File: e:/courses/spring2006/434/hmwrk3.doc RWN 02/22/06
Homework 3 - due W 02/29/06
Submit important plots, etc., for grading

1. [50 points]
a) Create a matlab function m files, costran. m , and sintran. m as activation functions that give the cosine(n) and the sine(n) of the neuron signals n for use in a Fourier series neural network.
b) Give a signal flow or block diagram for a neural network having an input layer with 4 cosine, 4 sine, and one constant term and a linear output layer to yield a single output that is an approximate Fourier series for a function approximation (for an input scalar variable).
c) Train on 21 equally spaced samples, $x i=(i / 20)^{*}(2 \pi)$ for $i=0, \ldots 20$, such a neural network which is to form a nine term (4 cosine, 4 sine, 1 constant) Fourier series over $\left[\begin{array}{ll}0 & 2 \pi\end{array}\right]$ of the function
$f(x)=3 x+5 \exp (x / 2)$
Assume that this function is periodically extended by 2π shifts along the x axis.
d) Directly compute using integral formulas for the coefficients of the corresponding 9 coefficients of the first terms of a sine, cosine Fourier series and compare with the weights found in c).
2. [50 points]
a) Plot radial basis functions, $\operatorname{RBF}(x / \sigma)$, over $-10<x<10$ for four different values of the spread, σ, in the range 0.1 to 100 (use a log scale in σ, that is, $0.1,1$, etc.).
b) Find an RBF network to approximate the $f(x)$ of problem 1c) above.
