Solution to Problem 2 - Homework 4 - ENEE 302
 AD Revised 05/14/02 \& 05/19/02

2. For the following common-base circuit:
a) Determine the gain $\operatorname{Av}(\mathrm{s})=$ Vout $/$ Vin for all frequencies assuming $C_{\mu}=0$.
b) Determine Zi and Zo , input and output impedances for all frequencies as functions of s .
c) Plot $\mathrm{Av}(\mathrm{s})$ using Pspice and the BN 2 x 2 npn transistor for $\mathrm{R} 1=3.6 \mathrm{~K}, \mathrm{R} 2=3.9 \mathrm{~K}$, $\mathrm{R} 3=390 \mathrm{~K}, \mathrm{C} 1=5 \mathrm{uF}, \mathrm{C} 2=5 \mathrm{uF}$.

Above, is the small signal model of the circuit.
Here, $r_{\pi}=\frac{\beta \times I c}{V_{T}}, r_{o}=\frac{V_{A}}{I_{C}}, g_{m}=\frac{I_{C}}{V_{T}}$ and C_{π} depends on the transistor parameters. where I_{C}, the DC bias current, is calculated from the basic KVL in the circuit around the base-emitter- V_{EE} loop:
$0=R_{3} \times \frac{I_{C}}{\beta}+0.7+\frac{I_{C}}{\alpha} \times R_{2}-5.0$
The impedance of capacitor C will be considered $\frac{1}{C \times s}$ in writing KVL and KCL equations since the behavior of the circuit in all frequencies is wanted.

* Below, are the basic KVL and KCL equations required to calculate Zi :

KVL @ $\mathrm{c}: \frac{v_{c}}{R_{1}}+\frac{v_{c}-v_{e}}{r_{o}}+g_{m}\left(v_{b}-v_{e}\right)=0 ; C_{1}$ is connected to ∞ load!
KVL @ $\mathrm{b}: \frac{v_{b}-v_{e}}{r_{\pi} \| c_{\pi}}+\frac{v_{b}}{R_{3}}=0$
KVL@e: $\left(v_{e}-v_{i n}\right) \times c_{2} s+\frac{v_{e}-v_{b}}{r_{\pi} \| c_{\pi}}+\frac{v_{e}}{R_{2}}+\frac{v_{e}-v_{c}}{r_{o}}-g_{m}\left(v_{b}-v_{e}\right)=0$
Assuming $r_{o} \geq R_{1}$ and $i_{e} \approx \beta \times i_{b}$, the followings can be obtained after simplifying the circuit equations:
The input impedance is $\frac{v_{i n}}{I_{c 2}}=\frac{v_{i n}}{\left(v_{i n}-v_{e}\right) \times c_{2} s}$, which after simplification will be the following: $\mathrm{Zi}=\frac{1}{C_{2} \times s}+\left(R_{2} \|\left[\left(\frac{r_{\pi}}{\beta} \| c_{\pi}\right)+\frac{R_{3}}{\beta}\right]\right)$;
Note that this impedance is the series of $\frac{1}{C_{2} \times s}$ with the impedance that is seen looking from C_{2} in the circuit, which is.

$$
R_{2} \|\left[\left(\frac{r_{\pi}}{\beta} \| c_{\pi}\right)+\frac{R_{3}}{\beta}\right]
$$

* Below, are the basic KVL and KCL equations required to calculate Zo :

KVL @ $\mathrm{c}: \frac{v_{c}-v_{o}}{R_{1}}+\frac{v_{c}-v_{e}}{r_{o}}+g_{m}\left(v_{b}-v_{e}\right)=0$
KVL @ b: $\frac{v_{b}-v_{e}}{r_{\pi} \| c_{\pi}}+\frac{v_{b}}{R_{3}}=0$
KVL @ e: $v_{e} \times c_{2} s+\frac{v_{e}-v_{b}}{r_{\pi} \| c_{\pi}}+\frac{v_{e}}{R_{2}}+\frac{v_{e}-v_{c}}{r_{o}}-g_{m}\left(v_{b}-v_{e}\right)=0 ;$ Note Vin $=0$.
Assuming $r_{o} \geq R_{1}$ and $i_{e} \approx \beta \times i_{b}$, the followings can be obtained after simplifying the circuit equations:
The output impedance is $\frac{v_{\text {out }}}{I_{c 1}}=\frac{v_{\text {out }}}{\left(v_{\text {out }}-v_{c}\right) \times c_{1} s}$, which after simplification will be the following: $\mathrm{Zo}=\frac{1}{C_{1} \times s}+R_{1}$
Note the output impedance is the series of $\frac{1}{C_{1} \times s}$ with the impedance that is seen looking from C_{1} in the circuit which is $R 1$ with a good approximation. ($r_{o} \geq R_{1}$)

