File: G/coursesS19/303/303S19Midtrm.doc RWN 04/03/19 [Prob 2 corrected] ENEE 303 Spring 2019 - Midterm Exam [4 problems].

Open book open notes but only approved computers; 100 points total (75 minutes)
Your signature insures that the work submitted is solely your own. Good luck
For NMOS transistors assume $\mathrm{k}=4 \mathrm{~mA} / \mathrm{V}^{2}=(\mathrm{KP} / 2)(\mathrm{W} / \mathrm{L}), \mathrm{VTO}=1 \mathrm{~V}, \lambda=0$; for PMOS
assume complementary to NMOS except $\mathrm{k}=2 \mathrm{~mA} / \mathrm{V}^{2}$
For bipolar assume $\beta=100, V_{A}=$ Early voltage $=200 \mathrm{~V}$

1. (20 points 10 minutes; NMOS inverter)

For the following circuit determine the input voltage Vtr for which when vin $>\operatorname{Vtr}$ the NMOS transistor is in the triode region.

2. (35 points, 20 min ; NMOS bias \& gain)

For the following NMOS amplifier assume $\mathrm{RL}=\mathrm{RS}=2 \mathrm{kOhm}$ and RA need not $=\mathrm{RB}$ (and not necessarily large).
a) For $I_{D}=1 m A$ find the Q point (bias) values for $V_{G S}$ and $V_{D S}$ and check that the transistor is in saturation
b) Draw the mid-band gain small signal equivalent circuit and give the mid-band voltage gain $A v=v_{\text {out }} / v_{\text {in }}$ (where voltages are measured with respect to ground and the capacitors are assumed shorts) [include RA \& RB].

3. (25 points, 20 min ; OTA circuit gain and ODE)

a) For this circuit give the voltage transfer function $A_{v}(s)$.
b) Give the differential equation relating $v_{o}(t)$ to $v_{i}(t)$
4. (20 points 10 minutes; Small signal parameters)

The FIN-FET is a new transistor being considered for quantum systems. An N-type FINFET with n fins has the same circuit symbol and is like an NMOS (with no gate current and bulk tied to source) but has the n-power law ($\mathrm{n}=$ number of fins, any positive real n but normally an integer)

Off: $i_{D}=0$ for $v_{G S}<V t h$
And for $\mathrm{vgs}^{2} \geq \mathrm{Vth}$:
Saturation: $i_{D}=k\left(v_{G S}-V t h\right)^{(n)}\left(1+\lambda v_{D S}\right)$ for $v_{D S} \geq\left(v_{G S}-V t h\right)$
Triode: $\mathrm{i}_{\mathrm{D}}=\mathrm{k}\left(\left[2(\mathrm{VgS}-\mathrm{Vth})^{(\mathrm{n} / 2)}\left(\mathrm{v}_{\mathrm{DS}}{ }^{(\mathrm{n} / 2)}\right)\right]-\mathrm{v}_{\mathrm{DS}}{ }^{(\mathrm{n})}\right)(1+\lambda \mathrm{vDS})$ for $\mathrm{v}_{\mathrm{DS}} \leq\left(\mathrm{v}_{\mathrm{GS}}-\mathrm{Vth}\right)$
a) Show that there is a number of fins, n, for which the FIN-FET behaves like an NMOS transistor
b) For any positive real n, assuming a FIN-FET is biased to be in saturation, find its gm and go in terms of Q point values and draw low frequency equivalent circuit.

