File: f:/coursesS12/303/303S12Midtrm.doc RWN 03/12/12
ENEE 303 Midterm Exam, Spring 2012
100 points, 75 minutes, open book, open notes, open calculators [but not open computers]. If stuck go on to the next problem. Good luck and have a good spring break!

1. (35 points, 20 minutes) Assuming identical transistors with their base-emitter diode governed by the base emitter saturation current, $\mathrm{Is}=6 \mathrm{E}-16$, and having the forward beta, $\mathrm{Bf}=100$, give the resistance, R, needed to give an output current of 6 milliAmps.

2. (30 points, 20 minutes) For the following inverter assume that Mp and Mn are fully complementary with Spice parameters $\mathrm{KP}=4 \mathrm{E}-5$, $|\mathrm{VTO}|=1$, LAMBDA $=0.1, \mathrm{Cgs}=\mathrm{Cgd}=10 \mathrm{pFd}$, and $\mathrm{W}=\mathrm{L}=10 \mathrm{uM}$. Find symbolically and numerically the small signal gain, $\mathrm{Vo} / \mathrm{Vi}(\mathrm{s})$ when loaded with the capacitor $\mathrm{C}=20 \mathrm{pFd}$. Give also its zeros and poles.

3. (35 points, 20 minutes) For the following circuit assume the open circuit transfer function is $\mathrm{V} 1 / \mathrm{Vo}(\mathrm{s})=1 /\left[\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{LRs}^{3}+\mathrm{C}_{2} \mathrm{Ls}^{2}+\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \mathrm{Rs}+1\right]$.
Assume also that $\mathrm{R} 1=\mathrm{Ri}$ are very large and $\mathrm{K}=\mathrm{Rf} / \mathrm{R} 1$..
a) Give the transfer function $\mathrm{Vo} / \mathrm{Vi}(\mathrm{s})$ as a ratio of two polynomials.
b) Give the conditions for sinusoidal oscillations and the oscillation frequency as well as the poles of the transfer function $\mathrm{Vo} / \mathrm{Vi}$.