* Below, are the basic KVL and KCL equations required to calculate Av :

KVL@c: $\frac{v_{c}}{R_{1}}+\frac{v_{c}-v_{e}}{r_{o}}+g_{m}\left(v_{b}-v_{e}\right)+\left(v_{o}-v_{c}\right) \times C_{1} s=0$
KVL@ $\mathrm{b}: \frac{v_{b}-v_{e}}{r_{\pi} \| c_{\pi}}+\frac{v_{b}}{R_{3}}=0$
KVL@ $@$: $\left(v_{e}-v_{i n}\right) \times C_{2} s+\frac{v_{e}-v_{b}}{r_{\pi} \| c_{\pi}}+\frac{v_{e}}{R_{2}}+\frac{v_{e}-v_{c}}{r_{o}}-g_{m}\left(v_{b}-v_{e}\right)=0$
The following equations can be rearranged to solve for base, collector and emitter voltages:

$$
\left\{\begin{array}{c}
g_{m} v_{b}+\left(\frac{1}{R_{1}}+\frac{1}{r_{o}}-C_{1} s\right) v_{c}+\left(\frac{-1}{r_{o}}-g_{m}\right) v_{e}=C_{1} s \times v_{o} \\
\left(\frac{1}{r_{\pi} \| c_{\pi}}+\frac{1}{R_{3}}\right) v_{b}+\left(\frac{-1}{r_{\pi} \| c_{\pi}}\right) v_{e}=0 \\
\left(\frac{-1}{c_{\pi} \| r_{\pi}}-g_{m}\right) v_{b}+\left(\frac{-1}{r_{o}}\right) v_{c}+\left(C_{2} s+\frac{1}{r_{\pi} \| c_{\pi}}+\frac{1}{R_{2}}+\frac{1}{r_{o}}+g_{m}\right) v_{e}=C_{2} s \times v_{i n}
\end{array}\right.
$$

Finally, below is the expression for gain:

$$
A_{v}(s)=\frac{-R_{2}}{R_{1}} \times \frac{R_{1}+r_{0}+r_{o} R_{1} C_{1} s}{r_{o} R_{1} C_{1} s} \times \frac{C_{2} s\left(R_{3}\left(r_{\pi}+c_{\pi}\right)+r_{\pi} c_{\pi} R_{2}\right)}{\beta R_{2}\left(r_{\pi}+c_{\pi}\right)+R_{3}\left(r_{\pi}+c_{\pi}\right)+r_{\pi} c_{\pi}+C_{2} s\left(R_{3}\left(r_{\pi}+c_{\pi}\right)+r_{\pi} c_{\pi} R_{2}\right)}
$$

Note for high frequencies, the second and third term get close to one and the gain is close to $-\mathrm{R} 1 / \mathrm{R} 2$.

Note that initially assuming C1 and C2 short (very high frequencies), then the gain will be like a normal common-base amplifier:
$A_{v} \cong-\frac{R_{1}}{R_{2}}$, but for low frequencies C 1 and C 2 behave like open circuit and the gain will be zero.

The cut-off frequency where the gain will rise from 0 is calculated as below:

$$
\begin{aligned}
& w_{1}=\frac{1}{2 \pi \times C_{1} \times R_{1}} \\
& w_{2}=\frac{1}{2 \pi \times C_{2} \times\left(R_{2} \|\left(r_{e}+\frac{R_{3}}{\beta}\right)\right)}
\end{aligned}
$$

w_{1} is the frequency associated with C_{1} and is calculated by multiplying these effective R.C seen from C_{1} and so is w_{2} calculated for C_{2}.
So, the overall gain expression will be the following:

$$
A_{v}(j w)=\left\{\begin{array}{cc}
0 & w<\min \left(w_{1}, w_{2}\right) \\
-\frac{R_{1}}{R_{2}} & w>\min \left(w_{1}, w_{2}\right)
\end{array}\right.
$$

