C:\temp\course\spring2003\434\Todo_3.doc RWN 02/22/03 p1 of 2
ENEE 434 Spring 2003
To Do \#3

1. Design a neural network to give the following six input output pairs

$$
\begin{aligned}
& \mathrm{p}_{1}=\mathrm{t}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \mathrm{p}_{2}=\mathrm{t}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \mathrm{p}_{3}=\mathrm{t}_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right], \\
& \mathrm{p}_{4}=\mathrm{t}_{4}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1 \\
0 \\
0
\end{array}\right], \mathrm{p}_{5}=\mathrm{t}_{5}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right], \mathrm{p}_{6}=\mathrm{t}_{6}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
1 \\
-1
\end{array}\right]
\end{aligned}
$$

Use the activation function for small positive ε
$\mathrm{f}(\mathrm{n})=\left\{\begin{array}{lc}+1 & \text { for } \varepsilon<\mathrm{n} \\ \frac{\mathrm{n}}{\varepsilon} & \text { for }-\varepsilon \leq \mathrm{n} \leq \varepsilon \\ -1 & \text { for } \mathrm{n}<-\varepsilon\end{array}\right.$
Check that the desired output results for all these inputs and then try your network on
$\mathrm{p}_{\text {test }}=\left[\begin{array}{c}0.01 \\ -0.02 \\ 1.01 \\ -1.02 \\ -0.04 \\ 0.05\end{array}\right]$
2. For the above problem
a. Form $\mathrm{P}=\left[\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3} \mathrm{p}_{4} \mathrm{p}_{5} \mathrm{p}_{6}\right]$ and find its inverse.
b. Investigate properties of P ; is it

Symmetric, Orthogonal, Of trace zero, Self inverse, Positive definite?
c. Discuss the means to transform any real nonsingular 6×6 matrix Q into P and carry out your procedure on

$$
\mathrm{Q}=\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

3. Look into the effects of using $\varepsilon<0$ in the activation function of problem 1 (on redefining the middle range to go over $\varepsilon \leq n \leq-\varepsilon$). Note that this gives a 3 -valued activation function which when realized by hardware is a type of hysteresis.
