ENEE 307 In Lab Final Spring 2018
 Experiments on an Active GIC

1. The following circuit is called a GIC (=General Impedance Converter). When the opamps are ideal, it is known that (where all Z's are impedances)

$$
\mathrm{Zin}(\mathrm{~s})=\mathrm{Z} 0(\mathrm{~s})+(\mathrm{Z} 1(\mathrm{~s}) \cdot \mathrm{Z} 3(\mathrm{~s}) \cdot \mathrm{Z} 5(\mathrm{~s})) /(\mathrm{Z} 2(\mathrm{~s}) \cdot \mathrm{Z} 4(\mathrm{~s}))
$$

Assuming only resistors and capacitors are available for the impedances, $\mathrm{Z}_{\mathrm{i}}(\mathrm{s})$, and loads; choose one from among the following two possibilities for the input of the above circuit to behave as:

1. A frequency dependent resistor $\mathrm{Zin}(\mathrm{s})=\mathrm{Rs}^{2}$ (of $\mathrm{R}=[$ value $] / 40 \mathrm{Ohms}$ with value $=$ last 3 digits of ID)
2. A frequency dependent conductor $\mathrm{Zin}(\mathrm{s})=\mathrm{R} / \mathrm{s}^{2}$ (of $\mathrm{R}=[$ value $] \times 10^{6} \mathrm{Ohms}$ with value $=$ last 3 digits of ID)
Then using 1458 op-amps, as many 10 K Ohm resistors as possible, and, where needed, 0.474 MicroFarad capacitors [assume also when possible $\mathrm{Z} 0=0$] design a circuit and test it (key components will be in your component box, others are available in the lab or through your TA).
In your report
a) Give your circuit choice with your intended value of R.
b) Screen shots of your circuit design via Spice (or similar) simulations
c) Determination of an experimental means to tell if your circuit will give the intended value.
d) Your experimentally created circuit on your breadboard and experimentally determined characteristics.
e) Submit a report to your TA prior to the end of the period.

Note that the return of signal current of the op-amps is not shown, allowing the circuit input current to differ from the current in Z5. Also a special case is analyzed on p. 1286 of Sedra/Smith, $6^{\text {th }}$ edition.

