑

i∈Z
PX (f−1(i))

= PX

(
h−1(j∗)

) ≥ 1
m

and

PX

(
h−1(j∗)

)
∑

i∈Z
PX (i, j∗i )

≥ PX

(
h−1(j∗)

)
∑

i∈Z
PX (h−1(j∗i ))

≥ PX

(
h−1(j∗)

)
∑

i∈Z
PX (h−1(j∗))

=
1
k

.

Proposition 3: Predicate ρ-privacy equals

π′(ρ) = 1 − max

{

PX

(
h−1(j∗)

)
, ρ

∑

i∈Z
PX (i, j∗i )

}

= 1 − max {ρ′c, ρ}
∑

i∈Z
PX (i, j∗i ), 0 ≤ ρ ≤ 1. (28)

Proof: Starting with the converse part, we have that

P
(
g′MAP (W ) (Z) = Y

) ≥ PX

(
h−1(j∗)

)

and for every ρ-QR W : X → Z in (2),

P
(
g′MAP (W ) (Z) = Y

)
=

∑

i∈Z
max
j∈Y

∑

x∈h−1(j)

PX(x)W (i|x)

≥ ρ
∑

i∈Z
max
j∈Y

PX(i, j)

= ρ
∑

i∈Z
PX(i, j∗i )

where the first equality uses

P
(
Y = j

∣
∣X = x, Z = i

)
= � (j = h(x)).

The converse proof is completed similarly as for Theorem 2.
Turning to the achievability part, consider the ρ-QR W ′

o :
X → Z specified for x ∈ X , i ∈ Z , j ∈ Y , as follows.

For ρ′c = 1

W ′
o(i|x) = � (f(x) = i) (29)

and for ρ′c < 1,

W ′
o(i|x)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max{ρ′c, ρ}+(1−max{ρ′c, ρ}) PX (i,j∗i )−PX(i,j)�
l∈Z

PX(l,j∗l )−PX (h−1(j))
,

i = f(x), j = h(x)
(1 − max{ρ′c, ρ}) PX (i,j∗i )−PX (i,j)�

l∈Z
PX(l,j∗l )−PX(h−1(j))

,

i �= f(x), j = h(x).
(30)

Since ρ′c < 1, observe in (30) that
∑

l∈Z
PX (l, j∗l ) − PX

(
h−1(j)

)

≥
∑

l∈Z
PX (l, j∗l ) − PX

(
h−1(j∗)

)
> 0.

We show in Appendix A that π′
ρ(W

′
o) equals the right-side

of (28).
This completes the proof of the proposition.
Remarks:
(i) Note that W ′

o has the property that for each i in Z ,
j in Y , all rows corresponding to x in f−1(i)∩ h−1(j)
are identical. Pursuant to Lemma 1, W ′

o can be inter-
preted as an add-noise ρ-QR obtained by adding to
f(X) a noise N that satisfies the Markov condition
N −◦− f(X), h(X) −◦− X .

(ii) When h is the identity mapping, W ′
o in (30) does not

coincide with Wo in (17); in fact, W ′
o reduces to

W ′′
o (i|x)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max{ρc, ρ}+(1−max{ρc, ρ}) PX (x∗
i )−PX (x)�

l∈Z
PX(x∗

l )−PX (x)
,

i = f(x),
(1 − max{ρc, ρ}) PX (x∗

i )−PX (x)�
l∈Z

PX(x∗
l )−PX (x)

, i �= f(x).

By Proposition 3 and Theorem 2, π′
ρ (W ′′

o ) = π(ρ) =
πρ (Wo). On the other hand, and unlike Wo, the ρ-QR
W ′′

o is not of the add-noise type in the sense of Defini-
tion 2 and also depends on the entirety of PX .

(iii) Proposition 3 covers the setting when privacy is sought
for a randomized function Y of the data X with
the (finite-valued) rvs X, Y having a given joint pmf.
Specifically ρ-privacy for Y corresponds to predicate
ρ-privacy in Proposition 3 with X̄ , h(X̄), f(X̄) and
F (X̄), where

X̄ = (X, Y ), h(X̄) = Y, f(X̄) = f(X), F (X̄) = Z,

(with an abuse of notation in f ).
(iv) In a similar vein, Proposition 3 also covers the setting

with “private data X , correlated nonprivate data Y
and publicly released data Z” alluded to in Section I.
Formally, ρ-privacy for the mentioned setting equals
predicate ρ-privacy in Proposition 3 applied to X̃ , h(X̃),
f(X̃) and F (X̃), where

X̃ = (X, Y ), h(X̃) = X, f(X̃) = Y, F (X̃) = Z.
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IV. MULTIPLE INDEPENDENT QUERY RESPONSES

In a general setting, given a mapping f : X → Z ,
a querier wishes to compute f(x), x ∈ X , from ρ-QRs
{(Ft(x), x ∈ X )}n

t=1, n ≥ 1. The rvs {Ft (X)}n
t=1 are taken

to be conditionally mutually independent, conditioned on X ,
but not necessarily identically distributed, with each Ft (X)
satisfying the ρ-recoverability condition (1). Correspondingly,
consider stochastic matrices {Wt : X → Z}n

t=1 such that

P
(
F1 (X) = i1, . . . , Fn (X) = in

∣
∣X = x

)

=
n∏

t=1

P
(
Ft (X) = it|X = x

)

=
n∏

t=1

Wt (it|x) , x ∈ X , i1, . . . , in ∈ Z (31)

say, with each Wt satisfying (2). Similarly, for add-noise
ρ-QRs Ft(X) as in Definition 2 with {Vt : Z → Z
where Vt(i|i) ≥ ρ, i ∈ Z}n

t=1,

P
(
F1 (X)= i1, . . . , Fn (X) = in

∣
∣X = x

)

=
n∏

t=1

Vt

(
it|f(x)

)
, x ∈ X , i1, . . . , in ∈ Z . (32)

In all contexts, denote Zt = Ft (X), t = 1, . . . , n.
This formulation is apposite when the main objective of

the querier is to improve its estimation accuracy (beyond ρ)
of a given f(X) by soliciting multiple ρ-QRs whereas the
user designs said ρ-QRs so as to maximize the privacy of
its data X . A different formulation in which an “adversarial
querier” elicits multiple ρ-QRs for various choices of functions
in order to destroy data privacy by isolating the value of X ,
is beyond the scope of this paper.

Remark: In addition to possibly eroding privacy, multiple
ρ-QRs enable the querier to estimate f(X) with a probability
that can exceed ρ. Precisely, for a MAP estimator hMAP of
f(X) on the basis of {Ft (X)}n

t=1 in (31), we have

P
(
hMAP (F1(X), . . . , Fn(X)) = f(X)

)

≥ max
{

ρ, max
i∈Z

P (f(X) = i), P
(

Bin(n, ρ) ≥
⌊n

2

⌋
+1

)}

(33)

where Bin(n, ρ) is a binomial rv with parameters n ≥ 1 and
0 ≤ ρ ≤ 1. In particular, for 0.5 < ρ ≤ 1, the right-side
of (33) tends to 1 as n → ∞. See Appendix C and Lemma 7.

Definition 5: For each 0 ≤ ρ ≤ 1 and n ≥ 1, the
ρ-privacy that can be attained by ρ-QRs {Ft(X)}n

t=1 as in (31)
with each Ft(X) satisfying (1)

(
or equivalently each Wt

satisfying (2)
)

is

πn (ρ) = max
W1,...,Wn:

Wt(f(x)|x)≥ρ, x∈X
πρ (W1, . . . , Wn),

where

πρ (W1, . . . , Wn) = min
gn

P
(
gn (Z1, . . . , Zn) �= X

)
,

with the minimum being taken over all estimators gn : Zn →
X on the basis of {Ft(X)}n

t=1. Thus,

πρ (W1, . . . , Wn) = P
(
gMAP (W1, . . . , Wn) (Z1, . . . , Zn) �= X

)

(34)

where

gMAP (W1,...,Wn) (i1, . . . , in)

= arg max
x∈X

PX (x)
n∏

t=1

Wt (it|x), i1, . . . , in ∈ Z.

Similarly, for add-noise ρ-QRs {Ft(X)}n
t=1 as in (32),

we define

πρ (V1, . . . , Vn) = P
(
gMAP (V1, . . . , Vn) (Z1, . . . , Zn) �= X

)

(35)

with

gMAP (V1,...,Vn) (i1, . . . , in)

= arg max
x∈X

PX (x)
n∏

t=1

Vt

(
it|f(x)

)
, i1, . . . , in ∈ Z.

Of particular interest will be the cases Wt = W or Vt = V ,
t = 1, . . . , n, when we write (34) and (35) as

πρ (Wn) = P
(
gMAP (W n) (Z1, . . . , Zn) �= X

)

and

πρ (V n) = P
(
gMAP (V n) (Z1, . . . , Zn) �= X

)
.

