
ENEE434 Spring 2005 
Homework 5 Solution:      Y.J. 03/15/05 
 
Problem 1: (E18.3 , pp.18-40 of the textbook.) replace 2a1a2 with -2a1a2 in V(a). 
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i) Weight matrix and bias vector: 
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Therefore: (compared with equation 18.52, pp. 18-14 in text book, high gain case)  
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ii) Gradient and Hessian for V(a): 

Gradient: 
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Hessian: 
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iii) Sketch a contour plot of V(a): 
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iv) The stationary point(s) for V(a): 
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6972.01 −=λ , and 3028.42 −=λ . Since both eigenvalues are negative, V(a) has a single 

maximum point. To find this maximum: 0
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17  which is out side of the hypercube {a:-1<ai<1, i=1, 2}. 

 Therefore the only stationary point is a=[1 1]T. This point is the only attractor with 
attraction region of -1<ai<1, i=1, 2. 
 
Problem 2:  
Design an Hopfield continuous time neural network with activation function a=tanh(n):  
Finding the weight matrix W and bias vector b to make the Lyaponov function to have 
only one single minimum at [1 1]T in the region of -1<ai<1, i=1, 2. 
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At equilibrium, dV(a)/dt=0, therefore: 

0=−+⋅− bnaW  
In this problem, the activation function a=tanh(n); 
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With ai=1, ni=+∞, no solution of W and b to make dV(a)/dt=0. a=[1 1]T is a boundary 
minimum. Since the minimum is at the boundary, the solution of this problem is not 
unique. 
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First, let us try if the W and b from problem 1 would give a minimum at [1, 1]T. The 
plot on the right below shows that [1, 1]T is the minimum point for V(a). Therefore, the 
weight W and bias b from problem 1 is one of the solutions. 



DV(a) V(a) 
 
Check with matlab, weight matrix W and bias vector b from problem 1 were used. 
T=[1;1]; 
    net=newhop(T); 
    net.layers{1}.transferFcn='tanh'; 
    net.lw{1,1}=[1 -1;-1 4] 
    net.b{1,1}=[3;5] 
     
    Ai=T; 
    [Y,Pf,Af] = sim(net,1,[],Ai); 
    Y 
Y=[0.9951, 1.0000]T. This is the minimum point. 
 
One solution would be: 
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Problem 3:  
a) Architectural structures of continuous time and discrete time Hopfiled neural 
networks. 
Continuous time: (Figure 18. 2, pp. 18-5 from Text book,) 
Discrete time: 
 

 
b) Comparison: 
Continuous time Discrete time 
Differential Operator on n 1 delay on a 
 
 
 


