
file: c:\math\mcad80\rwn_mcad\backprop_ex1.mcd RWN 02/19/02
Example of backpropagation for 2-layer network

Assume a two layer single input single output network with two tansig
neurons in the first layer and one purelin neuron in the output layer
 to approximate 3cos(p); train on p=2.5=a0.

a0 2.5

Choose initial weights and biases;

For first layer

W1
0.2

0.5
b1

0.3

0.8
For second layer

W2 2 0.5() b2 0.7

The training ouput is 3cos(2.5)

t 3 cos 2.5(). t 2.403=

The network functions are

n1 W1 a0. b1 n1
0.2

0.45
= n11 0.2= n12 0.45=

a1 tanh n1() a1
0.197

0.422
= a11 0.197= a12 0.422=

n2 W2 a1. b2 n2 1.306()=

a2 n2 We wish this to become t, that is, n2==>t is desired
by training

Output difference, e, and error E e t a2 e 1.098()=
E eT e. E 1.205()=

The function derivatives are found from y=tanh(x)=(2/(1+e^(-2x))-1)
as dy/dx=(1-y)(1+y), while for the second layer it is the identity.
Thus

da1 y() 1 y() 1 y() da1 a11 0.961=

da1 a12 0.822=

df1
da1 a11
0

0

da1 a12
df1

0.961

0

0

0.822
=

df2 1

Start the backpropagation

s2 1 df2. t a2(). s2 1.098()=

s1 df1 W2T. s2. s1
2.11

0.451
=

Weight update; using a learning rate α=0.3 overshoots so choose smaller

α 0.1

W2new W2 α s2. a1T.
W2new 2.022 0.546()=

b2new b2 α s2.
b2new 0.81()=

W1new W1 α s1. a0.
Really want a transpose on a0 but
MathCad won't accept on his scalar

b1new b1 α s1.

W1new
0.727

0.613
=

b1new
0.089

0.755
=

n1new W1new a0. b1

a1new tanh n1new() a1new
0.908

0.624
=

n2new W2new a1new. b2new

a2new n2new enew t a2new Enew enewT enew.

n1new
1.519

0.732
= a1new

0.908

0.624
=

n2new 2.987()= a2new 2.987()=

enew 0.584()= compare to previous e 1.098()=

Enew 0.341()= E 1.205()=