We provide first in Section IV-A an upper bound for
ρ-privacy πn(ρ) which is valid for each 0 ≤ ρ ≤ 1 and every
n ≥ 1. Next, in Section IV-B, considering the realms 0.5 <
ρ ≤ 1 and 0 ≤ ρ ≤ 0.5 separately, we show corresponding
explicit achievability schemes. However, unlike in Section III
for the case n = 1, the lower bound for πn(ρ) from the
achievability schemes below, that use add-noise ρ-QRs, need
not coincide with the upper bound in Theorem 4 for any finite
n ≥ 1. These upper and lower bounds for πn(ρ) are rendered
into more convenient, albeit blunter forms in Section IV-C.

A. Converse
We provide next, as a converse result, an upper bound

for πn(ρ), n ≥ 1. For 0 ≤ ρ ≤ 1, set

Γn(ρ) = min
{

1−ρc, min
{

1−ρ, P
(

Bin(n, ρ) ≤
⌊n

2

⌋)}}

×
∑

i∈Z
PX(x∗

i ), n ≥ 1 (36)

and note that 0 ≤ Γn(ρ) ≤ 1.
Theorem 4: For each 0 ≤ ρ ≤ 1 and for every n ≥ 1,

πn(ρ) ≤ 1 −
∑

i∈Z
PX(x∗

i ) + Γn(ρ).

Remark: For 0 ≤ ρ ≤ 1 and n = 1, since

Γ1(ρ) = (1 − max{ρc, ρ})
∑

i∈Z
PX (x∗

i ),
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we have that the upper bound for πn(ρ) above reduces to that
for π(ρ) in the right-side of (21).

Proof: For W1, . . . , Wn satisfying (2),

P
(
gMAP (W1, . . . , Wn) (Z1, . . . , Zn) = X

)

≥ P
(
gMAP (W1) (Z1) = X

)

≥ max

{

PX (x∗) , ρ
∑

i∈Z
PX (x∗

i )

}

(37)

by (20). Also,

P
(
gMAP (W1, . . . , Wn) (Z1, . . . , Zn) = X

)

=
∑

(i1,...,in)∈Zn

max
x∈X

PX (x)
n∏

t=1

Wt (it|x). (38)

For each i ∈ Z and for l =
⌊

n
2

⌋
+ 1, . . . , n, set

Al(i)=
{

(i1, . . . , in)∈Zn : i occurs l times in (i1, . . . , in)
}
.

(39)

Then, in (38),

P
(
gMAP (W1, . . . , Wn) (Z1, . . . , Zn) = X

)

≥
∑

i∈Z

n∑

l=
 n
2 �+1

∑

(i1,...,in)∈Al(i)

max
x∈X

PX (x)
n∏

t=1

Wt (it|x)

≥
∑

i∈Z
PX (x∗

i )
n∑

l=
n
2 �+1

∑

(i1,...,in)∈Al(i)

n∏

t=1

Wt (it|x∗
i )

=
∑

i∈Z
PX (x∗

i ) si(n) (40)

where

si(n) =
n∑

l=
n
2 �+1

sl
i(n) (41)

with

sl
i(n) =

∑

(i1,...,in)∈Al(i)

n∏

t=1

Wt (it|x∗
i ), i ∈ Z. (42)

To understand the functional dependence of sl
i(n) on(

W1 (i|x∗
i ) , . . . , Wn (i|x∗

i )
)
, consider as an instance all

(i1, . . . , in) ∈ Al(i) with i1 = . . . = il = i and it �= i, t = l+
1, . . . , n. The corresponding sum for such (i1, . . . , in) ∈ Al(i)
in (42) equals
(

l∏

t=1

Wt (i|x∗
i )

)
∑

(il+1,...,in)∈Zn−l

it �=i, t=l+1,...,n

n∏

t=l+1

Wt (it|x∗
i )

=

(
l∏

t=1

Wt (i|x∗
i )

)
n∏

t=l+1

(1 − Wt (i|x∗
i )).

In this manner, we observe that sl
i(n) reduces to a sum of

(
n
l

)

terms (corresponding to the locations of l is), each of which is
a product of Wt (i|x∗

i )-terms for l locations of t in {1, . . . , n}
corresponding to occurrences of i, and

(
1−Wt (i|x∗

i )
)
-terms

in the remaining (n − l) locations. Thus, sl
i(n) is a function

of
(
W1 (i|x∗

i ) , . . . , Wn (i|x∗
i )
)
.

We seek a suitable lower bound for si(n) in terms of
ρ and n, to which end we make the

Claim: For i ∈ Z , si(n) is a nondecreasing function of each
Wt (i|x∗

i ), t = 1, . . . , n.
By (41), the claim and the observation following (42),

si(n) is bounded below in an identical manner for i =
0, 1, . . . , k−1, upon replacing each W1 (i|x∗

i ) , . . . , Wn (i|x∗
i )

by ρ, in accordance with (2). By said observation, we have
from (41) for i = 0, 1, . . . , k − 1 that

si(n) ≥
n∑

l=
n
2 �+1

(
n

l

)
ρl (1 − ρ)n−l

= P
(

Bin(n, ρ) ≥
⌊n

2

⌋
+ 1

)
. (43)

Then from (40),

P
(
gMAP (W1, . . . , Wn) (Z1, . . . , Zn) = X

)

≥
(
∑

i∈Z
PX (x∗

i )

)

P
(

Bin(n, ρ) ≥
⌊n

2

⌋
+ 1

)
. (44)

Combining (37) and (44), we get

P
(
gMAP (W1,...,Wn) (Z1, . . . , Zn) = X

)

≥ max

{

PX (x∗),
(∑

i∈Z
PX (x∗

i )
)

× max
{

ρ, P
(

Bin(n, ρ) ≥
⌊n

2

⌋
+ 1

)}
}

= max
{

ρc, max
{

ρ, P
(

Bin(n, ρ) ≥
⌊n

2

⌋
+ 1

)}}

×
∑

i∈Z
PX (x∗

i )

=
∑

i∈Z
PX (x∗

i ) − Γn(ρ)

from which the assertion of the theorem follows since
W1, . . . , Wn were arbitrary subject to (2).

It remains to establish the claim, and it suffices to do so
with i = 0, t = 1, i.e., we show that s0(n) is nondecreasing
in W1 (0|x∗

0). From the observation following (42), sl
0(n) is a

sum of
(
n
l

)
terms, each of which is a product of Wt (0|x∗

0)-
terms for l locations of t in {1, . . . , n} where 0s occur and(
1 − Wt (0|x∗

0)
)
-terms for the remaining (n − l) locations.

Thus, each of these
(
n
l

)
terms will have either W1 (0|x∗

0) or
1 − W1 (0|x∗

0) in it (depending on whether or not i1 = 0).
The latter possibility yields a term with −W1 (0|x∗

0) which is
seen to be canceled by a suitable term from sl+1

0 (n). Also,

sn
0 (n) = W1 (0|x∗

0)
n∏

t=2
Wt (0|x∗

0). Thus, s0(n) consists of

terms with +W1 (0|x∗
0) or with no W1 (0|x∗

0), and thereby
is linear and nondecreasing in W1 (0|x∗

0). This proves the
claim.

B. Achievability
Throughout our achievability proofs, for the sake of con-

venience and without loss of essential generality, we assume
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Fig. 2. Add-noise ρ-QR V1. (a) k even. (b) k odd.

that

PX(x∗
i ) ≥ PX(x∗

i+1), i = 0, 1, . . . , k − 2. (45)

1) Realm 0.5 < ρ ≤ 1: Our achievability scheme uses
the following stochastic matrix V1 : Z → Z , not depending
on PX , given by

V1(i|j)

=

⎧
⎪⎨

⎪⎩

ρ, i = j

1 − ρ, j even, i = j + 1 mod k or j odd, i = j − 1
0, otherwise,

(46)

for i, j ∈ Z . Thus, for k even, the k × k-matrix V1 is block-
diagonal with exactly k/2 blocks of 2 × 2-matrices

[
ρ 1 − ρ

1 − ρ ρ

]
.

For k odd, the upper-left (k− 1)× (k− 1)-submatrix of V1 is
similarly structured with (k − 1)/2 such blocks, and with the
kth row being V1(0|k − 1) = 1 − ρ and V1(k − 1|k − 1) = ρ.
See Fig. 2. Corresponding to V1 : Z → Z in (46), consider the
conditionally i.i.d. ρ-QRs {Zt = Ft(X)}n

t=1 given by (32) as

P
(
F1 (X) = i1, . . . , Fn (X) = in

∣
∣X = x

)

=
n∏

t=1

V1 (it|f(x)). (47)

For 0 ≤ ρ ≤ 1, set

Λn(ρ)=P
(

Bin(n, ρ)≤
⌊n

2

⌋)
(

∑

i∈Z: i odd

PX (x∗
i )

)

, n ≥ 1

(48)

and note that 0 ≤ Λn(ρ) ≤ 1.

Theorem 5: Let 0.5 < ρ ≤ 1. For every n ≥ 1, the add-
noise ρ-QRs {Zt = Ft(X)}n

t=1 in (47) with V1 : Z → Z
in (46) yield privacy

πρ (V n
1 ) ≥ 1 −

∑

i∈Z
PX (x∗

i ) + Λn(ρ). (49)

Remarks:
(i) The choice of V1 : Z → Z takes its cue from the proof

of Theorem 4. The first lower bound in (40) results upon
discarding those (i1, . . . , in) in Zn in which the most
frequent symbol from Z occurs no more than

⌊
n
2

⌋
times.

