File: c:\templcourses\spring2011\417\week_7.doc RWN 02/20/11
ENEE 417 Experiments Week 7 Spring 2011
Week starting 03/07/11; active circuits ($\mathrm{C}=>\mathrm{L}, \mathrm{R}=>-\mathrm{R}$)

1. The following circuit is called a GIC (=General Impedance Converter). When the opamps are ideal, it is known that (where all Z's are impedances)

a) Verify the above formula for $\operatorname{Zin}(\mathrm{s})$
b) Choose $\mathrm{Z} 0=0, \mathrm{Z} 1(\mathrm{~s})=\mathrm{Z} 2(\mathrm{~s})=\mathrm{Z} 3(\mathrm{~s})=\mathrm{Z} 5(\mathrm{~s})=\mathrm{R}, \mathrm{Z} 4(\mathrm{~s})=1 /(\mathrm{Cs})$. In this case loading by a capacitor makes $\operatorname{Zin}(\mathrm{s})$ look like an inductor. Construct the circuit using the 1458 op-amps and various values of R and C (start with $\mathrm{R}=2 \mathrm{KOhm}$ and $\mathrm{C}=1$ microFarad).
c) Devise means to test if an inductor is really seen, one means being via a time constant evaluation and another via an LC resonance.
d) Repeat when $\mathrm{Z} 0=0, \mathrm{Z} 1=\mathrm{Z3}=\mathrm{Z} 5=\mathrm{R}, \mathrm{Z} 2(\mathrm{~s})=\mathrm{Z4}(\mathrm{~s})=1 /(\mathrm{Cs})$.
2. In the above circuit add Z 6 on the top op-amp as feedback from the output to the + input. Choose $\mathrm{Z} 0=0, \mathrm{Z} 1=\mathrm{Z} 2=\mathrm{Z3}=\mathrm{Z} 4=\mathrm{R}, \mathrm{Z} 6=\mathrm{R} / 2$.

It is surmised that $\mathrm{Zin}(\mathrm{s})=-\mathrm{Z5}(\mathrm{~s})$.
Check this analytically and devise an experiment to check your calculations.
3. Catch up on all previous projects so that you can start your base paper experiments next time.

