file: c:\math\mcad80\rwn_mcad\backprop_ex1.mcd RWN 02/19/02
Example of backpropagation for 2-layer network

Assume a two layer single input single output network with two tansig neurons in the first layer and one purelin neuron in the output layer to approximate $3 \cos (p)$; train on $p=2.5=a 0$.

$$
\mathrm{a} 0:=2.5
$$

Choose initial weights and biases;
For first layer
W1 $:=\left[\begin{array}{c}0.2 \\ -0.5\end{array}\right] \quad$ b1 $:=\left[\begin{array}{c}-0.3 \\ 0.8\end{array}\right]$
For second layer

$$
\text { W2 :=(-2 } 0.5) \quad \text { b2 }:=-0.7
$$

The training ouput is $3 \cos (2.5)$

$$
\mathrm{t}:=3 \cdot \cos (2.5) \quad \mathrm{t}=-2.403
$$

The network functions are

$$
\begin{array}{lll}
\mathrm{n} 1:=\mathrm{W} 1 \cdot \mathrm{a} 0+\mathrm{b} 1 & \mathrm{n} 1=\left[\begin{array}{c}
0.2 \\
-0.45
\end{array}\right] & \mathrm{n} 1_{1}=0.2 \\
\mathrm{n} 1_{2}=-0.45 \\
\mathrm{a} 1:=\tanh (\mathrm{n} 1) & \mathrm{a} 1=\left[\begin{array}{c}
0.197 \\
-0.422
\end{array}\right] & \mathrm{a}_{1}=0.197 \\
\mathrm{n} 2:=\mathrm{W} 2 \cdot \mathrm{a} 1+\mathrm{b} 2=-0.422 \\
& \mathrm{n} 2=(-1.306) &
\end{array}
$$

$\mathrm{a} 2:=\mathrm{n} 2 \quad$ We wish this to become t , that is, $\mathrm{n} 2==>\mathrm{t}$ is desired by training

Output difference, e, and error E

$$
\begin{equation*}
\mathrm{e}:=\mathrm{t}-\mathrm{a} 2 \tag{-1.098}
\end{equation*}
$$

$$
\mathrm{E}:=\mathrm{e}^{\mathrm{T}} \cdot \mathrm{e}
$$

$$
\mathrm{E}=(1.205)
$$

The function derivatives are found from $y=\tanh (x)=\left(2 /\left(1+e^{\wedge}(-2 x)\right)-1\right)$ as $\mathrm{dy} / \mathrm{dx}=(1-\mathrm{y})(1+\mathrm{y})$, while for the second layer it is the identity.
Thus

$$
\begin{array}{ll}
\operatorname{da1}(\mathrm{y}):=(1-\mathrm{y})(1+\mathrm{y}) & \mathrm{da1}\left(\mathrm{a} 1_{1}\right)=0.961 \\
& \mathrm{da} 1\left(\mathrm{a} 1_{2}\right)=0.822 \\
\mathrm{df} 1:=\left[\begin{array}{cc}
\mathrm{da}\left(\mathrm{a} 1_{1}\right) & 0 \\
0 & \mathrm{dal}\left(\mathrm{al}_{2}\right)
\end{array}\right] & \mathrm{df1}=\left[\begin{array}{cc}
0.961 & 0 \\
0 & 0.822
\end{array}\right] \\
\mathrm{df} 2:=1
\end{array}
$$

Start the backpropagation

$$
\begin{array}{ll}
\mathrm{s} 2:=-1 \cdot \mathrm{df} 2 \cdot(\mathrm{t}-\mathrm{a} 2) & \mathrm{s} 2=(1.098) \\
\mathrm{s} 1:=\mathrm{df} 1 \cdot \mathrm{~W} 2^{\mathrm{T}} \cdot \mathrm{~s} 2 & \mathrm{~s} 1=\left[\begin{array}{c}
-2.11 \\
0.451
\end{array}\right]
\end{array}
$$

Weight update; using a learning rate $\alpha=0.3$ overshoots so choose smaller

$$
\begin{array}{rr}
\alpha:=0.1 \\
\text { W2new }:=\mathrm{W} 2-\alpha \cdot \mathrm{s} 2 \cdot \mathrm{a} 1^{\mathrm{T}} & \text { W2new }=\left(\begin{array}{l}
-2.022 \quad 0.546
\end{array}\right) \\
\text { b2new := } 2-\alpha \cdot \mathrm{s} 2 & \text { b2new }=(-0.81) \\
\text { W1new }:=\mathrm{W} 1-\alpha \cdot \mathrm{s} 1 \cdot \mathrm{a} 0 & \text { Really want a transpose on a0 but } \\
\text { b1new := b1- } \alpha \cdot \mathrm{s} 1 & \text { MathCad won't accept on his scalar } \\
& \text { W1new }=\left[\begin{array}{c}
0.727 \\
-0.613
\end{array}\right] \\
\text { b1new }=\left[\begin{array}{c}
-0.089 \\
0.755
\end{array}\right]
\end{array}
$$

n1 new := W1new $\cdot \mathrm{a} 0+\mathrm{b} 1$
alnew := $\tanh ($ nlnew $)$
alnew $=\left[\begin{array}{c}0.908 \\ -0.624\end{array}\right]$
n2new := W2new $\cdot$ alnew + b2new

| a2new $:=$ n2new | enew $:=t-$ a2new |
| :--- | :---: |
| n1new $=\left[\begin{array}{c}1.519 \\ -0.732\end{array}\right]$ | alnew $=\left[\begin{array}{c}0.908 \\ -0.624\end{array}\right]$ |
| n2new $=(-2.987)$ | a2new $=(-2.987)$ |
| enew $=(0.584)$ | compare to previous |
| Enew $=(0.341)$ | $e=(-1.098)$ |
|  |  |