The specific choice of V1 in (46) ensures that the number
of such occurrences is at least

⌊
n
2

⌋
+ 1.

(ii) Observe that when PX is the uniform pmf on X , for
n = 1, πρ (V1) = 1 − kρ/r = π(ρ), the latter by (19).
On the other hand, πρ (V1) can be strictly smaller
than π(ρ); for instance for X = Z = {0, 1, 2}, PX =
(0.5, 0.3, 0.2), f(x) = x, and ρ = 0.6, it is straightfor-
ward to show that π(ρ) = 0.4 whereas πρ (V1) = 0.38.

Proof: We have

P
(
gMAP(V n

1 ) (Z1, . . . , Zn) = X
)

=
∑

(i1,...,in)∈Zn

max
x∈X

PX(x)
n∏

t=1

V1

(
it|f(x)

)
. (50)

When ρ = 1, V1 : Z → Z in (46) has 1s along its diagonal and
0s elsewhere. Hence, the right-side of (50) equals

∑

i∈Z
PX (x∗

i ).

Since Λn(1) = 0, (49) holds (with equality).
Hereafter we take 0.5 < ρ < 1. By the form of V1 in (46),

for each x ∈ X only those (i1, . . . , in) ∈ Zn yield nonzero
contributions in (50) when consisting of it = f(x); and it =
f(x)+1 mod k for f(x) even or it = f(x)− 1 for f(x) odd.
Accordingly, we distinguish between the cases when k is even
or it is odd.

(i) k even: For i = 0, 2, . . . , k − 2, set

Bn(i) =
{

(i1, . . . , in) ∈ Zn : it = i or it = i + 1
}
. (51)

Then in (50),

P
(
gMAP(V n

1 ) (Z1, . . . , Zn) = X
)

=
∑

i=0,2,...,k−2

∑

(i1,...,in)∈Bn(i)

max
x∈f−1(i)∪f−1(i+1)

PX(x)
n∏

t=1

V1

(
it|f(x)

)
(52)

where for each i = 0, 2, . . . , k− 2 and for each (i1, . . . , in) ∈
Bn(i),

max
x∈f−1(i)∪f−1(i+1)

PX(x)
n∏

t=1

V1

(
it|f(x)

)

= max
{
PX(x∗

i )ρ
li(i1,...,in) (1 − ρ)n−li(i1,...,in)

,

PX(x∗
i+1) (1 − ρ)li(i1,...,in)

ρn−li(i1,...,in)
}

(53)
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with li (i1, . . . , in) being the number of is in (i1, . . . , in). The
first term in {·, ·} above is no larger than the second if

li (i1, . . . , in) ≤ τn(i, ρ) �

⎢
⎢
⎢
⎣1

2

⎛

⎝n −
log P (x∗

i )

P(x∗
i+1)

log ρ
1−ρ

⎞

⎠

⎥
⎥
⎥
⎦.

Since 0.5 < ρ < 1, we observe by the assumption in (45) that
τn(i, ρ) ≤ ⌊

n
2

⌋
; and τn(i, ρ) ≤ n

2 − 1 for even2 n.
Then for i = 0, 2, . . . , k−2 and when τn(i, ρ) ≥ 0, by (53)

we get in (52) that

∑

(i1,...,in)∈Bn(i)

max
x∈f−1(i)∪f−1(i+1)

PX(x)
n∏

t=1

V1

(
it|f(x)

)

= PX(x∗
i+1)

τn(i,ρ)∑

l=0

(
n

l

)
(1 − ρ)l

ρn−l

+ PX(x∗
i )

n∑

l=τn(i,ρ)+1

(
n

l

)
ρl (1 − ρ)n−l

= PX(x∗
i+1)

n∑

l=n−τn(i,ρ)

(
n

l

)
ρl (1 − ρ)n−l

+ PX(x∗
i )

n∑

l=τn(i,ρ)+1

(
n

l

)
ρl (1 − ρ)n−l

≤ PX(x∗
i+1)

n∑

l=
 n
2 �+1

(
n

l

)
ρl (1 − ρ)n−l

+ PX(x∗
i )

n∑

l=0

(
n

l

)
ρl (1 − ρ)n−l (54)

where the first term in the previous inequality readily follows
from the observation above, since

n − τn(i, ρ) ≥
{

n − ⌊
n
2

⌋ ≥ ⌊
n
2

⌋
+ 1 for odd n

n
2 + 1 for even n.

Note that when τn(i, ρ) < 0, this upper bound in (54) remains
valid. By (52) and (54),

P
(
gMAP(V n

1 ) (Z1, . . . , Zn) = X
)

≤
∑

i=0,2,...,k−2

[
PX

(
x∗

i+1

)
P
(

Bin(n, ρ) ≥
⌊n

2

⌋
+ 1

)

+ PX (x∗
i )P

(
Bin(n, ρ) ≥

⌊n

2

⌋
+ 1

)

+ PX (x∗
i )P

(
Bin(n, ρ) ≤

⌊n

2

⌋) ]

=

(
∑

i∈Z
PX (x∗

i )

)

P
(

Bin(n, ρ) ≥
⌊n

2

⌋
+ 1

)

+

⎛

⎝
∑

i=0,2,...,k−2

PX (x∗
i )

⎞

⎠P
(

Bin(n, ρ) ≤
⌊n

2

⌋)
(55)

=
∑

i∈Z
PX (x∗

i ) − Λn(ρ). (56)

2When P
�
x∗

i

�
= P

�
x∗

i+1

�
, we get τn(i, ρ) = n/2 for even n. In this

case, replacing τn(i, ρ) = n/2 by τn(i, ρ) = n/2 − 1 does not alter
subsequent calculations.

(ii) k odd: For i = 0, 2, . . . , k−3, set Bn(i) as in (51), and

Bn(k − 1) =
{

(i1, . . . , in) ∈ Zn : it = 0 or it = k − 1
}
.

Then

P
(
gMAP(V n

1 ) (Z1, . . . , Zn) = X
)

≤
∑

i=0,2,...,k−3

∑

(i1,...,in)∈Bn(i)

max
x∈f−1(i)∪f−1(i+1)

PX(x)
n∏

t=1

V1

(
it|f(x)

)
(57)

+
∑

(i1,...,in)∈Bn(k−1)

max
x∈f−1(k−1)

PX(x)
n∏

t=1

V1

(
it|f(x)

)

≤
(

k−2∑

i=0

PX (x∗
i )

)

P
(

Bin(n, ρ) ≥
⌊n

2

⌋
+ 1

)

+
∑

i=0,2,...,k−3

PX (x∗
i )P

(
Bin(n, ρ)≤

⌊n

2

⌋)
+PX

(
x∗

k−1

)

×
(

P
(

Bin(n, ρ)≥
⌊n

2

⌋
+1

)
+P

(
Bin(n, ρ) ≤

⌊n

2

⌋))

=

(
∑

i∈Z
PX (x∗

i )

)

P
(

Bin(n, ρ) ≥
⌊n

2

⌋
+ 1

)

+

⎛

⎝
∑

i=0,2,...,k−1

PX (x∗
i )

⎞

⎠P
(

Bin(n, ρ) ≤
⌊n

2

⌋)

=
∑

i∈Z
PX (x∗

i ) − Λn(ρ) (58)

where in the inequality above, the first two terms on the
right-side obtain a la (55). When (i1, . . . , in) = (0, . . . , 0)
(the all-zero sequence), the maximum in (57) is over x in
f−1(0) ∪ f−1(1) ∪ f−1(k − 1). The preceding calculations
are, in effect over x in f−1(0), and are justified since
PX (x∗

0) ρn ≥ PX (x∗
1) (1 − ρ)n ≥ PX

(
x∗

k−1

)
(1 − ρ)n for

0.5 ≤ ρ ≤ 1.
The assertion of the theorem holds by (56) and (58).
2) Realm 0 ≤ ρ ≤ 0.5: Our achievability scheme uses

ρ-QRs as in (47) with V1 replaced by V2 : Z → Z , not
depending on PX , which is: for 0 ≤ ρ ≤ 1/k,

V2(i|j) =
1
k

, i, j ∈ Z (59)

and for 1/k < ρ ≤ 0.5,

V2(i|j)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1


 1
ρ� , j = 0, . . . ,

⌊
k


 1
ρ�
⌋⌊

1
ρ

⌋
− 1,

i =
⌊

j


 1
ρ�
⌋⌊

1
ρ

⌋
, . . . ,

(⌊
j


 1
ρ�
⌋

+ 1
)⌊

1
ρ

⌋
− 1;

1

k mod
 1
ρ� ,

j =
⌊

k


 1
ρ�
⌋⌊

1
ρ

⌋
, . . . , k − 1,

i =
⌊

j


 1
ρ�
⌋⌊

1
ρ

⌋
, . . . , k − 1;

0, otherwise.

(60)
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Fig. 3. Add-noise ρ-QR V2 for ρ = 1/3 and k = 8.

