File: f:/coursesS09/303H/303S09Hmwk4.doc RWN 02/18/09 303H Spring 2009 - Homework 4 Due Tu 03/03/09

1. Design a BJT OTA to give Iout $=\mathrm{I}_{\mathrm{T}} \tanh \left(\operatorname{Vin} /\left(2 \mathrm{~V}_{\mathrm{T}}\right)\right)$ using a differential pair formed from the 2N3904 transistors for the main differential pair and tail current and the 2N3906 transistors for the output current mirror.. Use Vcc=-Vee= $=5 \mathrm{~V}$ and the tail current to be 2 mA using a circuit such as that of Figure 6.10 of page 569. Check operation by DC Spice simulations over the range Vee $<$ Vin $<$ Vcc (use an F component as a load with a resistor on its output; ground one of the inputs [repeat with the other input grounded]).
2. Replace each BJT by an MOS one, use the 1.2 micron ones, and compare the outputs of the two over a range of inputs, Vss=Vee $<$ Vin $<$ Vdd $=$ Vcc.
3. For the following circuit (for which the op-amps are ideal) show that

$$
\mathrm{Zin}(\mathrm{~s})=\mathrm{Z} 0(\mathrm{~s})+(\mathrm{Z} 1(\mathrm{~s}) \cdot \mathrm{Z} 3(\mathrm{~s}) \cdot \mathrm{Z} 5(\mathrm{~s})) /(\mathrm{Z} 2(\mathrm{~s}) \cdot \mathrm{Z} 4(\mathrm{~s}))
$$

Evaluate, and comment upon the results, when
a) $\mathrm{Z} 0=0, \mathrm{Z} 1(\mathrm{~s})=\mathrm{Z} 2(\mathrm{~s})=\mathrm{Z} 3(\mathrm{~s})=\mathrm{Z} 5(\mathrm{~s})=\mathrm{R}, \mathrm{Z} 4(\mathrm{~s})=1 /(\mathrm{Cs})$
b) $\mathrm{Z} 0=0, \mathrm{Z} 1=\mathrm{Z} 3=\mathrm{Z} 5=\mathrm{R}, \mathrm{Z} 2(\mathrm{~s})=\mathrm{Z} 4(\mathrm{~s})=1 /(\mathrm{Cs})$

