File: c:\temp\courses\spring2004\434\434midterm.doc RWN 03/18/04b
Midterm Exam
ENEE 434 Spring 2004
Open book, open notes, 100 points, 75 minutes (15 minutes for checking); if stuck go on to the next problem. Your signature guarantees the work is your own - only signed exams will be graded. "May the most you wish for be the least you get [St. Patrick saying]"

1. (30 points, 20 minutes)

A neural network, called nnetest, has 3-vector inputs and 2-vector outputs, all in the range $[-2,+3]$ of the inputs to 5 neurons that are hyperbolic tangents and from them to the purely linear output neurons; all weights are +1 and biases are -1 .
a) Give the newff command to set up nnetex.
b) Give the outputs for the inputs $[1,1 / 2,-1]^{\mathrm{T}}$ and $[-1,1 / 2,1]^{\mathrm{T}}$.
2. (35 points, 20 minutes)

An autoassociative neural network using +1 or -1 signals has

$$
\mathrm{p}_{1}=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]^{\mathrm{T}}, \quad \mathrm{p}_{2}=\left[\begin{array}{llll}
1 & 1 & -1 & -1
\end{array}\right]^{\mathrm{T}}
$$

a) Set up and draw a suitable neural network using, as in Exercise E7.5,

$$
\mathrm{W}=\mathrm{PP}^{\mathrm{T}}-\mathrm{QI}
$$

b) Considering that this network is not designed to handle

$$
p_{3}=\left[\begin{array}{llll}
1 & -1 & -1 & 1
\end{array}\right]^{\mathrm{T}}
$$

Show: b1) what the output is with this input
b2) what the W would be if this were incorporated from the start.
c) Determine all the other independent p 's which can be used to form W along with the three above. Use all of these to form W using the formula of a) and determine what outputs will result.
d) Given a positive integer k extend the result of c) to determine how many (2k-1)-vectors and how many 2^{k}-vectors can be auto-associated in this class of neural networks.
3. (35 points, 20 minutes)

For the logsig activation function $\mathrm{f}, \mathrm{y}=\mathrm{f}(\mathrm{x})$, the derivative can be found from $\operatorname{df}(\mathrm{x}) / \mathrm{dx}=\mathrm{g}_{\mathrm{o}}(\mathrm{y})=(1-\mathrm{y}) \mathrm{y}$
a) Determine the same type of formula for the derivative of tansig, that is find $\mathrm{g}_{1}(\mathrm{y})$ for $\mathrm{df}(\mathrm{x}) / \mathrm{dx}=\mathrm{g}_{1}(\mathrm{y})$.
b) A neural network has one layer with two inputs, a weight matrix W (with no biases) and two output logsig neurons. By attempting to minimize the squared output error $\mathrm{e}=(\mathrm{t}-\mathrm{a})^{\mathrm{T}}(\mathrm{t}-\mathrm{a})$ for an exemplar pair (p, t), develop an equation in terms of t and p , using the result above part a), for updating the ij entry W_{ij} of the weight matrix W from $\mathrm{k}=0$ to $\mathrm{k}=1$ assuming $\mathrm{W}(0)=\mathrm{I}$ using equation (11.27)

$$
\mathrm{W}^{\mathrm{m}}(\mathrm{k}+1)=\mathrm{W}^{\mathrm{m}}(\mathrm{k})-\alpha \mathrm{s}^{\mathrm{m}}(\mathrm{k})\left(\mathrm{a}^{\mathrm{m}-1}(\mathrm{k})\right)^{\mathrm{T}}
$$

4. Extra credit - a much research type of problem: extend Problem 2d) to 2 k -vectors.
