
ENEE 434 HW#3 Solutions

1a. Here is the matlab code for the AND logic network. This code is used with small
changes for other sections of the question 1. Learning rate is set to 0.5, which is just the
middle value in the spectrum, [0, 1].

% Homework 3 Question 1
function [a, net, tr] = odev2

 p = [0 0 1 1; 0 1 0 1];
 t = [0 0 0 1];
 net = newff(minmax(p), [2,1], {'logsig', 'purelin'}, 'traingd');
 net.trainParam.show = 100;
 net.trainParam.epochs = 20000;
 net.trainParam.lr = 0.5;
 net.trainParam.goal = 1e-5;
 net.IW{1} = [0 0; 0 0];
 net.LW{2} = [0 0];
 net.b{1} = [0; 0];
 net.b{2} = [0];
 [net, tr] = train(net, p, t);

After this matlab code is run, the error rate drops to 10-3 around 10000 epochs and it
saturates at 10-4 error rate after 20000 epochs. Then 10000 seem to be a good estimate for
optimum number of epochs such that the error converges to a small value. The output
figure for this run is shown below.

1b. Number of epochs is set to 10000. Running the matlab code for several times with
different learning rates, observed error rates (in logarithmic scale) are as follows.

MSE vs Learning Rate

1

10

100

1000

10000

100000

1000000

10000000

0 0.2 0.4 0.6 0.8 1 1.2

Learning RAte

M
SE

As observed the error rate decreases with increasing learning rate up to ~0.67, then it
starts to increase sharp. Also oscillations in the error rate start once the learning rate
exceeds 0.6. Then the training algorithm starts to behave unstable as expected.

1c. Since training converges to slow for error rate of 1e-5, and even it does not converge
to this rate for small learning rate, error rate is set to 1e-3 for this part. Running the
matlab code for different learning rates, the result is as follows:

of Epochs vs. Learning Rate

0

10000

20000

30000

40000

50000

60000

70000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Learning RAte

of

 E
po

ch
s

2. Below is the matlab code that initializes the desired hopfield network, runs it with a
random input until it converges to stability points and plots the resulting trajectory.

% Homework 3 Question 2
function [y] = odev2

 T = [1 1; -1 -1]';
 net = newhop(T);
 Ai = T;
 [Y, Pf, Af] = sim(net, 2, [], Ai);
 y = Y;

 plot(T(1,1), T(2,1), 'x');
 hold on
 plot(T(1,2), T(2,2), 'x');
 Ai = [-0.4 -0.8; 0.8 0.2]'
 for i = 1:5
 plot(Ai(1,1), Ai(2,1), 'x');
 plot(Ai(1,2), Ai(2,2), 'x');
 [Y, Pf, Af] = sim(net, 2, [], Ai);
 Ai = Y;
 end

Once you run this code you get the same state diagram with the one, on page 324 of
matlab manual.

	ENEE 434 HW#3 Solutions
	Ai = [-0.4 -0.8; 0.8 0.2]'

