file: backpropex.mcd 10/15-20/06
file to give hand calculations for an example of backpropagation

$$
\mathrm{p}:=\left[\begin{array}{c}
6 \\
-1.3
\end{array}\right] \quad \mathrm{t}:=\left[\begin{array}{l}
0.6 \\
0.8
\end{array}\right]
$$

choose a two layer feedforward NNET with 3 neurons for first layer.

$$
\begin{aligned}
& \mathrm{W} 1:=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0.5 & 0
\end{array}\right] \quad \mathrm{b} 1:=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \mathrm{W} 2:=\left[\begin{array}{ccc}
0.2 & 0 & 0.3 \\
0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

These fix the neuron inputs for the first layer:

$$
\mathrm{n} 1:=\mathrm{W} 1 \cdot \mathrm{p}+\mathrm{b} 1
$$

$$
\mathrm{n} 1=\left[\begin{array}{c}
6 \\
-1.3 \\
3
\end{array}\right]
$$

choose $\tanh ($.$) for each activation function$

$$
\text { a1 }:=\tanh (\mathrm{n} 1)
$$

$$
\mathrm{a} 1=\left[\begin{array}{c}
1 \\
-0.862 \\
0.995
\end{array}\right]
$$

The input to the second layer neurons are now fixed:

$$
\begin{array}{ll}
\mathrm{n} 2:=\mathrm{W} 2 \cdot \mathrm{a} 1+\mathrm{b} 2 & \mathrm{n} 2=\left[\begin{array}{c}
0.499 \\
-0.862
\end{array}\right] \\
\mathrm{a} 2:=\tanh (\mathrm{n} 2) & \mathrm{a} 2=\left[\begin{array}{c}
0.461 \\
-0.697
\end{array}\right]
\end{array} \mathrm{t}=\left[\begin{array}{l}
0.6 \\
0.8
\end{array}\right]
$$

output a2 is calculated:

$$
\mathrm{e}:=(\mathrm{t}-\mathrm{a} 2)
$$

$$
\mathrm{e}=\left[\begin{array}{l}
0.139 \\
1.497
\end{array}\right]
$$

With that the quadratic "energy function" F is available

$$
\mathrm{F}:=\mathrm{e}^{\mathrm{T}} \cdot \mathrm{e}
$$

$$
\mathrm{F}=(2.261)
$$

To start the backpropagation, the derivatives of the activation functions are needed

For the second layer these are (they go on the diagonal of the derivative matrix)

$$
\begin{array}{rlr}
\mathrm{df} 21:=1-(\mathrm{a} 2)^{2} & \mathrm{df} 22:=1-\left(\mathrm{a} 2_{2}\right)^{2} & \\
& \mathrm{dF} 2:=\left[\begin{array}{cc}
\mathrm{df} 21 & 0 \\
0 & \mathrm{df} 22
\end{array}\right] & \mathrm{dF} 2=\left[\begin{array}{cc}
0.788 & 0 \\
0 & 0.514
\end{array}\right]
\end{array}
$$

This allows the sensitivites to be calculated. for the output layer the sensitivity vector is

$$
\text { s2 :=-2 } \cdot \mathrm{dF} 2 \cdot \mathrm{e}
$$

In order to set the weights the convergence factor α is needed.
This is chosen somewhat arbitrarily between 0 and 1 . The closer to 0 the longer it takes to converge but more accuracy is obtained.

$$
\alpha:=0.2
$$

Now the updated output layer weights and biases can be calculated

$$
\begin{aligned}
& \mathrm{W} 2 \text { new }:=\mathrm{W} 2-\alpha \cdot \mathrm{s} 2 \cdot \mathrm{al}^{\mathrm{T}} \\
& \qquad \mathrm{~W} 2 \text { new }=\left[\begin{array}{ccc}
0.244 & -0.038 & 0.344 \\
0.308 & 0.735 & 0.306
\end{array}\right] \quad \mathrm{s} 2=\left[\begin{array}{c}
-0.219 \\
-1.539
\end{array}\right] \quad \mathrm{W} 2=\left[\begin{array}{ccc}
0.2 & 0 & 0.3 \\
0 & 1 & 0
\end{array}\right] \\
& \text { b2new }:=\mathrm{b} 2-\alpha \cdot \mathrm{s} 2 \\
& \quad \mathrm{~b} 2 \text { new }=\left[\begin{array}{l}
0.044 \\
0.308
\end{array}\right]
\end{aligned}
$$

