C:\temp\course\spring2003\434\Todo_4.doc RWN 03/02/03 p1 of 2
ENEE 434 Spring 2003
To Do \#4

1. Use the Matlab functions $[\mathrm{pn}$, meanp,stdp] $=\operatorname{prestd}(\mathrm{p})$ and $[\mathrm{ptrans}$, transMat] $=$ prepca(pn, 0.01) on the following training set:

$$
\mathrm{p} 1=\left[\begin{array}{c}
1.1 \\
5.3 \\
-0.7 \\
0.3 \\
2.4
\end{array}\right], \mathrm{p} 2=\left[\begin{array}{c}
-1.1 \\
-5.3 \\
-0.7 \\
0.3 \\
2.4
\end{array}\right], \mathrm{p} 3=\left[\begin{array}{c}
2.4 \\
0.3 \\
-0.7 \\
5.3 \\
1.1
\end{array}\right], \mathrm{p} 4=\left[\begin{array}{c}
-2.4 \\
-0.3 \\
-0.7 \\
5.3 \\
1.1
\end{array}\right], \mathrm{p} 5=\left[\begin{array}{c}
3.2 \\
-3.2 \\
0.7 \\
1.5 \\
-1.5
\end{array}\right], \mathrm{p} 6=\left[\begin{array}{c}
-3.2 \\
3.2 \\
0.7 \\
1.5 \\
-1.5
\end{array}\right], \mathrm{p} 7=\left[\begin{array}{c}
0.2 \\
0.5 \\
0.7 \\
0.9 \\
-1.1
\end{array}\right]
$$

Then apply the transMat to the following vectors to be considered as data to be classified:

$$
\mathrm{p} 1=\left[\begin{array}{c}
1.5 \\
5.6 \\
-0.8 \\
0.3 \\
2.4
\end{array}\right], \mathrm{p} 2=\left[\begin{array}{c}
-1.1 \\
-5.3 \\
-0.8, \\
0.4 \\
1.4
\end{array}\right], \mathrm{p} 3=\left[\begin{array}{c}
2.9 \\
0.7 \\
-0.7 \\
4.4 \\
-1.3
\end{array}\right],
$$

Also perform a singular valued decomposition on the matrix $\mathrm{P}=[\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4, \mathrm{p} 5, \mathrm{p} 6, \mathrm{p} 7]$.
2. For the following matrix

$$
A=\left[\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
-1 & 1 & -1 & 0 & 0 \\
0 & -1 & 1 & -1 & 0 \\
0 & 0 & -1 & 1 & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right]
$$

a. Find the SVD (singular valued decomposition)
b. Is A symmetric? Positive semidefinite?
c. Prove that A is singular. What is the rank of A?
d. Throw away the zero singular values and write the matrix as a product of three matrices with the middle one diagonal with no zero diagonal entries.
3. Change all diagonal entries of A to 2 and call the result A_{5}. For A_{5} find the svd. Note that this matrix is nonsingular (for those interested it is the Cartan matrix A_{5} of simple Lie algebra theory). In A_{5} change the -1 in the last row to -2 and call the result C_{5} and find the svd (for those interested it again is a Cartan matrix).
4. Let

$$
\mathrm{A}_{2}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right], A_{3}=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right], A_{4}=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]
$$

$$
A_{n}=\left[\begin{array}{cc}
A_{n-1} & {\left[\begin{array}{c}
\underline{0} \\
-1
\end{array}\right]} \\
{\left[\begin{array}{ll}
0 & -1
\end{array}\right]} & 2
\end{array}\right]
$$

Find the SVD for several of these in order and see if there is a pattern.
See if there is a means to find the SVD of A_{n} from that of A_{n-1}. How about for C_{n} from A_{n-1} where

$$
\mathrm{C}_{\mathrm{n}}=\left[\begin{array}{cc}
\mathrm{A}_{\mathrm{n}-1} & {\left[\begin{array}{c}
\underline{0} \\
-1
\end{array}\right]} \\
{\left[\begin{array}{ll}
0 & -2
\end{array}\right]} & 2
\end{array}\right] ?
$$

5. Find the SVD for the following matrices:

$$
\mathrm{A}=\left[\begin{array}{ccccc}
0 & 2.2 & -1.1 & -3.3 & -4.4 \\
1.1 & 3.3 & -2.2 & 4.4 & 5.5
\end{array}\right], \quad \mathrm{B}=\mathrm{A}^{\prime}=\text { transpose of } \mathrm{A}
$$