In particular, for 1/k < ρ ≤ 0.5, the k × k-matrix V2 consists

of

⌊
k


 1
ρ�
⌋

diagonal blocks of
⌊

1
ρ

⌋
×
⌊

1
ρ

⌋
-matrices, each with

identical elements equal to 1/
⌊

1
ρ

⌋
; and a single “filler” block

of size k mod
⌊

1
ρ

⌋
×k mod

⌊
1
ρ

⌋
with identical elements equal

to 1/
(
k mod

⌊
1
ρ

⌋)
. The latter is vacuous if

⌊
k


 1
ρ�
⌋⌊

1
ρ

⌋
= k,

i.e., k mod
⌊

1
ρ

⌋
= 0. See Fig. 3.

Theorem 6: Let 0 ≤ ρ ≤ 0.5. For every n ≥ 1, the add-
noise ρ-QRs {Zt = Ft(X)}n

t=1 in (47) with V1 replaced by
V2 : Z → Z in (59), (60) yield privacy

πρ (V n
2 )=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − PX (x∗) , 0 ≤ ρ ≤ 1
k

1 −

�
k


 1
ρ�
�

∑

i=0

PX

(
x∗

i
 1
ρ�
)

,
k mod

⌊
1
ρ

⌋
�= 0,

1
k < ρ ≤ 0.5

1 −

�
k


 1
ρ�
�
−1

∑

i=0

PX

(
x∗

i
 1
ρ�
)

,
k mod

⌊
1
ρ

⌋
= 0,

1
k < ρ ≤ 0.5.

(61)

Remark: For 0 ≤ ρ ≤ 0.5, the privacy πρ (V n
2 ) above lacks

dependence on n. However, for 0 ≤ ρ ≤ 1/k,

πρ (V n
2 ) = πρ (V2) = 1 − PX (x∗) = π(ρ)

where the last identity is by (19). Thus, for n = 1, the
add-noise ρ-QR with V2 too achieves ρ-privacy, as did Vo in
Theorem 2.

On the other hand, for 1/k < ρ ≤ 0.5, V2 can be strictly
inferior to Vo for n = 1; for instance, with PX being the
uniform pmf on X , by Theorem 6 with k mod

⌊
1
ρ

⌋
�= 0,

πρ (V2) = 1 −
⎛

⎝

⎢
⎢
⎢
⎣ k
⌊

1
ρ

⌋

⎥
⎥
⎥
⎦+ 1

⎞

⎠ 1
r

< 1 − k
⌊

1
ρ

⌋
1
r
≤ 1 − ρk

r
= π(ρ) = π(Vo)

where the last two identities are by Theorem 2.
Proof: We have

P
(
gMAP(V n

2 ) (Z1, . . . , Zn) = X
)

=
∑

(i1,...,in)∈Zn

max
x∈X

PX(x)
n∏

t=1

V2

(
it|f(x)

)
. (62)

When 0 ≤ ρ ≤ 1/k, we get from (59) that

P
(
gMAP(V n

2 ) (Z1, . . . , Zn) = X
)

= PX (x∗)

so that πρ (V n
2 ) = 1 − PX (x∗). Considering next

1/k < ρ ≤ 0.5, by the form of V2 in (60), for each

x ∈ X \
⎧
⎨

⎩
f−1

⎛

⎝

⎢
⎢⎢
⎣ k
⌊

1
ρ

⌋

⎥
⎥⎥
⎦
⌊

1
ρ

⌋
⎞

⎠ ∪ . . . ∪ f−1(k − 1)

⎫
⎬

⎭

only those (i1, . . . , in) ∈ Zn yield nonzero contributions
in (62) when

it ∈
⎧
⎨

⎩

⎢
⎢
⎢
⎣f(x)
⌊

1
ρ

⌋

⎥
⎥
⎥
⎦
⌊

1
ρ

⌋
, . . . ,

⎛

⎝

⎢
⎢
⎢
⎣f(x)
⌊

1
ρ

⌋

⎥
⎥
⎥
⎦ + 1

⎞

⎠
⌊

1
ρ

⌋
− 1

⎫
⎬

⎭
,

t = 1, . . . , n,

and for each

x ∈
⎧
⎨

⎩
f−1

⎛

⎝

⎢
⎢
⎢
⎣ k
⌊

1
ρ

⌋

⎥
⎥
⎥
⎦
⌊

1
ρ

⌋
⎞

⎠ ∪ . . . ∪ f−1(k − 1)

⎫
⎬

⎭

only those (i1, . . . , in) ∈ Zn yield nonzero contributions
in (62) when

it ∈
⎧
⎨

⎩

⎢⎢
⎢
⎣f(x)
⌊

1
ρ

⌋

⎥⎥
⎥
⎦
⌊

1
ρ

⌋
, . . . , k − 1

⎫
⎬

⎭
, t = 1, . . . , n.

For i = 0, . . . ,

(⌊
k


 1
ρ�
⌋
− 1

)
, set

Cn(i) =
{

(i1, . . . , in) ∈ Zn : it

∈
{

i

⌊
1
ρ

⌋
, . . . , (i + 1)

⌊
1
ρ

⌋
− 1

}}

and, when the filler block above exists,

Cn

⎛

⎝

⎢
⎢
⎢
⎣ k
⌊

1
ρ

⌋

⎥
⎥
⎥
⎦

⎞

⎠ =

⎧
⎨

⎩
(i1, . . . , in) ∈ Zn : it

∈
⎧
⎨

⎩

⎢
⎢⎢
⎣ k
⌊

1
ρ

⌋

⎥
⎥⎥
⎦
⌊

1
ρ

⌋
, . . . , k − 1

⎫
⎬

⎭

⎫
⎬

⎭
.

Then in (62), with the filler block existing

P
(
gMAP(V n

2 ) (Z1, . . . , Zn) = X
)

=

�
k


 1
ρ�
�
−1

∑

i=0

∑

(i1,...,in)∈Cn(i)

max
x∈f−1(i
 1

ρ�)∪...∪f−1((i+1)
 1
ρ�−1)

PX(x)
n∏

t=1

V2

(
it|f(x)

)

+
∑

(i1,...,in)∈Cn

��
k


 1
ρ�
��

max
x∈f−1

��
k


 1
ρ�
�

 1

ρ�
�
∪...∪f−1(k−1)

PX(x)
n∏

t=1

V2

(
it|f(x)

)
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=

�
k


 1
ρ�
�
−1

∑

i=0

∑

(i1,...,in)∈Cn(i)

max
x∈f−1(i
 1

ρ�)∪...∪f−1((i+1)
 1
ρ�−1)

PX(x)

⎛

⎝ 1
⌊

1
ρ

⌋

⎞

⎠

n

+
∑

(i1,...,in)∈Cn

��
k


 1
ρ�
�� max

x∈f−1

��
k


 1
ρ�
�

 1

ρ�
�
∪...∪f−1(k−1)

PX(x)

⎛

⎝ 1

k mod
⌊

1
ρ

⌋

⎞

⎠

n

=

�
k


 1
ρ�
�
−1

∑

i=0

⎛

⎝ 1
⌊

1
ρ

⌋

⎞

⎠

n
∑

(i1,...,in)∈Cn(i)

max
x∈f−1(i
 1

ρ�)∪...∪f−1((i+1)
 1
ρ�−1)

PX(x)

+

⎛

⎝ 1

k mod
⌊

1
ρ

⌋

⎞

⎠

n
∑

(i1,...,in)∈Cn

��
k


 1
ρ�
��

max
x∈f−1

��
k


 1
ρ�
�

 1

ρ�
�
∪...∪f−1(k−1)

PX(x)

=

�
k


 1
ρ�
�
−1

∑

i=0

⎛

⎝ 1
⌊

1
ρ

⌋

⎞

⎠

n
∑

(i1,...,in)∈Cn(i)

PX

(
x∗

i
 1
ρ�
)

+

⎛

⎝ 1

k mod
⌊

1
ρ

⌋

⎞

⎠

n
∑

(i1,...,in)∈Cn

��
k


 1
ρ�
��

PX

⎛

⎜
⎝x∗�

k


 1
ρ�
�

 1

ρ�

⎞

⎟
⎠

=

�
k


 1
ρ�
�

∑

i=0

PX

(
x∗

i
 1
ρ�
)

, (63)

where (63) uses (45) and |Cn(i)| =
(⌊

1
ρ

⌋)n

,
∣
∣∣
∣Cn

(⌊
k


 1
ρ�
⌋)∣∣∣

∣ =
(
k mod

⌊
1
ρ

⌋)n

. In the absence of

the filler block, clearly

P
(
gMAP(V n

2 ) (Z1, . . . , Zn) = X
)

=

�
k


 1
ρ�
�
−1

∑

i=0

PX

(
x∗

i
 1
ρ�
)

.

The assertion of the theorem follows.