To update the first layer weights the derivative matrix is needed

$$
\begin{array}{rl}
\mathrm{dF} 11:=1-\left(\mathrm{a} 1_{1}\right)^{2} & \mathrm{dF} 12:=1-\left(\mathrm{al}_{2}\right)^{2} \quad \mathrm{dF} 13:=1-\left(\mathrm{a} 1_{3}\right)^{2} \\
\mathrm{dF} 1:=\left[\begin{array}{ccc}
\mathrm{dF} 11 & 0 & 0 \\
0 & \mathrm{dF} 12 & 0 \\
0 \mathrm{o} & 0 & \mathrm{dF} 13
\end{array}\right] \quad \mathrm{dF} 1=\left[\begin{array}{ccc}
2.458 \cdot 10^{-5} & 0 & 0 \\
0 & 0.257 & 0 \\
0 & 0 & 9.866 \cdot 10^{-3}
\end{array}\right]
\end{array}
$$

Next the sensitivity vector for the first layer is needed; here is where the backward direction is used in that s1 comes from s2

$$
\mathrm{s} 1:=\mathrm{dF} 1 \cdot \mathrm{~W} 2^{\mathrm{T}} \cdot \mathrm{~s} 2 \quad \mathrm{~s} 1=\left[\begin{array}{c}
-1.077 \cdot 10^{-6} \\
-0.396 \\
-6.482 \cdot 10^{-4}
\end{array}\right]
$$

$$
\mathrm{W} 1 \text { new }:=\mathrm{W} 1-\alpha \cdot \mathrm{s} 1 \cdot \mathrm{p}^{\mathrm{T}}
$$

$$
\text { W1new }=\left[\begin{array}{cc}
1 & -2.799 \cdot 10^{-7} \\
0.475 & 0.897 \\
0.501 & -1.685 \cdot 10^{-4}
\end{array}\right]
$$

$$
\text { blnew }:=\mathrm{b} 1-\alpha \cdot \mathrm{s} 1
$$

$$
\text { blnew }=\left[\begin{array}{c}
2.153 \cdot 10^{-7} \\
0.079 \\
1.296 \cdot 10^{-4}
\end{array}\right]
$$

The next step is to repeat by calculating the new signal forward propagation All steps are as before.

The neuron inputs for the first layer:are
n1new :=W1new•p + b1new
using tanh(.) for each activation function

$$
\text { n1new }=\left[\begin{array}{c}
6 \\
1.766 \\
3.005
\end{array}\right]
$$

$$
\text { alnew }:=\tanh (\text { n1new })
$$

$$
\text { alnew }=\left[\begin{array}{c}
1 \\
0.943 \\
0.995
\end{array}\right]
$$

The new input to the second layer neurons are now fixed:

$$
\begin{array}{ll}
\text { n2new }:=\text { W2new } \cdot \text { alnew }+ \text { b2new } & \text { n2new }=\left[\begin{array}{l}
0.594 \\
1.613
\end{array}\right] \\
\text { a2new }:=\tanh (\text { n2new }) & \text { a2new }=\left[\begin{array}{l}
0.533 \\
0.924
\end{array}\right] \quad \mathrm{t}=\left[\begin{array}{l}
0.6 \\
0.8
\end{array}\right]
\end{array}
$$

At this point the new error enew between the desired output t and the actual output a2new is calculated:

$$
\text { enew }:=(t-a 2 n e w) \quad \text { enew }=\left[\begin{array}{c}
0.067 \\
-0.124
\end{array}\right] \quad e=\left[\begin{array}{l}
0.139 \\
1.497
\end{array}\right]
$$

With that the quadratic "energy function" F is available
Fnew := enew ${ }^{\mathrm{T}}$.enew

$$
\text { Fnew }=(0.02)
$$

Comparing the new error with the old, we see that the new output is closer to the desired output with a much smaller sum of squares error

$$
\text { Fnew }=(0.02) \quad F=(2.261)
$$

