Homework 6 Solution

ENEE 303
Spring 2019
TA: Yidi Shen

Parameter of Vpulse and Ipulse in Pspice

1. Ring Oscilator

Inject a short current pulse to node V1 at $\mathrm{t}=1 \mathrm{us}$.

The oscillation starts when the Ipulse come. Here is the waveform after Ipulse has vanished.

First measure the delay of an inverter

Y 1	Y 2	$\mathrm{Y} 1-\mathrm{Y} 2$
3.0384 u	3.0198 u	18.531 n
4.5772	2.1801	2.3971
24.867 m	438.158 m	-413.291 m
2.8045	4.9539	-2.1493

Read the time difference between 1 of V 1 and next 0 of V 2 , so the response time:
$T_{S}=18.5 \mathrm{~ns}$
Then measure the period of the oscillator

Y1	Y 2	Y1 - Y2
2.9113 u	3.0198 u	-108.540 n
2.2204	2.1801	40.287 m
427.579 m	438.158 m	-10.580 m
4.9540	4.9539	130.075 u

Read the time difference between two 1 in V1, so the period:
$\mathrm{T}=108.5 \mathrm{~ns}$
So
$\mathrm{T} \cong 5 T_{S}$

2. SR Flip-Flop

I changed the definition of Q and $Q b a r$ to stay the same as textbook:

Input data, Clock and power supply:

Run the simulation and plot all the input and output:
Figure 1 Clock
Figure 2 Set (Green) and Reset (Red)
Figure 3 Q
Figure 4 Qbar

Time
Read the cases on the rising edge of the clock signal

time	S	R	Q	Qbar	State
t0	0	0	N/A*	N/A	Latch
t1	1	0	1	0	Set
t2	0	0	1	0	Latch (=t1)
t3	0	1	0	1	Reset
t4	0	0	0	1	Latch(=t3)

*Initial state is not given so the flip-flop has no value to latch at t0.

The voltage decrease in the latching stage, this comes from the non-ideal characteristic of the NMOS switch.

Reference: Pass Transistor Logic
https://en.wikipedia.org/wiki/Pass transistor logic

3. D Flip-flop

Input data, Clock and power supply:

Run the simulation and plot all the input and output:
Figure 1 Clock
Figure 2 Clockbar
Figure 3 D
Figure 4 Q
Figure 5 Qbar

Read the cases on the rising edge of the clock signal

time	D	Q	Qbar
t 1	1	1	0
t 2	0	0	1

Q follows D at every rising edge of clock.
D flip-flop is edge triggered.
D becomes 1 before t1, but it's not triggered until t1;
D becomes 0 before t2, but it's not triggered until t2;