C. Useful Bounds for πn(ρ)
Theorems 4 and 5 yield effective upper and lower bounds

for πn(ρ). Upon rewriting these bounds with a slight weak-
ening, useful information can be extracted concerning the
limiting behaviour of πn(ρ) as n → ∞. Specifically by
Theorem 4, for each 0 ≤ ρ ≤ 1 and for every n ≥ 1,

πn(ρ) ≤ 1 −
∑

i∈Z
PX(x∗

i ) + Γn(ρ) (64)

and by Theorem 5, for 0.5 < ρ ≤ 1 and for every n ≥ 1,

πn(ρ) ≥ πρ (V n
1 ) ≥ 1 −

∑

i∈Z
PX (x∗

i ) + Λn(ρ). (65)

Estimates of P
(
Bin(n, ρ) ≤ ⌊

n
2

⌋)
appearing in Γn(ρ) and

Λn(ρ)
(
cf. (36) and (48)

)
lead to useful bounds for πn(ρ)

in (64) and (65). Let Ber(α) denote a Bernoulli rv with
the probability of “1” being α, 0 ≤ α ≤ 1. Hereafter, all
logarithms and exponentials are with respect to the base 2.

Lemma 7:

(i) For each 0.5 ≤ ρ ≤ 1 and every n ≥ 1,

1
n + 1

exp
[
−nD

(
Ber

(
1
n

⌊n

2

⌋)∣∣
∣
∣
∣
∣Ber(ρ)

)]

≤ P
(

Bin(n, ρ) ≤
⌊n

2

⌋)

≤
(⌊n

2

⌋
+ 1

)
exp

[
−nD

(
Ber

(
1
n

⌊n

2

⌋)∣∣
∣
∣
∣
∣Ber(ρ)

)]
.

(ii) For each 0 ≤ ρ ≤ 0.5 and for every n ≥ 1,

P
(

Bin(n, ρ) ≤
⌊n

2

⌋)
≥ 1 − ρ.

Proof: See Appendix B.
Lemma 7(i) leads to the following useful bounds for πn(ρ).
Proposition 8: For each 0.5 < ρ ≤ 1,

(i)

πn (ρ) ≤ 1 −
∑

i∈Z
PX (x∗

i ) +
(⌊n

2

⌋
+ 1

)

× exp
[
−nD

(
Ber

(
1
n

⌊n

2

⌋)∣∣
∣
∣
∣
∣Ber (ρ)

)]

×
∑

i∈Z
PX (x∗

i )

for all n such that
(⌊n

2

⌋
+ 1

)
exp

[
−nD

(
Ber

(
1
n

⌊n

2

⌋)∣∣
∣
∣
∣
∣Ber(ρ)

)]

≤ 1 − min{ρ, ρc}.
(ii) for every n ≥ 1,

πn (ρ) ≥ πρ (V n
1 ) ≥ 1 −

∑

i∈Z
PX (x∗

i ) +
1

n + 1

× exp
[
−nD

(
Ber

(
1
n

⌊n

2

⌋)∣∣
∣
∣
∣
∣Ber(ρ)

)]

×
(

∑

i∈Z: i odd

PX (x∗
i )

)

.
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Proof: The assertions follow directly by applying
the upper and lower bounds in Lemma 7(i) to the right-sides
of (64) and (65), respectively, and recalling (36) and (48).

D. Asymptotic Implications
We close this section with useful asymptotic implications of

Theorem 4, 5, 6 and Proposition 8. Considering first the (more
interesting) realm 0.5 < ρ ≤ 1, the upper bounds for πn(ρ)
in Theorem 4 and Proposition 8(i), as also the lower bounds
in Theorem 5 and Proposition 8(ii), converge according to

lim
n

πn(ρ) = 1 −
∑

i∈Z
PX (x∗

i ) = π(1), 0.5 < ρ ≤ 1 (66)

(see Remark (ii) after Theorem 2), i.e., the error probability of
a MAP estimator of X on the basis of a knowledge of f(X).
Furthermore, both the sets of bounds converge at the same
exponential rate in n with the (n-dependent) exponent itself
tending to D

(
Ber(0.5)||Ber(ρ)

)
> 0. Thus, in the realm 0.5 <

ρ ≤ 1, the asymptotic privacy in (66) is that which is afforded
when the querier forms an accurate MAP estimate of f(X)
w.p. 1 from ρ-QRs {Ft(X)}n

t=1, followed by a MAP estimate
of X that is compatible with the estimated f(X).

In the realm 0 ≤ ρ ≤ 0.5, the upper bound for πn(ρ) in
Theorem 4, by Lemma 7(ii), equals

1 − max{ρc, ρ}
∑

i∈Z
PX (x∗

i ) (67)

for all n ≥ 1, which is the ρ-privacy for n = 1 in Theorem 2.
As remarked after Theorem 6, this upper bound is unattainable,
in general, by add-noise ρ-QRs {Ft(X)}n

t=1 with V2 : Z →
Z in (59), (60). Hence, an interpretation as above in the
complementary realm is lacking as is the answer to the putative
tightness (or not) of the mentioned bound. However, since

πn(ρ) ≥ πρ (V n
2 ) > 1 −

∑

i∈Z
PX (x∗

i ) = π(1),

where the strict inequality is evident from Theorem 6 (by
comparing the expressions in (61) with 1 − ∑

i∈Z
PX (x∗

i )),

we can conclude that no accurate estimate of f(X) w.p. 1
is possible from ρ-QRs {Ft(X)}n

t=1 for any n, unlike for
0.5 < ρ ≤ 1.

V. INADEQUACY OF CONDITIONALLY I.I.D Wo FOR

MULTIPLE QUERY RESPONSES

Theorem 2 establishes the optimality of the add-noise ρ-QR
Wo : X → Z , or equivalently Vo : Z → Z , in achieving
ρ-privacy π(ρ), 0 ≤ ρ ≤ 1, for n = 1. Upon choosing
Wt = Wo or Vt = Vo, t = 1, . . . , n, n ≥ 2, in (31)
or (32), respectively, how does the corresponding privacy
πρ (Wn

o ) or πρ (V n
o ) compare with the achievable privacy in

Theorems 5 and 6? In the regime of all suitably large n,
we show below that the former does not exceed the latter
and, in fact, can be strictly smaller.

To this end, the concept of Chernoff information [9] plays a
material role. Given a stochastic matrix V : Z → Z , define its
Chernoff radius, denoted C(V ), as the minimum of pairwise

Chernoff information quantities:

C(V ) = min
j �=j′

j,j′∈Z

C(j, j′)

= min
j �=j′

j,j′∈Z

[

− min
0≤λ≤1

log

(
∑

i∈Z
V (i|j)λV (i|j′)1−λ

)]

,

(68)

noting that C(V ) ≥ 0 with C(V ) > 0 iff all the rows of V
are distinct.

Also useful will be the next two technical lemmas. Let f̃(X)
be a Z-valued rv with pmf

P
(
f̃(X) = i

)
=

PX(x∗
i )∑

l∈Z
PX (x∗

l )
, i ∈ Z

with x∗
i , i ∈ Z , as in (15). Let Z̃t, t = 1, . . . , n, be condition-

ally mutually independent Z-valued rvs conditioned on f̃(X),
with

PZ̃t|f̃(X) = V, t = 1, . . . , n.

We use the notation A
.= exp(−nB) to mean

limn − 1
n log A = B (cf. e.g., [24]).

Lemma 9: For 0 ≤ ρ ≤ 1, consider add-noise ρ-QRs
{Ft(X)}∞t=1 with (31) holding for every n ≥ 1, where
Wt = W , t ≥ 1, and W : X → Z has identical rows for
all x ∈ f−1(i), i ∈ Z , and has associated V : Z → Z
in (12).

(i) The corresponding privacy for every n ≥ 1 is

πρ (Wn) = πρ (V n) = 1 −
(
∑

i∈Z
PX (x∗

i )

)

×P
(
gMAP (V n)

(
Z̃1, . . . , Z̃n

)
= f̃(X)

)
.

(69)

(ii) Furthermore,

πρ (V n) −
(

1 −
∑

i∈Z
PX (x∗

i )

)
.= exp [−nC(V )].

(70)

Proof:
(i)

P
(
gMAP(W n) (Z1, . . . , Zn) = X

)

=
∑

(i1,...,in)∈Zn

max
x∈X

PX(x)
n∏

t=1

W (it|x)

=
∑

(i1,...,in)∈Zn

max
x∈∪f−1(j)

j∈Z

PX(x)
n∏

t=1

W (it|x)

=
∑

(i1,...,in)∈Zn

max
j∈Z

PX

(
x∗

j

) n∏

t=1

W
(
it|x∗

j

)

=
∑

(i1,...,in)∈Zn

max
j∈Z

PX

(
x∗

j

) n∏

t=1

V
(
it|f

(
x∗

j

))
,
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by (12)

=
∑

(i1,...,in)∈Zn

max
j∈Z

PX(x∗
j )

n∏

t=1

V (it|j) (71)

=

(
∑

i∈Z
PX (x∗

i )

)

×
∑

(i1,...,in)∈Zn

max
j∈Z

PX

(
x∗

j

)

∑

i∈Z
PX (x∗

i )

n∏

t=1

V (it|j)

=

(
∑

i∈Z
PX (x∗

i )

)

×P
(
gMAP(V n)

(
Z̃1, . . . , Z̃n

)
= f̃(X)

)
(72)

where the third equality above is by the assumed form
of W .
The first assertion in (69) follows from (71) and the
second from (72).

