ENEE434 Spring 2005 Homework 5 Solution:

Problem 1: (E18.3, pp.18-40 of the textbook.) replace $2a_1a_2$ with $-2a_1a_2$ in V(a). $V(a) = -\frac{1}{2}(a_1^2 - 2a_1a_2 + 4a_2^2 + 6a_1 + 10a_2)$

i) Weight matrix and bias vector:

$$V(a) = -\frac{1}{2} \left(a_1^2 - 2a_1a_2 + 4a_2^2 + 6a_1 + 10a_2 \right)$$

= $-\frac{1}{2} \left(a_1^2 - 2a_1a_2 + 4a_2^2 \right) - \left(3a_1 + 5a_2 \right)$
= $-\frac{1}{2} a^T \cdot \begin{bmatrix} 1 & -1 \\ -1 & 4 \end{bmatrix} \cdot a - \begin{bmatrix} 3 \\ 5 \end{bmatrix}^T \cdot a$
Therefore: (compared with equation 18.52)

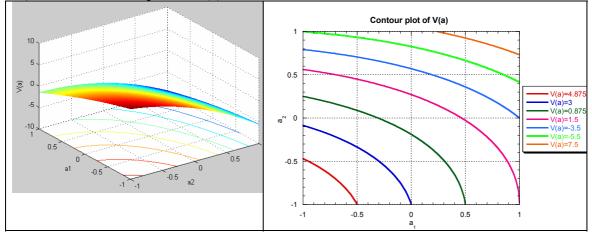
Therefore: (compared with equation 18.52, pp. 18-14 in text book, high gain case) Weight matrix: $W = \begin{bmatrix} 1 & -1 \\ -1 & 4 \end{bmatrix}$, and bias vector: $b = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$.

ii) Gradient and Hessian for V(a):

Gradient:
$$\nabla V(a) = -W \cdot a - b = -\begin{bmatrix} 1 & -1 \\ -1 & 4 \end{bmatrix} \cdot a - \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

Hessian: $\nabla^2 V(a) = -W = \begin{bmatrix} -1 & 1 \\ 1 & -4 \end{bmatrix}$

iii) Sketch a contour plot of V(a):



iv) The stationary point(s) for V(a): $\left|\nabla^2 V(a) - \lambda I\right| = \lambda^2 - 5\lambda + 3 = 0$ $\lambda_1 = -0.6972$, and $\lambda_2 = -4.3028$. Since both eigenvalues are negative, V(a) has a single maximum point. To find this maximum: $\nabla V(a) = \begin{bmatrix} -a_1 + a_2 - 3\\ a_1 - 4a_2 - 5 \end{bmatrix} = 0$, maximum

 $\left(-\frac{17}{3},-\frac{8}{3}\right)$ which is out side of the hypercube $\{a:-1 \le a_i \le 1, i=1, 2\}$.

Therefore the only stationary point is $a=[1 \ 1]^T$. This point is the only attractor with attraction region of $-1 < a_i < 1$, i=1, 2.

Problem 2:

Design an Hopfield continuous time neural network with activation function a=tanh(n): Finding the weight matrix W and bias vector b to make the Lyaponov function to have only one single minimum at $[1 \ 1]^T$ in the region of $-1 \le a_i \le 1$, i=1, 2.

$$V(a) = -\frac{1}{2} \cdot a^{T} \cdot W \cdot a + \sum_{i=1}^{S} \left\{ \int_{0}^{a_{i}} f^{-1}(u) \cdot du \right\} - b^{T} \cdot a \text{ (equation 18.3, pp. 18-5.)}$$
$$\frac{d}{dt} V(a) = \left[-a^{T} \cdot W + n^{T} - b^{T} \right] \cdot \frac{da}{dt} \text{ (equation 18.13, pp. 18-6.)}$$

At equilibrium, dV(a)/dt=0, therefore:

 $-W \cdot a + n - b = 0$ In this problem, the activation function a=tanh(n); $\begin{cases} a_i = \tanh(n_i) \\ n_i = \frac{1}{2} \ln\left(\frac{1+a_i}{1-a_i}\right) & i = 1,2 \end{cases}$

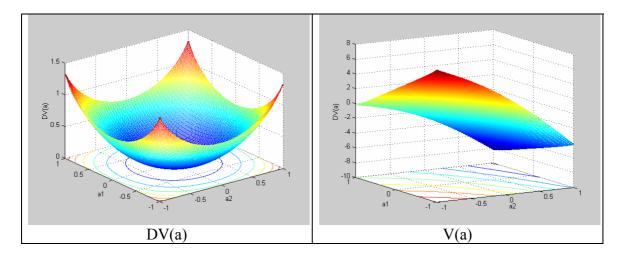
With $a_i=1$, $n_i=+\infty$, no solution of W and b to make dV(a)/dt=0. $a=[1 \ 1]^T$ is a boundary minimum. Since the minimum is at the boundary, the solution of this problem is not unique.

$$I(a_{i}) = \int_{0}^{a_{i}} f^{-1}(u) \cdot du = \int_{0}^{a_{i}} \frac{1}{2} \ln\left(\frac{1+u}{1-u}\right) \cdot du$$

$$= \frac{a_{i}}{2} \cdot \ln\left(\frac{1+a_{i}}{1-a_{i}}\right) - \ln\left\{\cosh\left[\frac{1}{2}\ln\left(\frac{1+a_{i}}{1-a_{i}}\right)\right]\right\} \qquad i = 1,2$$

$$DV(a) = \sum_{i=1}^{2} \frac{a_{i}}{2} \cdot \ln\left(\frac{1+a_{i}}{1-a_{i}}\right) - \ln\left\{\cosh\left[\frac{1}{2}\ln\left(\frac{1+a_{i}}{1-a_{i}}\right)\right]\right\}$$

First, let us try if the W and b from problem 1 would give a minimum at $[1, 1]^T$. The plot on the right below shows that $[1, 1]^T$ is the minimum point for V(a). Therefore, the weight W and bias b from problem 1 is one of the solutions.



T=[1;1]; net=newhop(T); net.layers{1}.transferFcn='tanh'; net.lw{1,1}=[1 -1;-1 4] net.b{1,1}=[3;5] Ai=T; [Y,Pf,Af] = sim(net,1,[],Ai); Y

 $Y=[0.9951, 1.0000]^{T}$. This is the minimum point.

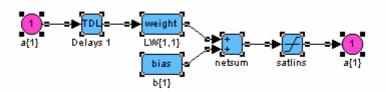
One solution would be:

Weight matrix: $W = \begin{bmatrix} 1 & -1 \\ -1 & 4 \end{bmatrix}$, and bias vector: $b = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$.

Problem 3:

a) Architectural structures of continuous time and discrete time Hopfiled neural networks.

Continuous time: (Figure 18. 2, pp. 18-5 from Text book,) Discrete time:



b) Comparison:

Continuous time	Discrete time
Differential Operator on n	1 delay on a