File: G/coursesS19/303/303S19Midtrm_supplement.doc RWN 04/10/19
ENEE 303 Spring 2019 - Midterm Exam Supplement - take home.
Due in class Thursday April 18, 2019
Open book open notes. Your signature insures that the work submitted is solely your own. Good luck

1. (40 points, $20 \mathrm{~min} ;$ NMOS bias \& gain)

Assume $\mathrm{KP}=0,02 \mathrm{~mA} / \mathrm{V}^{2}$ [for $\left.\mathrm{k}=(\mathrm{KP} / 2)(\mathrm{W} / \mathrm{L})\right], \mathrm{VTO}=1 \mathrm{~V}, \boldsymbol{\lambda}=\mathbf{0 . 0 1}$, for the following NMOS amplifier. Also assume $\mathrm{RL}=\mathrm{RS}=2 \mathrm{kOhm}$ and $\mathrm{RA}=\mathrm{RB}$
a. For $I_{D}=1 \mathrm{~mA}$ find W / L and with it the Q point (bias) values for $V_{G S}$ and $V_{D S}$ and check that the transistor is in saturation.
b. Determine gm and go.
c. Draw the mid-band gain small signal equivalent circuit and give the mid-band voltage gain $\mathrm{Av}=\mathrm{v}_{\text {out }} / \mathrm{V}_{\text {in }}$ (where voltages are measured with respect to ground and the capacitors are assumed shorts) [include RA \& RB].

2. (30 points, 10 min ; OTA circuit gain and ODE)

a) For this circuit give the voltage transfer function $\mathrm{A}_{\mathrm{v}}(\mathrm{s})$ and give the poles and zeros.
b) Give the differential equation relating $v_{o}(t)$ to $v_{i}(t)$
3. (30 points 10 minutes; Small signal parameters)

The FIN-FET is a new transistor being considered for quantum systems. An N-type FINFET with n fins has the same circuit symbol and is like an NMOS (with no gate current and bulk tied to source) but has the n-power law ($\mathrm{n}=$ number of fins, any positive real $\mathrm{n} \geq 1$ but normally an integer).

Off: $i_{D}=0$ for $v_{G S}-V t h<0$
And for $v_{G S}-\mathrm{Vth} \geq 0$
Saturation: $i_{D}=k\left(v_{G S}-V t h\right)^{(n)}\left(1+\lambda v_{D S}\right) \quad$ for $v_{D S} \geq\left(v_{G S}-V t h\right)$
Triode: $i_{D}=k\left(\left[2\left(v_{G S}-V t h\right)^{(n / 2)}\left(v_{D S}{ }^{(n / 2)}\right)\right]-v_{D S}{ }^{(n)}\right)\left(1+\lambda v_{D S}\right)$ for $v_{D S} \leq\left(v_{G S}-V t h\right)$
a) Show that there is a number of fins, n , for which the FIN-FET behaves like an NMOS transistor
b) For a FIN-FET with $\mathrm{n}=4$ fins and $\mathrm{k}=1$ nanoA/ V^{4}, VGS $=1.1$, Vth $=0.1 \mathrm{~V}, \lambda=0.01$, VDS $=0.1 \mathrm{~V}$, give its gm and go and draw the low frequency equivalent circuit.