(ii) By [24, Th. 2],

P
(
gMAP(V n)

(
Z̃1, . . . , Z̃n

)
�= f̃(X)

)
.=exp [−nC(V )],

which, applied to (69), yields (70).

Remark: Observe that a direct application of [24, Th. 2] to

πρ (Wn) = P
(
gMAP(W n) (Z1, . . . , Zn) �= X

)

is not useful as it yields

πρ (Wn) .= exp [−nC(W )]

where the Chernoff radius of W : X → Z is C(W ) = 0
owing to the presence of identical rows when k ≤ r − 1.

Lemma 10: For Vo in (18) and V1 in (46), we have

C (V1) = D
(
Ber(0.5)||Ber(ρ)

)

= − log 2
√

ρ(1 − ρ), 0 ≤ ρ ≤ 1 (73)

and for 0.5 < ρ < 1

C (Vo) = − log 2
√

max{ρc, ρ} (1 − max{ρc, ρ}), k = 2
(74)

C (Vo) > − log 2
√

max{ρc, ρ} (1 − max{ρc, ρ}), k ≥ 3.

(75)

Proof: First observe that for 0 < ρ < 1,

C (V1) = sup
0<λ<1

log−
(
ρλ (1 − ρ)1−λ + ρ1−λ (1 − ρ)λ

)

= log
1

inf
0<λ<1

ρλ (1 − ρ)1−λ + ρ1−λ (1 − ρ)λ

= log
1

2
√

ρ(1 − ρ)
= D

(
Ber(0.5)||Ber(ρ)

)
(76)

where the infimum is attained as a minimum at λ = 0.5; and
C(V1) = ∞ for ρ = 0 and ρ = 1. The last equality above is
by simple calculation.

Turning to (74), for k = 2,

C (Vo) = sup
0<λ<1

log−
(

(max{ρc, ρ})λ (1 − max{ρc, ρ})1−λ

+ (max{ρc, ρ})1−λ (1 − max{ρc, ρ})λ
)

= log
1

2
√

max{ρc, ρ} (1 − max{ρc, ρ})
,

in the manner of (76).
To show (75), for j �= j′ in Z ,

C (j, j′) = sup
0<λ<1

log
1

∑

i∈Z
Vo(i|j)λVo(i|j′)1−λ

= sup
0<λ<1

(1 − λ) Dλ

(
Vo(.|j)||Vo(.|j′)

)
(77)

where Dλ is the Rényi divergence of order λ [31]. For each
λ ∈ (0, 1), since Dλ satisfies the data processing theorem
[14, Theorem 1], we get

Dλ

(
Vo(.|j)||Vo(.|j′)

)

≥ Dλ (Ber (Vo(j′|j)) ||Ber (Vo(j′|j′)))

= Dλ

(

Ber

(
PX

(
x∗

j′
)

∑

l �=j

PX (x∗
l )
(
1 − max{ρc, ρ}

)
)∣
∣
∣
∣
∣
∣

Ber
(
max{ρc, ρ}

)
)

. (78)

Claim: For k ≥ 3 and 0.5 < ρ < 1, the right-side of (78)
is strictly larger than

Dλ

(
Ber (1 − max{ρc, ρ})

∣
∣
∣
∣Ber

(
max{ρc, ρ}

))
.

Then applying the claim to (77), for all j �= j′ in Z ,

C(j, j′)
> sup

0<λ<1
(1 − λ)Dλ

(
Ber (1 − max{ρc, ρ})

∣
∣
∣
∣Ber

(
max{ρc, ρ}

))

≥ 0.5 D0.5

(
Ber (1 − max{ρc, ρ})

∣
∣
∣
∣Ber

(
max{ρc, ρ}

))

= − log 2
√

max{ρc, ρ}(1 − max{ρc, ρ})
which yields (75).

It remains to prove the claim. Note that for k ≥ 3,
PX

(
x∗

j′
)/ ∑

l �=j

PX (x∗
l ) < 1 and so

PX

(
x∗

j′
)

∑

l �=j

PX (x∗
l )
(
1−max{ρc, ρ}

)
<1−max{ρc, ρ}<max{ρc, ρ}

since max{ρc, ρ} > 0.5. Then, it suffices to show
that Dλ

(
Ber(α)||Ber(β)

)
is (strictly) decreasing in α for

0 ≤ α < β. We have

d

dα
Dλ

(
Ber(α)||Ber(β)

)

=
1

λ − 1
λαλ−1β1−λ − λ (1 − α)λ−1 (1 − β)1−λ

αλβ1−λ + (1 − α)λ (1 − β)1−λ
. (79)

Since λ ∈ (0, 1), the right-side of (79) is negative iff

αλ−1β1−λ > (1 − α)λ−1 (1 − β)1−λ
,
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i.e.,
(

1 − α

α

)1−λ

>

(
1 − β

β

)1−λ

which holds since α < β.
Finally, we show that the privacy of add-noise ρ-QRs

{Ft(X)}∞t=1 under (32) for every n ≥ 1 with Vt = Vo,
t ≥ 1, is no better than with Vt = V1 or V2 accordingly
as 0.5 < ρ ≤ 1 or 0 ≤ ρ ≤ 0.5; and, in fact, the former can
be strictly smaller than the latter.

Proposition 11: For all n suitably large (depending on case
below):

(i) 0 ≤ ρ ≤ 0.5:

πρ (V n
2 ) ≥ πρ (V n

o ); (80)

(ii) 0.5 < ρ < 1:
k = 2 –

πρ (V n
1 ) > πρ (V n

o ), ρ < ρc (81)

πρ (V n
1 ) = πρ (V n

o ), ρ ≥ ρc; (82)

k ≥ 3 –

πρ (V n
1 ) > πρ (V n

o ) . (83)

Proof:

(i) See Appendix D.
(ii) For 0 ≤ ρ < 1, we have by Lemma 9(ii),

πρ (V n
o ) −

(

1 −
∑

i∈Z
PX (x∗

i )

)
.= exp [−nC (Vo)],

(84)

and by Theorem 5 for 0.5 < ρ ≤ 1,

πρ (V n
1 ) −

(

1 −
∑

i∈Z
PX (x∗

i )

)

≥ Λn(ρ), n ≥ 1
.= exp

[− nD
(
Ber(0.5)||Ber(ρ)

)]
,

by (48) and Lemma 7(i)

= exp
[− nC(V1)

]
, by (73). (85)

For k = 2 and 0.5 < ρ < ρc, by (73) and (74),

C(V1) = − log 2
√

ρ(1 − ρ)

< − log 2
√

ρc(1 − ρc) = C(Vo)

so that (81) holds by (84) and (85). For k = 2
and ρ ≥ ρc, observe in (46) and (18) that V1 = Vo

whereby (82) holds. For k ≥ 3 and 0.5 < ρ < 1,
by (73) and (75),

C (V1) = − log 2
√

ρ(1 − ρ)

≤ − log 2
√

max{ρc, ρ} (1 − max{ρc, ρ})
< C(Vo)

and so (83) holds by (84) and (85).

VI. DISCUSSION

The choice of Wo : X → Z or Vo : Z → Z in (17), (18),
depending on PX through PX (x∗

i ), i ∈ Z , yields maximal
privacy for a single ρ-QR for all 0 ≤ ρ ≤ 1. However, for
the case of multiple conditionally independent ρ-QRs, our
achievability schemes in Section IV, that are “universal” in the
sense of not depending on PX , perform variously according
to the value of ρ. In particular, for 0.5 < ρ ≤ 1, conditionally
i.i.d. add-noise ρ-QRs {Ft(X)}∞t=1 with V1 : Z → Z in (46)
are asymptotically optimal with privacy πρ (V n

1 ) converging
to the limit of the upper bounds for ρ-privacy πn(ρ), n ≥ 1,
in Theorem 4. However, when 0 ≤ ρ ≤ 0.5, our add-noise
ρ-QRs with V2 : Z → Z in (59), (60) yield privacy πρ (V n

2 )
not depending on n, which, in general, does not meet the
corresponding upper bound in (67). Thus, it remains open
whether conditionally independent ρ-QRs {Ft(X)}∞t=1, that
depend on PX or are not necessarily of the add-noise variety,
can outperform πρ (V n

1 ) or πρ (V n
2 ). Indeed, the goodness

of our upper bound for πn(ρ) in (67), 0 ≤ ρ ≤ 0.5 (that
does not depend on n), is unresolved. These observations are
analogous – in our setting – to the “composition” results for
differential privacy (cf. e.g., [23]).

We conclude with a simple observation in explication of our
approach mentioned in Section I. Suppose that the querier’s
family of priors P consists of a specified set of pmfs P on
X with PX(x) > 0, x ∈ X . For a single ρ-QR, the ρ-privacy
π(ρ) = π(ρ; P ) for any P in P is attained by Wo = Wo(P )
or Vo = Vo(P ) as remarked after Theorem 2. With

P∗ = P∗(ρ) = arg min
P∈P

π(ρ; P ), 0 ≤ ρ ≤ 1

a ρ-QR Wo(P∗) or Vo(P∗) will yield privacy π(ρ; P∗) in (19)
that serves as a guaranteed lower bound for ρ-privacy com-
puted according to any prior pmf P in P . In the same vein, for
n ≥ 1 conditionally independent query responses, the minima
with respect to P in P of the lower bound for πρ (V n

1 ) in (49)
or of πρ (V n

2 ) in Theorem 6, respectively, serve as privacy
guarantees in the realms 0.5 < ρ ≤ 1 or 0 ≤ ρ ≤ 0.5,
computed for any P in P .

