303 Spring 2019 - Homework 3 due Th 02/21/19
The transistors are ones used in teaching labs here; some useful data is on the course web page. For the MC4007=CA3600 CMOS models use KP, W, L, Vto and Lambda. Curves are on the web page and KP is k in the text book.

```
.model nch nmos(Level=1 Tox=300n Uo=600 Kp=20.54u W=144u L=8u Vto= 1. 3
+ Lambda=15m Cbd=4p Cbs=4p Cgdo=1.7n Cgso=1.7n Rs=1 Rd=1)
.model pch pmos(Level=1 Tox=300n Uo=300 Kp=10.32u W=328u L=8u Vto=-1.5
+ Lambda=15m Cbd=8p Cbs=8p Cgdo=1.7n Cgso=1.7n Rs=1 Rd=1)
```

1. (35 points, Q point values)
a. For the NMOS transistor assume a Q point in the saturation region at VDS $=\mathrm{VGS}=7 \mathrm{~V}$. Find the bias current ID.
b. Repeat for the Q point in the triode region at VDS $=2 \mathrm{~V}$ and $\mathrm{VGS}=5 \mathrm{~V}$.
c. Repeat for the PMOS transistor with a Q point at $\mathrm{VDS}=\mathrm{VGS}=-7$ and cpmpare with the result of part a.
2. (35 points, CMOS Y matrix)
a. For the NMOS of Problem 1 above biased at the two stated Q points give the low frequency small signal admittance matrices (one for each Q point)
b. Repeat for the PMOS in saturation.
c. Draw the small signal equivalent circuits for each transistor when in saturation and compare. Be sure to label g, d, and s nodes.
3. (30 points, CS amplifier)

Assume a common source NMOS 4007 transistor is biased at the Q point of Problem 1 above with a 9 V power supply (=VDD).
a) Find the load line resistor resistance R_{L} and sketch the load line on a copy of the NMOS transistor curve.
b) Give the ideal voltage gain $A_{v}=-g_{m} R_{L}$ and compare with the voltage gain in the presence of the transistor output resistance r_{0}.
c) Give gate bias resistors in the MegOhm range to achieve the Q point and Av .
3. (50 points, CMOS biasing)

Separately bias the two amplifiers of problem 2 and check in Spice your circuits' time domain responses to an input 2 KHz sinusoid of 5 mV amplitude.

Older holdover:
From possible homework 1:
2. (50 points, Diode biasing and ac \& transient analysis).

For the following voltage multiplier circuit assume that the diodes are 1 N 4007 s working at room temperature.
a) For this circuit calculate by hand the bias point (= Q point) current and voltage of the diode.
b) Determine (also by hand) the small signal gain of the circuit vo(s)/vi(s), first with symbols ($\mathrm{r}_{\mathrm{d}}, \mathrm{R}_{1}, \mathrm{~L}, \mathrm{R}_{\mathrm{L}}$) and then with numerical values.
c) Set up the circuit in Spice and: b1) check the simulated Q point, then b 2) do a magnitude frequency response ($=\mathrm{AC}$ run) from 1 Hz to 1 MEG Hz .
d) Comment upon your simulation results versus your hand calculation.


```
.model nch nmos(Level=1 Tox=300n Uo=600 Kp=20.54u W=144u L=8u Vto= 1.3
+ Lambda=15m Cbd=4p Cbs=4p Cgdo=1.7n Cgso=1.7n Rs=1 Rd=1)
.model pch pmos(Level=1 Tox=300n Uo=300 Kp=10.32u W=328u L=8u Vto=-1.5
+ Lambda=15m Cbd=8p Cbs=8p Cgdo=1.7n Cgso=1.7n Rs=1 Rd=1)
```

