File: E:/courses/spring2006/303/hmwrk3.doc RWN 02/14/06 Homework Set 3 due Wednesday February 22, 2006

1. [50 points]

For an NMOS transistor in the Ohmic region, with the bulk tied to the source, use the DC description

$$i_D = \frac{KP}{2} \frac{W}{L} [2(v_{GS} - VTO)v_{DS} - v_{DS}^2](1 + \lambda v_{DS})$$

- a) find analytic expressions for g_{m} and g_{o}
- b) using KP=4*10E-5 A/V²,W=3L=10microns, VTO=0.6V, λ =lambda=0.01/V, evaluate i_D, g_m, and r_o=1/g_o at the bias point V_{GS}=2V, V_{DS}=0.5V
- c) draw the small signal equivalent circuit including the non-DC components Cgs=3Cgd/2=3pFd.
- d) find the voltage transfer function, Vout(s)/Vin(s) for an input applied to the gate (with respect to ground) and the output across a 10KOhm load at the drain (with respect to ground).

2. [50 points]

Using 4007 MOS transistors design the following current mirrors to mirror an input current of 2mA for a desired output current of 2mA. In all cases give the Spice circuit and output current versus output voltage (that at the drain of the output transistor) for 9V≥Vout≥0. Discuss differences in the results and the amount of hardware needed.

- a) A basic current (sink) mirror of Figure 6.5, p. 563.
- b) A basic current (source) mirror as on the right of Figure 6.7, p. 566.
- c) The modified Wilson mirror of Figure 6.61(c).

3. [50 points]

For the npn BN2X4 transistors of the 2.0u technology MOSIS set:

- a) give Spice plots for i_C versus v_{CE} with i_B as a parameter with $5V \ge v_{CE} \ge 0$ for $9uA \ge i_B \ge 0$ in 3uA steps.
- b) draw the small signal equivalent circuit for this transistor when biased at $I_C = 0.46 \text{mA}$, $I_B = 6 \text{uA}$. Also give the V_{CE} for this bias point and indicate the Q point on the Spice curves.