APPENDIX A
PROOF OF ACHIEVABILITY IN PROPOSITION 3

We have that 1 − π′
ρ (W ′

o) equals

P
(
g′MAP (W ′

o) (Z) = Y
)

=
∑

i∈Z
max
j∈Y

P (Z = i, Y = j)

=
∑

i∈Z
max
j∈Y

∑

x∈h−1(j)

PX(x)W ′
o(i|x).

(86)

When ρ′c = 1, we get in (86), upon using (29), that

P
(
g′MAP (W ′

o) (Z) = Y
)

=
∑

i∈Z
max
j∈Y

∑

x∈h−1(j)∩f−1(i)

PX(x) =
∑

i∈Z
PX (i, j∗i ). (87)
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When ρ′c < 1, for each i ∈ Z the summand in (86), upon
using (30), is

max
j∈Y

[
∑

x∈h−1(j)∩f−1(i)

PX(x)W ′
o(i|x)

+
∑

x∈h−1(j)\f−1(i)

PX(x)W ′
o(i|x)

]

= max
j∈Y

[
∑

x∈h−1(j)∩f−1(i)

PX(x)

{

max{ρ′c, ρ}

+ (1 − max{ρ′c, ρ})
PX (i, j∗i ) − PX(i, j)

∑

l∈Z
PX (l, j∗l ) − PX (h−1(j))

}

+
∑

x∈h−1(j)\f−1(i)

PX(x)

{

(1 − max{ρ′c, ρ})

× PX (i, j∗i ) − PX(i, j)
∑

l∈Z
PX (l, j∗l ) − PX (h−1(j))

}]

= max
j∈Y

[

max{ρ′c, ρ}PX(i, j) + (1 − max{ρ′c, ρ})

× PX (i, j∗i ) − PX(i, j)
∑

l∈Z
PX (l, j∗l ) − PX (h−1(j))

PX

(
h−1(j)

)
]

. (88)

It suffices to show that the right-side of (88) is bounded
above by max{ρ′c, ρ}PX (i, j∗i ) for each i ∈ Z; this is
done below. Then, in fact, the right-side of (88) equals
max{ρ′c, ρ}PX (i, j∗i ) as seen by setting j = j∗i in the term
within [· · · ].

First consider the case when max{ρ′c, ρ} < 1. It is seen
from (27) that for each j ∈ Y ,

max{ρ′c, ρ}
1 − max{ρ′c, ρ}

≥ ρ′c
1 − ρ′c

=
PX

(
h−1(j∗)

)
∑

l∈Z
PX (l, j∗l ) − PX (h−1(j∗))

≥ PX

(
h−1(j)

)
∑

l∈Z
PX (l, j∗l ) − PX (h−1(j))

. (89)

Using (89) in (88), and since PX

(
h−1(j)

)
> 0, j ∈ Y ,

we get that the right-side of (88) is bounded above
by max{ρ′c, ρ}PX (i, j∗i ). Also, this is true trivially when
max{ρ′c, ρ} = 1. Hence, we get that for each i ∈ Z , the right-
side of (88) equals max{ρ′c, ρ}PX (i, j∗i ). This, combined
with (86)-(88), yields

π′
ρ (W ′

o) = 1 − max{ρ′c, ρ}
∑

i∈Z
PX (i, j∗i ).

APPENDIX B
PROOF OF LEMMA 7

(i) For each 0 ≤ ρ ≤ 1,

P
(

Bin(n, ρ) ≤
⌊n

2

⌋)
=


n
2 �∑

t=0

P
(
T Ber( t

n)
)

where T Ber( t
n) denotes the set of all n-length binary

sequences of “type” Ber
(

t
n

)
, i.e., with t 1s (and

(n − t) 0s), so that

max
0≤t≤
n

2 �
P
(
TBer( t

n)
)

≤ P
(

Bin(n, ρ) ≤
⌊n

2

⌋)

≤
(⌊n

2

⌋
+ 1

)
max

0≤t≤
n
2 �

P
(
TBer( t

n )
)
. (90)

Using well-known bounds for the probability
of all n-length sequences of a given type
(cf. [10, Lemma 2.6]), for each 0 ≤ ρ ≤ 1, and
noting that the number of types for binary sequences of
length n equals n + 1,

1
n + 1

exp
[
−nD

(
Ber

(
t

n

) ∣
∣∣
∣
∣∣Ber (ρ)

)]

≤ P
(
TBer( t

n )
)
≤ exp

[
−nD

(
Ber

(
t

n

) ∣
∣
∣
∣
∣
∣Ber (ρ)

)]

(91)

and noting that for 0.5 ≤ ρ ≤ 1,

min
0≤t≤
n

2 �
D

(
Ber

(
t

n

) ∣∣
∣
∣∣
∣Ber (ρ)

)

= D

(
Ber

(
1
n

⌊n

2

⌋) ∣
∣
∣
∣
∣
∣Ber (ρ)

)
(92)

we have, by (91) and (92), from (90) that

1
n + 1

exp
[
−nD

(
Ber

(
1
n

⌊n

2

⌋) ∣
∣
∣
∣
∣
∣Ber (ρ)

)]

≤P
(

Bin(n, ρ) ≤
⌊n

2

⌋)

≤
(⌊n

2

⌋
+ 1

)
exp

[
−nD

(
Ber

(
1
n

⌊n

2

⌋) ∣∣
∣
∣∣
∣Ber (ρ)

)]
.

(ii) We have that

P
(

Bin(n, ρ) ≥
⌊n

2

⌋
+ 1

)

=
n∑

t=
n
2 �+1

(
n

t

)
ρt (1 − ρ)n−t

= (1 − ρ)n
n∑

t=
n
2 �+1

(
n

t

)(
ρ

1 − ρ

)t

≤ (1 − ρ)n

(
ρ

1 − ρ

)
n
2 �+1 n∑

t=
n
2 �+1

(
n

t

)
,

since 0 ≤ ρ ≤ 0.5

≤ (1 − ρ)n

(
ρ

1 − ρ

)
n
2 �+1

2n−1

≤ (1 − ρ)n

(
ρ

1 − ρ

)n−1
2 +1

2n−1

= ρ
(
2
√

ρ(1 − ρ)
)n−1

≤ ρ, since 2
√

ρ(1 − ρ) ≤ 1 for 0 ≤ ρ ≤ 1.

The assertion follows.
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APPENDIX C
PROOF OF (33)

Since ρ and maxi∈Z P (f(X) = i) are obvious lower
bounds for the left-side of (33), it suffices to show that

P
(
hMAP (F1(X), . . . , Fn(X)) = f(X)

)

≥ P
(

Bin(n, ρ) ≥
⌊n

2

⌋
+ 1

)
.

(93)

The proof bears a resemblance to that of Theorem 4 above
and so we shall refer to pertinent details therein. We have

P
(
hMAP (F1(X), . . . , Fn(X)) = f(X)

)

=
∑

(i1,...,in)∈Zn

max
j∈Z

P (f(X) = j)

×P (F1(X) = i1, . . . , Fn(X) = in|f(X) = j). (94)

Since

P (F1(X) = i1, . . . , Fn(X) = in|f(X) = j)

=
∑

x∈X
P (F1(X) = i1, . . . , Fn(X) = in|f(X) = j, X = x)

×P (X = x|f(X) = j)

=
∑

x∈f−1(j)

n∏

t=1

Wt (it|x)
PX(x)

P (f(X) = j)
,

we get in (94) with Al(i) in (39) that

P
(
hMAP (F1(X), . . . , Fn(X)) = f(X)

)

=
∑

(i1,...,in)∈Zn

max
j∈Z

⎛

⎝
∑

x∈f−1(j)

PX(x)
n∏

t=1

Wt (it|x)

⎞

⎠

≥
∑

i∈Z

n∑

l=
 n
2 �+1

∑

(i1,...,in)∈Al(i)

max
j∈Z

⎛

⎝
∑

x∈f−1(j)

PX(x)
n∏

t=1

Wt (it|x)

⎞

⎠

≥
∑

i∈Z

∑

x∈f−1(i)

PX(x)

⎛

⎜
⎝

n∑

l=
n
2 �+1

∑

(i1,...,in)∈Al(i)

n∏

t=1

Wt (it|x)

⎞

⎟
⎠.

Mimicking (40)-(43), observe that the sum above within
(·) is bounded below by P

(
Bin(n, ρ) ≥ ⌊

n
2

⌋
+ 1

)
. Clearly,

(93) follows.

APPENDIX D
PROOF OF PROPOSITION 11(i)

The following two lemmas are pertinent. Recall from (15)
that x∗ = argmaxx∈X PX (x) is in f−1 (i∗) for some (fixed)
i∗ ∈ Z .

