1. (30 points, Hurwitz polynomials)

By using a continued fraction expansion about infinity, determine which of the following polynomials are Hurwitz and/or strictly Hurwitz (if imaginary roots, determine them). [all have a real root; you might look into finding them also].
a) $\mathrm{p} 1(\mathrm{~s})=\mathrm{s}^{4}+8 \mathrm{~s}^{3}+20 \mathrm{~s}^{2}+31 \mathrm{~s}+30$
b) $\mathrm{p} 2(\mathrm{~s})=\mathrm{s}^{4}+6 \mathrm{~s}^{3}+6 \mathrm{~s}^{2}+11 \mathrm{~s}+30$
c) $\mathrm{p} 3(\mathrm{~s})=\mathrm{s}^{4}+7 \mathrm{~s}^{3}+12 \mathrm{~s}^{2}+14 \mathrm{~s}+20$
2. (50 points, Richards' function LPR synthesis)
a) Synthesize twice the following LPR admittance by using the Richards' function evaluated first at $\mathrm{k}=1$ and then at $\mathrm{k}=2$ and compare

$$
\mathrm{y}(\mathrm{~s})=\left[3 \mathrm{~s}\left(\mathrm{~s}^{2}+4\right)\right] /\left(\mathrm{s}^{2}+2\right)
$$

b) Repeat on this function as an impedance, that is

$$
\mathrm{z}(\mathrm{~s})=\left[3 \mathrm{~s}\left(\mathrm{~s}^{2}+4\right)\right] /\left(\mathrm{s}^{2}+2\right)
$$

3. (20 points, fractional order differentiators)

Since it is possible to make fractional order capacitors there are now many papers using fractional order differentators described by $y(s)=C s^{\alpha}$
(that is, s is raised to a real number power $\alpha,-\infty<\alpha<\infty$, which is practically often $1 / 2$ or $1 / 3$)
Determine for which real α this $\mathrm{y}(\mathrm{s})$ is positive-real when $\mathrm{C}>0$. For which α it PR and which LPR?

