File: f:/courses/fall2020/610/610F20finalversionexam.doc RWN for Tu 12/22/20 EE 610 Final Exam Fall 2020 Take Home due in Elms system on-line prior to end of scheduled exam period Tu 12/22/20 10:30-12:30.

Open Book Open Notes and calculators; 100 points, 2 hours. Your submission insures that the work is totally your own.
e-journals are also due at the end of the exam. Good luck and have a good semester break.

1. (15 points, 10 minutes)

Synthesize by the first Cauer $z(s)=\left[s\left(s^{2}+4\right)\right] /\left[\left(s^{2}+2\right)\left(s^{2}+5\right)\right]$
2. (15 points, 10 minutes)

Check the Hurwitz nature of the numerator and denominator of $f(s)=\left[s^{3}+2 s^{2}+2 s+4\right] /\left[s^{3}+4 s^{2}+8 s+2\right]$
3. (40 points, 60 minutes) ReLU cells

ReLU (=Rectifying Linear Unit) is an important component in Deep Neural Network (=DNN) theory.

The ReLU component is described as a voltage controlled voltage source [with zero input current] for which the ouput voltage is the maximum of 0 or the input voltage, that is $\mathrm{Vo}=\max \{0, \mathrm{Vi}\}$. If $\mathrm{Vi}=\mathrm{x}$ and $\mathrm{Vo}=\mathrm{x}+$ this is often written $x^{+}(x)=\max \{0, x\}$. Although it is nonlinear it is a peicewise linear 2port with possible circuit symbol shown below.
a) Sketch the $x^{+}=$Vo versus $x=$ Vi for $-2<x<+2$

The ReLU (neuron) cell is the following two-input single-output circuit where input 1 is a voltage and input two is a current.

A 2-input ReLU neuron is

A state variable type representation of this neuron is the following where x is a 2vector of capacitor voltages, Θ is a 2×2 diagonal matrix of time constants, W is a 2×2 matrix of "weights" and B \& C are also 2×2 matrices

$$
\begin{aligned}
& \Theta \mathrm{dx} / \mathrm{dt}=-\mathrm{x}+\mathrm{Wx}^{+}+\mathrm{Bi} \\
& \text { vo }=\mathrm{Cx}^{+}
\end{aligned}
$$

b) Using capacitor voltages (with respect to ground) write these two equations in matrix form exhibiting the four coefficient matrices.
c) These state equations are nonlinear but being peicewise linear, they cover 4 linear state variable cases. In all four cases the only coefficient matrix which changes is W. Keeping Θ, B, C as above, give the coefficient A on x in the following two different cases, 1) when both rectifiers give all $x+$ as $\max >0$ and $2)$ when all $x+$ are 0 .
4. (15 points, 10 min) For the following 2-port circuit of 3 OTAs having trnasconductances $\mathrm{g}_{\mathrm{i}}, \mathrm{i}=1,2,3$, and an admittance $\mathrm{y}(\mathrm{s})$.
a) Give the 2-port admittance matrix and on setting $\mathrm{g}_{1}=\mathrm{g}_{2}$ give conditions for this to give a negative inductor.
b) Find the input admittance when loaded in a short circuit (that is a resistor of resistance $R=0=>V_{2}=0$).

5. (15 points, 20 min) The following circuit can be constant R .
a) Determine the conditions on the 2-port components for this to be the case.
b) Give its transfer function. $\mathrm{V}_{2} / \mathrm{V}_{1}$ where $\mathrm{V}_{1}=\mathrm{V}$ is the applied voltage at the left of the 2-port and V_{2} is the output voltage on its right,