Lemma 12: For Vo : Z → Z in (18),
(i) when ρc < ρ ≤ 1, no two rows can be identical;

(ii) when 0 ≤ ρ ≤ ρc, if the rows Vo(·|j) and Vo(·|j′),
j �= j′, are identical, then each coincides with the row

Vo(·|i∗), in which case PX

(
x∗

j

)
= PX

(
x∗

j′
)

= PX (x∗).
Furthermore, the number of identical rows of Vo cannot
exceed

⌊
1
ρc

⌋
.

Proof: With 0 ≤ ρ ≤ 1, if the rows of Vo : Z → Z
corresponding to j �= j′ in Z are identical, then

V (i|j) = V (i|j′), i ∈ Z \ {j, j′}
i.e.,

(1 − max{ρc, ρ}) PX (x∗
i )∑

l �=j

PX (x∗
l )

= (1 − max{ρc, ρ}) PX (x∗
i )∑

l′ �=j′
PX (x∗

l′)
, i ∈ Z \ {j, j′}

whence

PX

(
x∗

j

)
= PX

(
x∗

j′
)
; (95)

and furthermore

V (i|j) = V (i|j′), i ∈ {j, j′}
which, using (95), gives straightforwardly that

max{ρc, ρ} =
PX (x∗

i )∑

l∈Z
PX (x∗

l )
, i ∈ {j, j′}. (96)

(i) When ρ > ρc, recalling (16)

PX (x∗
i )∑

l∈Z
PX (x∗

l )
≤ PX (x∗)

∑

l∈Z
PX (x∗

l )
= ρc < max{ρc, ρ}

which violates (96) for i ∈ {j, j′}, so that no two rows
of Vo : Z → Z can be identical.

(ii) When 0 ≤ ρ ≤ ρc, suppose that the rows Vo(·|j) and
Vo(·|j′) are identical for some j �= j′. Then (96) holds
which, upon recalling (16), is tantamount to

PX

(
x∗

j

)
= PX

(
x∗

j′
)

= PX(x∗) = PX(x∗
i∗). (97)

To show for j �= i∗ that Vo(i|j) = Vo(i|i∗), i ∈ Z ,
consider first i ∈ {j, i∗}. Then, using (97),

Vo(j|j) = ρc,

Vo(i∗|j) = (1 − ρc)
PX (x∗

i∗)
∑

l �=j

PX (x∗
l )

= (1 − ρc)
PX (x∗)

∑

l∈Z
PX (x∗

l ) − PX

(
x∗

j

) = ρc,

and similarly,

Vo(j|i∗) = (1 − ρc)
PX

(
x∗

j

)

∑

l∈Z
PX (x∗

l ) − PX (x∗
i∗)

= ρc,

Vo(i∗|i∗) = ρc.

And for i ∈ Z \ {j, i∗},

Vo(i|j) = (1 − ρc)
PX (x∗

i )∑

l∈Z
PX (x∗

l ) − PX

(
x∗

j

)

=
PX (x∗

i )∑

l∈Z
PX (x∗

l )
= Vo(i|i∗).
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Lastly, if the number of identical rows of Vo : Z → Z
is α, then αPX (x∗) ≤ ∑

l∈Z
PX (x∗

l ), whence α ≤
⌊

1
ρc

⌋
.

For S ⊆ Z , let

jS = arg max
l∈S

PX (x∗
l ) , RS = (Z \ S) ∪ {jS}, (98)

where jS and RS need not be unique. Let f̃RS (X) be a
RS-valued rv with pmf

P
(
f̃RS(X) = i

)
=

PX (x∗
i )∑

l∈RS

PX (x∗
l )

, i ∈ RS . (99)

Consider the stochastic matrix VRS : RS → Z given by

VRS = {V (i|j), i ∈ Z, j ∈ RS} (100)

and let
{

Z̃RS
t

}n

t=1
be conditionally mutually independent

Z-valued rvs conditioned on f̃RS (X), with

P
Z̃

RS
t |f̃RS

(X)
= VRS , t = 1, . . . , n. (101)

Let C (VRS ) be the Chernoff radius restricted to RS , i.e., with
the minimum in (68) being instead over all j �= j′ in RS .

Lemma 13: For 0 ≤ ρ ≤ 1, consider add-noise ρ-QRs
{Ft(X)}n

t=1 with (32) holding for every n ≥ 1, where Vt = V ,
t ≥ 1. If V : Z → Z has identical rows {V (·|j), j ∈ S}, then

πρ (V n) −
(

1 −
∑

i∈RS

PX (x∗
i )

)
.= exp [−nC (VRS )]

for RS and VRS in (98) and (100), respectively.
Remark: If the rows of VRS : RS → Z are distinct in

Lemma 13, then C (VRS ) > 0. If the rows of V : Z → Z are
distinct, then S = φ, RS = Z and VRS = V .

Proof:

P
(
gMAP(V n) (Z1, . . . , Zn) = X

)

=
∑

(i1,...,in)∈Zn

max
x∈X

PX(x)
n∏

t=1

V (it|f(x))

=
∑

(i1,...,in)∈Zn

max
x∈∪f−1(j)

j∈Z

PX(x)
n∏

t=1

V (it|f(x))

=
∑

(i1,...,in)∈Zn

max
j∈Z

PX

(
x∗

j

) n∏

t=1

V (it|j)

=
∑

(i1,...,in)∈Zn

max
j∈(Z\S)∪S

PX

(
x∗

j

) n∏

t=1

V (it|j)

=
∑

(i1,...,in)∈Zn

max
j∈RS

PX(x∗
j )

n∏

t=1

V (it|j) (102)

=

(
∑

i∈RS

PX (x∗
i )

)

×
∑

(i1,...,in)∈Zn

max
j∈RS

PX

(
x∗

j

)

∑

i∈RS

PX (x∗
i )

n∏

t=1

V (it|j)

=

(
∑

i∈RS

PX (x∗
i )

)

×P

(
g

MAP
�

V n
RS

� (Z̃RS
1 , . . . , Z̃RS

n

)
= f̃RS(X)

)

(103)

where (102) is by the identicality of the rows {V (·|j) ,
j ∈ S}, and f̃RS (X) and {Z̃RS

t }n
t=1 are as in (99) and (101),

respectively. The assertion follows by applying [24, Th. 2]
to (103).

Turning to the proof of Proposition 11(i), first observe by
Theorem 6 that for 0 ≤ ρ ≤ 0.5 and every n ≥ 1,

πρ (V n
2 ) −

(

1 −
∑

i∈Z
PX (x∗

i )

)

≥
∑

i∈Z
PX (x∗

i )

− max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

PX(x∗),

�
k


 1
ρ�
�
−�(k mod
 1

ρ�=0)
∑

i=0

PX

(
x∗

i
 1
ρ�
)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

> 0. (104)

We consider two cases: ρ > ρc and 0 ≤ ρ ≤ ρc.
When ρ > ρc, by Lemma 12(i), all the rows of Vo : Z → Z

are distinct so that C(Vo) > 0. Then, by (84),

lim
n

πρ (V n
o ) −

(

1 −
∑

i∈Z
PX (x∗

i )

)

= 0

which upon comparison with (104), yields (80) in this case.
In the case 0 ≤ ρ ≤ ρc, Vo : Z → Z can contain identical

rows. By Lemma 12(ii) and upon invoking assumption (45)
without loss of generality, the identical rows must be those
corresponding to {0, 1, . . . , a − 1} (with the remaining rows

being all distinct), where a ≤
⌊

1
ρc

⌋
is the number of identical

rows. By applying Lemma 13, with S = {0, 1, . . . , a − 1},
jS = 0 and observing that C

(
(Vo)RS

)
> 0, we get

lim
n

πρ (V n
o )

= 1 −
∑

i∈RS

PX (x∗
i )

=

⎧
⎪⎨

⎪⎩

1 − PX (x∗) , a = k ⇔
⌊

1
ρc

⌋
= k

1 − ∑

i∈{0,a,a+1,...,k−1}
PX (x∗

i ) , a < k ⇔
⌊

1
ρc

⌋
< k

≤

⎧
⎪⎪⎨

⎪⎪⎩

1 − PX (x∗) ,
⌊

1
ρc

⌋
= k

1 − ∑

i∈{0,
 1
ρc
�,
 1

ρc
�+1,...,k−1}

PX (x∗
i ) ,

⌊
1
ρc

⌋
< k

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − PX (x∗) , ρc = 1
k

1 −

�
k


 1
ρc �

�
∑

i=0

PX

(
x∗

i
 1
ρc
�
)

, k mod
⌊

1
ρc

⌋
�= 0,

1
k < ρc ≤ 0.5

1 −

�
k


 1
ρc �

�
−1

∑

i=0

PX

(
x∗

i
 1
ρc
�
)

, k mod
⌊

1
ρc

⌋
= 0,

1
k < ρc ≤ 0.5

= πρc (V n
2 )

≤ πρ (V n
2 ) , 0 ≤ ρ ≤ ρc,
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which, upon recalling by Theorem 6 that πρ (V n
2 ) is the same

for all n, establishes (80).
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