file: c:\math\mcad80\rwn_mcad\backprop_ex1.mcd RWN 02/19/02 Example of backpropagation for 2-layer network

Assume a two layer single input single output network with two tansig neurons in the first layer and one purelin neuron in the output layer to approximate $3\cos(p)$; train on p=2.5=a0.

$$a0 := 2.5$$

Choose initial weights and biases;

For first layer

$$W1 := \begin{bmatrix} 0.2 \\ -0.5 \end{bmatrix} \qquad b1 := \begin{bmatrix} -0.3 \\ 0.8 \end{bmatrix}$$

For second layer

$$W2 := (-2 \ 0.5)$$
 $b2 := -0.7$

The training ouput is 3cos(2.5)

$$t := 3 \cdot \cos(2.5)$$
 $t = -2.403$

The network functions are

n1 := W1 ·a0 + b1
n1 =
$$\begin{bmatrix} 0.2 \\ -0.45 \end{bmatrix}$$

n1₁ = 0.2 n1₂ = -0.45
a1 := tanh(n1)
a1 = $\begin{bmatrix} 0.197 \\ -0.422 \end{bmatrix}$
a1₁ = 0.197 a1₂ = -0.422
n2 := W2 ·a1 + b2
n2 = (-1.306)

a2 := n2 We wish this to become t, that is, n2==>t is desired by training

Output difference, e, and error E
$$e := t - a2$$
 $e = (-1.098)$ $E := e^{T} \cdot e$ $E = (1.205)$

The function derivatives are found from $y=tanh(x)=(2/(1+e^{-2x})-1)$ as dy/dx=(1-y)(1+y), while for the second layer it is the identity. Thus

$$df1 := \begin{bmatrix} da1(a1_1) & 0 \\ 0 & da1(a1_2) \end{bmatrix} \qquad df1 = \begin{bmatrix} 0.961 & 0 \\ 0 & 0.822 \end{bmatrix}$$

$$df2 := 1$$

Start the backpropagation

$$s2 := -1 \cdot df2 \cdot (t - a2)$$
 $s2 = (1.098)$
 $s1 := df1 \cdot W2^{T} \cdot s2$ $s1 = \begin{bmatrix} -2.11 \\ 0.451 \end{bmatrix}$

Weight update; using a learning rate α =0.3 overshoots so choose smaller

$$\alpha := 0.1$$

W2new := W2 - $\alpha \cdot s2 \cdot a1^{T}$

b2new := b2 - $\alpha \cdot s2$

W1new := W1 - $\alpha \cdot s1 \cdot a0$

W2new = (-2.022 0.546)

b2new = (-0.81)

Really want a transpose on a0 but MathCad won't accept on his scalar blnew := $b1 - \alpha \cdot s1$

W1new =
$$\begin{bmatrix} 0.727 \\ -0.613 \end{bmatrix}$$
$$b1new = \begin{bmatrix} -0.089 \\ 0.755 \end{bmatrix}$$

 $n1new := W1new \cdot a0 + b1$

alnew :=
$$tanh(nlnew)$$
 alnew =
$$\begin{bmatrix} 0.908 \\ -0.624 \end{bmatrix}$$

 $n2\text{new} := W2\text{new} \cdot a1\text{new} + b2\text{new}$

a2new := n2new enew :=
$$t - a2$$
new Enew := $enew^T \cdot enew$

$$n1new = \begin{bmatrix} 1.519 \\ -0.732 \end{bmatrix} \quad a1new = \begin{bmatrix} 0.908 \\ -0.624 \end{bmatrix}$$

$$n2new = (-2.987)$$
 $a2new = (-2.987)$

enew =
$$(0.584)$$
 compare to previous $e = (-1.098)$

Enew =
$$(0.341)$$
 E = (1.205)